JPS6133883B2 - - Google Patents

Info

Publication number
JPS6133883B2
JPS6133883B2 JP8057978A JP8057978A JPS6133883B2 JP S6133883 B2 JPS6133883 B2 JP S6133883B2 JP 8057978 A JP8057978 A JP 8057978A JP 8057978 A JP8057978 A JP 8057978A JP S6133883 B2 JPS6133883 B2 JP S6133883B2
Authority
JP
Japan
Prior art keywords
steel
concentration
blowing
steel bath
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8057978A
Other languages
Japanese (ja)
Other versions
JPS558445A (en
Inventor
Sumio Yamada
Fumio Sudo
Jun Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8057978A priority Critical patent/JPS558445A/en
Publication of JPS558445A publication Critical patent/JPS558445A/en
Publication of JPS6133883B2 publication Critical patent/JPS6133883B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 この発明は底吹き転炉の出鋼成分整定方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining the tapping composition of a bottom blowing converter.

底吹き転炉の操業とくに、出鋼操業では、従来
吹錬終了後の炉内鋼浴の温度ならびに成分のチエ
ツクを行うのに、炉体を反倒、つまり出鋼のため
の傾倒と反対の向きへ一旦傾動させる操作が必要
とされていたが、かような反倒の間にも羽口から
の不活性ガスとくに窒素、アルゴンその他水蒸気
などの吹込みの継続を要するので、鋼浴、溶滓の
炉口からの飛散放出を生じる外に、該反倒による
計測の時間(通常5〜10分間)にわたる間、鋼浴
の温度低下(普通は3〜5℃)、ならびに炉内れ
んがの不必要な溶損が増す不利が、とくに底吹き
転炉では殊のほか著しいことが経験された。
In the operation of a bottom-blowing converter, especially in steel tapping operations, conventionally, to check the temperature and composition of the steel bath in the furnace after blowing, the furnace body is turned upside down, that is, in the opposite direction to that for tapping steel. However, even during such tilting, it is necessary to continue blowing inert gas, especially nitrogen, argon, and water vapor, from the tuyeres, so that the steel bath and slag are In addition to causing fugitive emissions from the furnace mouth, the overturning also causes a temperature drop in the steel bath (usually 3-5°C) over the measurement period (usually 5-10 minutes) and unnecessary melting of the bricks in the furnace. The disadvantage of increased losses has been experienced to be particularly pronounced in bottom-blown converters.

この点とくに上記のガス吹込み継続に伴う炉口
からの溶融物の飛散を嫌つて、底吹き転炉の吹練
終了予定前にサブランスを転炉上方より炉内へ降
下させ、鋼浴のサンプリングを行つてその温度と
炭素濃度を事前にチエツクし、これにより爾後の
送酸量、冷却剤量を決定するような吹止め吹錬を
行う間にサブランスを上昇復帰させるか、上記の
チエツクで出鋼条件との合致がたしかめられたと
きにはサブランスの上昇復帰の間にわたつて送酸
の代りに窒素、アルゴン、水蒸気などの吹き込み
を続け、引続いて転炉の炉体を出鋼姿勢に傾動さ
せることが試みられた。
In this regard, in order to avoid the scattering of molten material from the furnace mouth due to the continuous gas injection mentioned above, a sub-lance is lowered into the furnace from above the converter before the scheduled end of blowing of the bottom-blowing converter to sample the steel bath. Check the temperature and carbon concentration in advance by checking the temperature and carbon concentration, and then raise and restore the sub-balance during the stop blowing, which determines the amount of oxygen and coolant afterward, or check the temperature and carbon concentration by checking the above check. When it is confirmed that the conditions match the steel conditions, nitrogen, argon, steam, etc. are continued to be blown instead of oxygen during the sublance's return to the upward movement, and the converter body is then tilted to the tapping position. This was attempted.

これによつて上記反倒傾動の不利は回避される
が、出鋼の際に不可欠な成分調整を充分正確に行
うことができない。
Although this avoids the above-mentioned disadvantages of anti-tilting, it is not possible to adjust the components with sufficient accuracy, which is essential during tapping.

すなわちサブランスによる鋼浴炭素濃度の測定
のあとも、羽口から酸素あるいは不活性ガスの吹
込みを継続するため、酸素吹込みの場合は測定後
の成分の変化を生じて、現実の出鋼時における鋼
浴成分の推定は、必ずしも高い精度が得られると
は限らず、一般に困難であり、そのため取鍋に受
けた溶鋼の成分を、目標の範囲に合致させること
ができず、良好な品質がのぞまれるときには適合
しないし、また不活性ガスの吹込みはそれによつ
て温度降下がかなり大幅に生じ、熱エネルギの損
失がゆるがせになし得ない程度に起る上、不活性
ガスの導入によつてもなお成分の変動を生じるの
で、正確な取鍋成分の調整はなお困難であつた。
In other words, even after measuring the steel bath carbon concentration using the sublance, oxygen or inert gas continues to be injected from the tuyere, so in the case of oxygen injection, the composition changes after the measurement, which may cause a change in the actual tapping time. Estimating the composition of the steel bath in the ladle is not always accurate and is generally difficult; therefore, the composition of the molten steel received in the ladle cannot be matched to the target range, and good quality may not be obtained. It is not suitable when desired, and the introduction of an inert gas causes a fairly large temperature drop and an irreversible loss of thermal energy; Accurate adjustment of the ladle composition was still difficult as variations in the composition always occurred.

この発明はかような問題点についてのとくに有
利な解決を与えようとするものである。
The present invention seeks to provide a particularly advantageous solution to these problems.

すなわちこの発明では、適宜な吹錬とくに吹止
め制御の下に所定の吹錬を終えた直後に転炉をそ
の出鋼姿勢に傾倒して取鍋に向けて出鋼を行う間
(通常は200〜300トン級の大型転炉においても4
〜5分間程度)に、センサを傾動した転炉の炉口
から炉体内部に装入して出鋼中の、炉内鋼浴の炭
素を測定し、その検出値ならびに、これと当該吹
錬に供したチヤージの溶銑マンガン濃度から次式 Mnf(%)= a−b・1/C(%)+c・溶銑Mn(%)……(1
) Mnf(%):鋼浴マンガン推定濃度 Cf(%):鋼浴炭素濃度測定値 溶銑Mn(%):当該吹錬に供したチヤージの溶
銑マンガン濃度 a,b,c:定数 により求めた鋼浴マンガン推定濃度に基づき、出
鋼を受けた取鍋溶鋼の炭素およびマンガン含有量
を目標成分に調整、すなわち加炭材やフエロマン
ガンなどの投入添加を行つて、出鋼成分を整定す
るものである。
In other words, in this invention, immediately after completing appropriate blowing, especially a predetermined blowing under blow stop control, the converter is tilted to its tapping position and the steel is tapped toward the ladle. ~4 Even in large converters of 300 tons class
5 minutes), the sensor is charged into the furnace body from the furnace mouth of the converter with the sensor tilted, and the carbon in the steel bath in the furnace during tapping is measured. From the manganese concentration in the hot metal of the charge subjected to the process, the following formula Mnf (%) = a-b・1/C
) Mnf (%): Estimated steel bath manganese concentration C f (%): Measured steel bath carbon concentration Hot metal Mn (%): Hot metal manganese concentration in the charge subjected to the blowing a, b, c: Obtained from constants Based on the estimated concentration of manganese in the steel bath, the carbon and manganese contents of the molten steel in the ladle that received the tapped steel are adjusted to the target components, that is, the tapped components are set by adding recarburizers, ferromanganese, etc. be.

尚、前記式(1)中のa,b,c各定数は炉の大き
さ、形状、底吹羽口本数等により異なり操業デー
ターを基にして統計的に求められる。
The constants a, b, and c in the above formula (1) vary depending on the size, shape, number of bottom blowing tuyere, etc. of the furnace, and are statistically determined based on operational data.

一般に通常の転炉吹錬においては溶銑がほぼ80
%以上で残りスクラツプを装入し吹錬される。従
つて鋼浴マンガン濃度は、装入溶銑マンガン濃度
に比例すること、および鋼浴中のマンガンが酸化
ロスする量は、鋼浴中の炭素濃度の逆数に比例す
ることから(1)式が得られる。
In general, in normal converter blowing, hot metal is approximately 80%
% or more, the remaining scrap is charged and blown. Therefore, the manganese concentration in the steel bath is proportional to the manganese concentration in the charged hot metal, and the amount of manganese lost by oxidation in the steel bath is proportional to the reciprocal of the carbon concentration in the steel bath, so equation (1) can be obtained. It will be done.

例えば炉底羽口、18本を備えた230トン底吹き
転炉においての操業結果、第2図に示すような鋼
浴マンガン濃度を決定づけることが確認されてい
るのでこれらの関係から次式が得られる。
For example, it has been confirmed that the operational results of a 230-ton bottom-blowing converter equipped with 18 bottom tuyeres determine the steel bath manganese concentration as shown in Figure 2. From these relationships, the following equation can be obtained. It will be done.

Mnf(%)=0.164−0.004061/C(%) +0.33溶銑Mn(%) ……(2) この式(2)式を用いて出鋼中の炉内鋼浴の炭素濃
度を測定し、その検出値ならびに、これと当該吹
錬に供したチヤージの溶銑マンガン濃度から鋼浴
マンガン推定濃度を求め、取鍋内溶鋼の炭素およ
びマンガン含有量を目標成分となるよう加炭材や
フエロマンガンなどの投入添加を行ない成分を整
定する。
Mnf (%) = 0.164-0.004061/C f (%) +0.33 Hot metal Mn (%) ...(2) Using this equation (2), measure the carbon concentration in the steel bath in the furnace during tapping. Then, the estimated concentration of manganese in the steel bath is determined from the detected value and the manganese concentration in the hot metal of the charge subjected to the blowing, and the carbon and manganese contents of the molten steel in the ladle are adjusted to the target components by using recarburizer or ferromanganese. The ingredients are stabilized by making additions such as.

こゝに加炭材としては、いわゆるオイルコーク
ス、あるいは無煙炭、電気炉カーボン電極折片の
破砕物の如きを、5mm程度の粗粒として用い、ま
たマンガン含有量の調整は、上記加炭の要否との
かね合いで炭素含有量が種々に異なるフエロマン
ガンの同様な粗粒を用いることが好ましい。
As the carburizing material, so-called oil coke, anthracite, or crushed pieces of electric furnace carbon electrodes are used as coarse particles of about 5 mm, and the manganese content is adjusted according to the above-mentioned key points for carburizing. It is preferable to use similar coarse particles of ferromanganese with various carbon contents depending on the tradeoff.

この発明の実施において所定の吹錬の終了は、
吹錬の吹止め制御技術の適中精度が著しく上昇し
た昨今において、終点制御の予測結果に即応して
容易に決定することができる。しかし念のため
に、吹錬の予定終了時点に対して、鋼浴の温度お
よび炭素濃度のチエツクに必要な、たとえばサブ
ランスの降下とその上昇復帰に要する時間、すな
わちかゝるサブランスが転炉の傾動操作の妨げと
ならない待機姿勢に戻るまでの所要時間よりも以
前に、上記のチエツク手段として、測温―試料採
取複合プローブをもつサブランスや、投込または
射込検出カプセル、あるいは測温用プローブもし
くはカプセルなどを、炉内へ挿入するなり、その
他転炉排ガス分折の手法や、炉内鋼浴から発した
スピツテイング粒子の火花性状の観察比較の手法
などによる検出あるいは推定を行い、その結果に
より送酸残量や、冷却剤使用量などを決定し、出
鋼目標に適合する鋼浴温度、炭素濃度に合致させ
る吹止め吹錬を行うことはもちろん可能である。
In the practice of this invention, the prescribed completion of blowing is
Nowadays, the accuracy of blowing stop control technology has significantly improved, and it is now possible to easily determine the end point control in immediate response to the predicted results. However, just to be sure, the time required for checking the temperature and carbon concentration of the steel bath, such as the time required for the sublance to descend and its return to the upper position, should be taken into account, for example, when the sublance is in the converter. Before the time required to return to the standby position that does not interfere with the tilting operation, as a means of checking the above, use a sublance with a combined temperature measurement/sample collection probe, an immersion or injection detection capsule, or a temperature measurement probe. Alternatively, by inserting a capsule or the like into the furnace, detection or estimation is performed using other methods such as converter exhaust gas analysis or observation and comparison of the spark properties of spitting particles emitted from the steel bath in the furnace, and based on the results. It is of course possible to determine the remaining amount of oxygen to be fed, the amount of coolant to be used, etc., and perform stop blowing to match the steel bath temperature and carbon concentration that match the tapping target.

上記吹錬の終了により直ちに転炉を出鋼姿勢に
傾動させ、取鍋に向けて出鋼する。
Immediately after the above blowing is completed, the converter is tilted to the tapping position and the steel is tapped into the ladle.

この出鋼のありさまを第1図に示し、図中1は
傾倒姿勢の転炉、2は出鋼口、3は取鍋であり、
4は鋼浴、5は出鋼した溶鋼である。
This tapping process is shown in Figure 1, where 1 is a converter in a tilted position, 2 is a tapping port, and 3 is a ladle.
4 is a steel bath, and 5 is tapped molten steel.

この発明ではとくに、第1図に示したように出
湯中の転炉1の炉口から鋼浴4の炭素濃度の測定
用センサ6を炉内鋼浴中へ装入し、これによつて
出鋼中の鋼浴そのものの炭素濃度を実測する。
In this invention, as shown in FIG. 1, a sensor 6 for measuring the carbon concentration of the steel bath 4 is inserted from the furnace mouth of the converter 1 during tapping into the steel bath in the furnace. Measure the carbon concentration in the steel bath itself.

この鋼浴炭素濃度の検出値は、その吹練チヤー
ジに供した溶銑のマンガン濃度に応じて第2図に
示したような鋼浴マンガン濃度を決定づけること
が確認されているので、これらの関係から、上掲
(2)式のように誘導した実験式を用いて、鋼浴マン
ガン濃度が、実用精度で推定することができる。
It has been confirmed that the detected value of the steel bath carbon concentration determines the steel bath manganese concentration as shown in Figure 2 according to the manganese concentration of the hot metal subjected to the blowing charge. , above
Using the experimental formula derived as in equation (2), the steel bath manganese concentration can be estimated with practical accuracy.

こゝに算出される鋼浴マンガン濃度の推定値
は、底吹き転炉の特有の吹錬挙動の下に鋼浴中酸
素濃度のバラツキが、LD転炉のごときとは比較
にならない程度に少いことから、単に鋼浴炭素濃
度と溶銑マンガン濃度に依存するだけで、充分に
高い精度をもつ。
The estimated value of the manganese concentration in the steel bath calculated here is based on the fact that the variation in the oxygen concentration in the steel bath is incomparably smaller than that in an LD converter due to the unique blowing behavior of a bottom-blown converter. Therefore, it has a sufficiently high accuracy simply by relying on the steel bath carbon concentration and hot metal manganese concentration.

かくして上記鋼浴炭素濃度の検出値と、鋼浴マ
ンガン濃度の推定値とを、出鋼目標成分と比較し
必要な加炭材、および又はフエロアロイなどを取
鍋添加することにより、この発明の目的とする出
鋼成分の適正な整定がなし得られるわけである。
Thus, by comparing the detected value of the steel bath carbon concentration and the estimated value of the steel bath manganese concentration with the target steel extraction composition and adding necessary recarburizers and/or ferroalloys to the ladle, the object of the present invention can be achieved. Therefore, the appropriate setting of the tapped steel components can be achieved.

以下実施例について具体的に述べる。 Examples will be described in detail below.

230トン底吹き転炉で低炭素リムド鋼の吹錬を
次のように行つた。
Low-carbon rimmed steel was blown in a 230-ton bottom-blowing converter as follows.

溶銑220トン、スクラツプ25トンを転炉に装入
し、9500Nm3の酸素を吹込んだ吹錬過程でサブラ
ンスを炉内に降下させ鋼浴温度と炭素濃度を測定
したところ1560℃、0.22%であつたので、この吹
錬の目標とした1590℃、0.05%Cに合致させるた
めの残り送酸量600Nm3の吹込みを行つて吹練終
了とし、こゝで吹込みガスを窒素に切換えると同
時に炉体を出鋼姿勢に傾動させ、取鍋に向けて出
鋼を開始した。
220 tons of hot metal and 25 tons of scrap were charged into a converter, and during the blowing process with 9500Nm3 of oxygen injected, a sublance was lowered into the furnace and the steel bath temperature and carbon concentration were measured and found to be 1560℃ and 0.22%. The blowing was completed by injecting the remaining amount of oxygen of 600Nm 3 to meet the target of 1590℃ and 0.05%C for this blowing.At this point, the blowing gas was changed to nitrogen. At the same time, the furnace body was tilted to the tapping position and tapping into the ladle began.

この出鋼中に炉内鋼浴中へ炭素濃度測定用セン
サを装入して計測を行い、0.055%Cの検出値を
得た。
During this tapping, a sensor for measuring carbon concentration was inserted into the steel bath in the furnace to perform measurement, and a detected value of 0.055%C was obtained.

この吹錬チヤージの溶銑マンガン濃度は、0.45
%であつたのでこれを検出炭素濃度とともに(2)式
に代入し、鋼浴推定マンガン濃度として0.24%が
算出された。そこで目標成分0.07%C、0.30%
Mnに合致するように上記実測値と推定値との二
つのデータに従いオイルコークス35Kgと高炭素フ
エロマンガン(C6.8%、Mn75%、残Fe)400Kg
およびAl15Kgを取鍋へ投入した。
The hot metal manganese concentration of this blowing charge is 0.45
%, so this was substituted into equation (2) along with the detected carbon concentration, and 0.24% was calculated as the estimated manganese concentration in the steel bath. Therefore, the target ingredients are 0.07%C, 0.30%
In order to match the Mn, 35 kg of oil coke and 400 kg of high carbon ferromanganese (C6.8%, Mn 75%, residual Fe) were added according to the two data of the above measured value and estimated value.
and 15 kg of Al were put into the ladle.

こうして取鍋内溶鋼温度:1565℃、代表成分
C:0.068%、Mn:0.30%、P:0.013%、S:
0.018%の溶鋼が得られた。
Thus, the temperature of molten steel in the ladle: 1565℃, representative components C: 0.068%, Mn: 0.30%, P: 0.013%, S:
0.018% molten steel was obtained.

上記低炭素リムド鋼の出鋼の際、この出鋼に伴
う温度降下、つまり、吹錬終了の時点における吹
止め鋼浴温度と取鍋に受入れた溶鋼との温度差は
出鋼時間の経過に伴つて、第3図の実線のように
推移したのに対し、従来法による反倒チエツクを
成分調整のために行つた場合の結果は同図破線の
ごとくであつた。
When tapping the above-mentioned low-carbon rimmed steel, the temperature drop accompanying this tapping, that is, the temperature difference between the blowstop steel bath temperature at the end of blowing and the molten steel received in the ladle, changes over the tapping time. Accordingly, the change was as shown by the solid line in FIG. 3, whereas the result when the conventional method of inversion check was performed for component adjustment was as shown by the broken line in the same figure.

第3図は、上記出鋼に伴う温度降下を、この発
明による場合に対する従来の反倒チエツクを行つ
た場合との比較につき吹止めから取鍋への移注が
終るまでの時間つまり出鋼時間についてまとめて
示したグラフであり、図から明らかにこの発明で
は少くとも10℃に相当する温度降下を有利に防止
することができる。
Figure 3 compares the temperature drop caused by tapping the steel with the case of the present invention and the case of performing a conventional counter-inversion check, and shows the time taken from the stopper to the completion of pouring into the ladle, that is, the tapping time. FIG. 1 is a graph showing a summary of the figures, and it is clear from the figure that a temperature drop corresponding to at least 10° C. can advantageously be prevented with the present invention.

上記のように10℃をこえる温度降下の抑制によ
つて、これを控え目に見つもつても炉容230トン
では460×103Kcalの熱量が節減され、これは吹錬
中の鉄鉱石量の増大を意味することから、この発
明により歩留りの向上に有利に役立つことがわか
る。
As mentioned above, by suppressing the temperature drop exceeding 10℃, even if we look at this conservatively, in a furnace with a capacity of 230 tons, the amount of heat saved is 460×10 3 Kcal, which is equivalent to the amount of iron ore being blown. It can be seen that the present invention is advantageously useful for improving the yield.

また第4図にはこの発明による出鋼を行うこと
により、炉内れんがの溶損速度が、従来の反倒操
作を行つた場合よりも0.5−0.3=0.2mm/ch遅くな
ることを、炉体寿命の間にわたつてこの発明によ
る出鋼を従来法による出鋼に対して混用した場合
の、その混用の比率に応じた溶損速度の推移にあ
わせ示した。
Figure 4 also shows that by tapping the steel according to the present invention, the melting rate of the bricks in the furnace is 0.5-0.3=0.2 mm/ch slower than when the conventional counter-tilting operation is performed. The graph shows the evolution of the erosion rate depending on the mixing ratio when the steel tapping method according to the present invention is used in combination with the conventional method over the life of the steel.

つまりこの発明の出鋼操業を多用すればする程
高温鋼浴の炉内滞留時間が短縮されることから、
従来の炉内れんが衰耗のレベルと比べて、大幅な
れんが寿命の向上がより有効に見込むことができ
るわけである。
In other words, the more the tapping operation of this invention is used, the shorter the residence time of the high-temperature steel bath in the furnace.
Compared to the conventional level of wasting of the bricks in the furnace, a significant improvement in the lifespan of the bricks can be expected more effectively.

第5図a(本発明法)b(従来法)第6図a,
bには、上述実施例に準じた低炭素リムド鋼の吹
錬実積100チヤージについて代表C(%)と、代
表Mn(%)の分布を、出鋼中の鋼浴炭素濃度の
実測の下に、鋼浴マンガン濃度の推定を行つて成
分調整を行うこの発明の実施の有無に関して整理
した比較を示し、この発明に従い代表成分のバラ
ツキを有利に減少させ得ることが明らかであり、
その結果目標成分からの外れが減少して、品質保
証の体制がこの発明により有利に確立できるわけ
である。
Figure 5 a (method of the present invention) b (conventional method) Figure 6 a,
In b, the distribution of representative C (%) and representative Mn (%) for 100 actual blowing charges of low carbon rimmed steel according to the above example is shown based on the actual measurement of the steel bath carbon concentration during tapping. In this section, a comparison is made regarding the implementation and non-implementation of this invention, which estimates the manganese concentration in steel bath and adjusts the composition, and it is clear that the variation in representative components can be advantageously reduced according to this invention.
As a result, deviations from target components are reduced, and a quality assurance system can be advantageously established by the present invention.

以上ののべたようにしてこの発明によれば、底
吹き転炉による出鋼成分の整定を有利に実現で
き、とくに吹錬終了後に転炉の炉体を後傾反倒さ
せて行う従来の鋼浴チエツク法と比べて、出鋼所
要時間の有効な短縮による炉内れんがの耐久寿命
の向上と、炉内鋼浴の無用な温度降下の解消によ
つて著大なメリツトが得られる。
As described above, according to the present invention, it is possible to advantageously achieve the settling of the tapped steel composition using a bottom-blowing converter, and in particular, it is possible to advantageously realize the settling of the steel extraction components using a bottom-blowing converter, and in particular, it is possible to advantageously realize the settling of steel extraction components using a bottom-blowing converter. Compared to the check method, significant advantages are obtained by effectively shortening the time required for tapping steel, increasing the durability of the bricks in the furnace, and eliminating unnecessary temperature drops in the steel bath in the furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施要領の説明図、第2図
は鋼浴吹止めC(%)と、溶銑Mn(%)に対す
る鋼浴Mn濃度の関係グラフ、第3図は出鋼時間
に対する溶鋼温度降下につきこの発明を従来法と
比較したグラフ、第4図は炉内れんがの溶損速度
に対するこの発明の低減効果を示すグラフ、第5
図a,b,第6図a,bは取鍋に出鋼した溶鋼の
代表C%、代表Mn%の分布を比較して示す分布
図である。
Fig. 1 is an explanatory diagram of the implementation procedure of the present invention, Fig. 2 is a graph of the relationship between steel bath blow stop C (%) and steel bath Mn concentration with respect to hot metal Mn (%), and Fig. 3 is a graph of the relationship between steel bath stopper C (%) and molten metal Mn concentration versus tapping time. Figure 4 is a graph comparing this invention with the conventional method regarding temperature drop. Figure 4 is a graph showing the reduction effect of this invention on the melting rate of bricks in the furnace.
Figures a and b and Figures 6a and b are distribution charts that compare and show the distribution of representative C% and representative Mn% of molten steel tapped into a ladle.

Claims (1)

【特許請求の範囲】 1 所定の吹錬を終えた直後に転炉を傾倒して出
鋼を行う間に、炉口から炉内にセンサを装入して
出鋼中の炉内鋼浴の炭素濃度を測定し、その検出
値ならびに、これと当該吹錬に供したチヤージの
溶銑マンガン濃度とから下記に示す鋼浴マンガン
推定式に従つて求めた鋼浴マンガン推定濃度に基
づき、出鋼中の取鍋内溶鋼の炭素およびマンガン
含有量を目標成分に調整を行うことを特徴とする
底吹転炉の出鋼成分整定方法。 Mnf(%) =a−b・1/Cf(%)+c・溶銑Mn(%) Mnf(%):鋼浴マンガン推定濃度 Cf(%):鋼浴炭素濃度測定値 溶銑Mn(%):当該吹錬に供したチヤージの溶
銑マンガン濃度 a,b,c:転炉の大きさ、形状等により定まる
定数
[Scope of Claims] 1. Immediately after completing a prescribed blowing process, the converter is tilted and a sensor is inserted into the furnace from the furnace mouth to monitor the temperature of the steel bath in the furnace during tapping. Carbon concentration is measured, and the estimated concentration of manganese in the steel bath is calculated from the detected value and the manganese concentration in the hot metal of the charge subjected to the blowing, using the steel bath manganese estimation formula shown below. A method for determining the components of tapped steel in a bottom blowing converter, which comprises adjusting the carbon and manganese contents of molten steel in a ladle to target components. Mnf (%) = a-b・1/Cf (%) + c・Hot metal Mn (%) Mnf (%): Estimated steel bath manganese concentration C f (%): Measured steel bath carbon concentration Hot metal Mn (%): Hot metal manganese concentration a, b, c of the charge subjected to the blowing: constants determined by the size, shape, etc. of the converter
JP8057978A 1978-07-04 1978-07-04 Regulating method for composition of tapped steel of bottom blasting converter Granted JPS558445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8057978A JPS558445A (en) 1978-07-04 1978-07-04 Regulating method for composition of tapped steel of bottom blasting converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8057978A JPS558445A (en) 1978-07-04 1978-07-04 Regulating method for composition of tapped steel of bottom blasting converter

Publications (2)

Publication Number Publication Date
JPS558445A JPS558445A (en) 1980-01-22
JPS6133883B2 true JPS6133883B2 (en) 1986-08-05

Family

ID=13722247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8057978A Granted JPS558445A (en) 1978-07-04 1978-07-04 Regulating method for composition of tapped steel of bottom blasting converter

Country Status (1)

Country Link
JP (1) JPS558445A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628679B (en) * 2019-02-15 2020-07-31 山东钢铁股份有限公司 Converter tapping judgment method

Also Published As

Publication number Publication date
JPS558445A (en) 1980-01-22

Similar Documents

Publication Publication Date Title
CN116547392A (en) Converter operation method and converter converting control system
JPS6133883B2 (en)
KR20040014599A (en) Method for decarbonization refining of chromium-containing molten steel
US3565606A (en) Method for controlling carbon removal in a basic oxygen furnace
KR910009962B1 (en) Method for producing chromium containing molten iron with low sulphur concentration
JP7380908B2 (en) Cold iron source dissolution rate estimation device, converter type smelting furnace control device, cold iron source dissolution rate estimation method, and molten iron refining processing method
US3540879A (en) Method for controlling phosphorus removal in a basic oxygen furnace
JPS59136652A (en) Method for estimating molten steel constituent
KR20000043436A (en) Method for measuring height of molten ingot steel in blast furnace
KR100325265B1 (en) A method for manufacturing a high carbon fluid metal in a convertor
SU831285A1 (en) Slag forming mixture
JPS5923812A (en) Decarburizing method of iron and steel
JP4850336B2 (en) Hot metal dephosphorization method
KR100905583B1 (en) Method for Measuring Thickness of Slag and Method for Desulfurizing Molten Steel Using Noise Value
JP2824015B2 (en) Cast floor desiliconization method in blast furnace
SU342910A1 (en) METHOD OF MELTING THE STALLING UNION mark? Et1S "Tash: n;: IT ^ 1 LIBRARY
JPH0254710A (en) Method for refining stainless steel
JPS63143214A (en) Nitrogen adding method in converter having bottom blowing tuyere
JPS5928515A (en) Method and apparatus for refining steel
JPH03197612A (en) Method for refining molten metal
JPS6159367B2 (en)
JPH08143927A (en) Method for refining stainless steel
JPS58147511A (en) Refining method of stainless steel
JPS6249347B2 (en)
KR19990024664A (en) Temperature rising method of molten steel during converter refining