JPS6133577B2 - - Google Patents

Info

Publication number
JPS6133577B2
JPS6133577B2 JP53070208A JP7020878A JPS6133577B2 JP S6133577 B2 JPS6133577 B2 JP S6133577B2 JP 53070208 A JP53070208 A JP 53070208A JP 7020878 A JP7020878 A JP 7020878A JP S6133577 B2 JPS6133577 B2 JP S6133577B2
Authority
JP
Japan
Prior art keywords
solenoid valve
pressure
cuff
valve
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53070208A
Other languages
Japanese (ja)
Other versions
JPS54161783A (en
Inventor
Otohiko Terajima
Tsutomu Ichinomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7020878A priority Critical patent/JPS54161783A/en
Publication of JPS54161783A publication Critical patent/JPS54161783A/en
Publication of JPS6133577B2 publication Critical patent/JPS6133577B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】 本発明は自動血圧計に関するものである。[Detailed description of the invention] The present invention relates to an automatic blood pressure monitor.

ベローズと差動トランスを備えた圧力検知部を
有する自動血圧計にあつては、圧力を検知する際
にベローズに初期変位、即ち落下衝撃等によるベ
ローズと差動トランスの相対位置に変化があると
正確な圧力が表示されないことになる。従つてこ
の初期変位の値をゼロとして測定する必要があ
る。またカフを腕に巻付けたときにカフの巻付不
良が生じた場合にはカフ内の圧力が大気圧に戻る
までには時間がかかるが、再スタートまでの待機
時間が短いことが望まれる。更に集団検診等にお
いて連続して何拾人もの人の測定をする場合上記
のような初期変位の他に温度等の環境による初期
変化が生じることもある。従つてゼロ較正は測定
ごとに行う必要がある。ところが従来の自動血圧
計にあつては血圧測定後にカフとベローズを連通
したままでこれらの内部の空気を共通の電磁弁等
を介して大気に開放するのでベローズの圧力が大
気圧になるまで待たなければゼロ較正することが
できないものであつて、事実上ゼロ較正はできな
かつた。
In the case of an automatic blood pressure monitor that has a pressure detection section equipped with a bellows and a differential transformer, when detecting pressure, there is an initial displacement of the bellows, that is, a change in the relative position of the bellows and the differential transformer due to a drop impact, etc. Accurate pressure will not be displayed. Therefore, it is necessary to measure this initial displacement value as zero. Additionally, if the cuff is not properly wrapped when wrapped around the arm, it will take time for the pressure inside the cuff to return to atmospheric pressure, but it is desirable that the waiting time before restarting is short. . Furthermore, when measuring several people in succession in a group medical examination or the like, in addition to the above-mentioned initial displacement, initial changes due to the environment such as temperature may occur. Therefore, zero calibration must be performed every measurement. However, with conventional automatic blood pressure monitors, after blood pressure measurement, the cuff and bellows are kept in communication and the air inside them is released to the atmosphere through a common solenoid valve, so the system waits until the pressure in the bellows reaches atmospheric pressure. Without it, zero calibration could not be performed, and in fact zero calibration could not be performed.

本発明はかかる従来の欠点に鑑みてなされたも
のであつて、その目的とするところは測定開始毎
にゼロ較正することができ、しかも短時間でゼロ
較正ができる自動血圧計を提供するにある。
The present invention has been made in view of such conventional drawbacks, and its purpose is to provide an automatic blood pressure monitor that can perform zero calibration every time measurement is started, and can perform zero calibration in a short time. .

以下、本発明を図示した実施例にて詳細に説明
する。図中1は自動血圧計本体(以下本体と略記
する)であつて、本体1内にはモータ8にて駆動
してカフ3に空気を送るためのダイヤフラムポン
プのようなポンプ9が内蔵してある。このポンプ
9はゴム管のような連結管10にて電磁弁2に連
結してあり、連結管10は途中から分岐したゴム
管などからなるカム連結管11を介してカフ3に
連結されている。カフ連結管11は本体1内に内
蔵してある第1カフ連結管11aとカフ3に取着
してある第2カフ連結管11bとからなるもので
ある。第1カフ連結管11aと第2カフ連結管1
1bとは差込みプラグ12を差込口13に差込む
ことによつて接続するようになつている。尚、第
2カフ連結管11bは集音用ゴム管14bを接合
されていて、集音用ゴム管14bは本体1内の集
音用ゴム管14aを介してマイクロフオン15に
連結されるようになつている。前記電磁弁2は三
方弁であつて、大気開口部7、入力側の流入口1
6および出力側O1の排出口17を有していて、
これらは弁18の作動によつて開閉自在になつて
いる。この流入口16は連結管10に連結してあ
り、また排出口17の手前に管径を0.3mmφ程度
に絞つてオリフイス部19を形成してあつて、排
出口17はゴム管のような連通管20を介して電
磁弁2の下方に配設した他の電磁弁21に接続し
てある。この電磁弁21は二方弁であつて、入力
側O2の管径を0.2mmφ程度に絞つてオリフイス部
22を形成してあり、出力側は大気に開放される
ようになつている。ここで、オリフイス部19は
ポンプ9で加圧時の脈動を緩和、平滑化して圧力
検知部6に伝えるためのものであり、またオリフ
イス部22は血圧測定時にカフ3内の空気を緩速
排気するためのものである。この際オリフイス部
19の管径を0.3mmφ程度としオリフイス部22
の管径を0.2mmφ程度としているが、この数値に
限定されるものでない。ただオリフイス部19の
管径を0.3mmφ程度とするとポンプ9の脈動が伝
わらない程度の抵抗が働き、0.3mmφより極端に
小さくなると抵抗が大きく圧力が正確に伝わらな
い。またオリフイス部22の管径を0.2mmφ程度
とすると血圧を測定するのに適当な速度で空気が
抜ける抵抗が与えられ、0.2mmφより極端に大き
いと抵抗が少なくて空気が速く抜けて血圧測定が
できなく、0.2mmφより極端に小さいと抵抗が大
き過ぎて空気が抜けるのに時間がかかり過ぎる。
上記の連通管20は途中から分岐した分岐管23
を介してベローズ4と差動トランス5を備えた圧
力検知部6に連通している。この圧力検知部6は
ベローズ4内の空気の圧力を差動トランス5にて
電気信号に変換して検知するものであつて、検知
した圧力をメータ24に表示するものである。ま
たこの圧力検知部6は表示パネル25に接続して
ある。尚、上記のベローズ4の容積は通常の自動
血圧計と同様にカフ3の容積よりも小容積のもの
である。また上記のようにオリフイス部19の管
径を0.3mmφ程度とし、オリフイス部22の管径
0.2mmφ程度としてオリフイス部22の管径をオ
リフイス部19の管径より小さくするのは次の理
由である。オリフイス部19の管径よりオリフイ
ス部22の管径を大きくすると電磁弁21を開い
たときオリフイス部19を通過する空気量よりオ
リフイス部22を通過して抜ける空気量が多くな
り、圧力検知部6に圧力が伝達されず、カフ3の
圧力を測定できない。このためオリフイス部19
よりオリフイス部22の管径を細くして空気を抜
けにくくする必要がある。そして上記のようにオ
リフイス部19の管径を0.3mmφとし、オリフイ
ス部22の管径を0.2mmφとして断面積を倍程度
違えると圧力検知部6で正確な圧力を測定できる
と共に適当な速度で空気が電磁弁21から抜ける
のである。
Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments. 1 in the figure is an automatic blood pressure monitor main body (hereinafter abbreviated as main body), and a pump 9 such as a diaphragm pump that is driven by a motor 8 and sends air to the cuff 3 is built into the main body 1. be. This pump 9 is connected to the electromagnetic valve 2 by a connecting pipe 10 such as a rubber tube, and the connecting pipe 10 is connected to the cuff 3 via a cam connecting pipe 11 made of a rubber tube or the like that branches off from the middle. . The cuff connecting tube 11 consists of a first cuff connecting tube 11a built in the main body 1 and a second cuff connecting tube 11b attached to the cuff 3. First cuff connecting tube 11a and second cuff connecting tube 1
1b is connected by inserting a plug 12 into a socket 13. A sound collecting rubber tube 14b is connected to the second cuff connecting tube 11b, and the sound collecting rubber tube 14b is connected to the microphone 15 via the sound collecting rubber tube 14a inside the main body 1. It's summery. The electromagnetic valve 2 is a three-way valve, including an atmospheric opening 7 and an inlet 1 on the input side.
6 and an outlet 17 on the output side O 1 ,
These can be opened and closed by operating a valve 18. This inlet port 16 is connected to a connecting pipe 10, and an orifice portion 19 is formed in front of the outlet port 17 by narrowing the pipe diameter to about 0.3 mmφ. It is connected via a pipe 20 to another solenoid valve 21 arranged below the solenoid valve 2 . This electromagnetic valve 21 is a two-way valve, and has an orifice portion 22 formed by narrowing the pipe diameter of the input side O 2 to about 0.2 mmφ, and the output side is opened to the atmosphere. Here, the orifice part 19 is for relaxing and smoothing the pulsation during pressurization by the pump 9 and transmitting it to the pressure detection part 6, and the orifice part 22 is for slowly exhausting the air in the cuff 3 when measuring blood pressure. It is for the purpose of At this time, the diameter of the orifice part 19 is set to about 0.3 mmφ, and the orifice part 22
The diameter of the tube is approximately 0.2 mmφ, but it is not limited to this value. However, if the diameter of the orifice portion 19 is about 0.3 mmφ, there will be enough resistance to prevent the pulsation of the pump 9 from being transmitted, and if it is extremely smaller than 0.3 mmφ, the resistance will be so great that pressure will not be transmitted accurately. Also, if the diameter of the orifice part 22 is about 0.2 mmφ, it will provide a resistance that allows air to escape at an appropriate speed for blood pressure measurement, and if it is extremely larger than 0.2 mmφ, there will be less resistance and air will escape quickly, allowing blood pressure measurement to be performed. If it is extremely smaller than 0.2mmφ, the resistance will be too large and it will take too long for the air to escape.
The above-mentioned communication pipe 20 has a branch pipe 23 branched from the middle.
It communicates with a pressure sensing section 6 equipped with a bellows 4 and a differential transformer 5 via. The pressure detection section 6 converts the pressure of the air within the bellows 4 into an electrical signal using the differential transformer 5 and detects it, and displays the detected pressure on the meter 24. Further, this pressure detection section 6 is connected to a display panel 25. Note that the volume of the bellows 4 is smaller than the volume of the cuff 3, similar to a normal automatic blood pressure monitor. In addition, as mentioned above, the pipe diameter of the orifice part 19 is about 0.3 mmφ, and the pipe diameter of the orifice part 22 is about 0.3 mmφ.
The reason why the diameter of the orifice portion 22 is made smaller than the diameter of the orifice portion 19 by approximately 0.2 mmφ is as follows. If the pipe diameter of the orifice part 22 is made larger than the pipe diameter of the orifice part 19, when the solenoid valve 21 is opened, the amount of air that passes through the orifice part 22 and escapes will be greater than the amount of air that passes through the orifice part 19. The pressure in the cuff 3 cannot be measured because pressure is not transmitted to the cuff 3. For this reason, the orifice part 19
It is necessary to make the diameter of the orifice portion 22 smaller to make it difficult for air to escape. As mentioned above, if the diameter of the orifice section 19 is set to 0.3 mmφ and the diameter of the orifice section 22 is set to 0.2 mmφ, and the cross-sectional area is doubled, the pressure sensing section 6 can accurately measure the pressure, and the air can be detected at an appropriate speed. is released from the solenoid valve 21.

而して血圧を測定するには予め電源スイツチの
つまみ26をオンにしておき、カフ3を人体の腕
に巻いて測定用の開始スイツチ27をオンにする
と、電磁弁2が作動して電磁弁2の流入口16と
排出口17が連通し、また電磁弁21が作動して
電磁弁21の連通が閉塞される。次にモータ8が
稼動してポンプ9が作動し、連結管10、カフ連
結管11を介して送気され、カフ3内の圧力が上
昇する。この際連結管10を経て電磁弁2の排出
口17に至つた空気はオリフイス部19によつて
その脈動が緩和、平滑化された圧力検知部6に伝
わり、圧力変動値が±2mmHg以下となつて圧力
は上昇を続ける。最高血圧値(例えば140mmHg付
近)以上に加圧された後、電磁弁21が作動して
電磁弁21が開放され(予め被測定者の予想され
る最高血圧よりやや高い圧力になるとポンプ9か
らの送気が停止されるように設定しておき、設定
圧力になると自動的に電磁弁21が開放されるよ
うになつている)、空気は電磁弁21の入力側O2
のオリフイス部22を通つて電磁弁21から大気
に放出され、2〜3mmHg/secで減圧される。こ
のときマイクロフオン15のコロトコフ音の出
現、消失によつて最高、最低血圧が表示パネル2
5にラツチ表示される。最低血圧を測定し終える
と、電磁弁2が作動して流入口16と大気開口部
7とが連通する。するとカフ3内の空気は電磁弁
2の大気開口部7から大気に放出されてカフ3内
の圧力は大気圧になる。一方ベローズ4内の空気
はオリフイス部22を通じて電磁弁21から大気
に放出され大気圧になる。このとき電磁弁21か
ら抜ける空気はオリフイス部22の抵抗により抜
けにくいが、ベローズ4の容積はカフ3に比べて
極めて小さいためカフ3内が大気圧になるまでに
ベローズ4内が大気圧になる。ここで圧力検知部
6のメータ24が示す値を大気圧として読んでゼ
ロ較正し、復帰スイツチ28をオンにして引続き
測定を行う。同様にして測定毎にゼロ較正をして
測定を繰返す。また本発明の場合三方弁の電磁弁
2と二方弁の電磁弁21との2つの電磁弁を有す
るのは次の理由のためである。電磁弁2だけでも
血圧を測定することができるが、電磁弁21がな
いとカフ3の加圧時に緩速排気用のオリフイス部
22から空気が抜けてカフ3の加圧が早急にでき
ない。また複雑な構造の電磁弁を用いると1つの
電磁弁でも同様の制御ができるが、特別な電磁弁
を製造しなければならなくて高価になる。ところ
が、2つの電磁弁を用いると市販の三方弁の電磁
弁2と二方弁の電磁弁21を用いることができて
安価になる。
To measure blood pressure, turn on the power switch knob 26 in advance, wrap the cuff 3 around the human arm, and turn on the measurement start switch 27. Then, the solenoid valve 2 is activated and the solenoid valve is turned on. The inflow port 16 and the discharge port 17 of No. 2 are communicated with each other, and the solenoid valve 21 is operated to close the communication of the solenoid valve 21. Next, the motor 8 is activated, the pump 9 is activated, air is supplied through the connecting tube 10 and the cuff connecting tube 11, and the pressure inside the cuff 3 increases. At this time, the air that has reached the outlet 17 of the solenoid valve 2 via the connecting pipe 10 has its pulsation reduced by the orifice part 19 and is transmitted to the smoothed pressure detection part 6, so that the pressure fluctuation value becomes less than ±2 mmHg. The pressure continues to rise. After the pressure is increased above the systolic blood pressure value (for example, around 140 mmHg), the solenoid valve 21 is activated and the solenoid valve 21 is opened. The air supply is set to be stopped, and when the set pressure is reached, the solenoid valve 21 is automatically opened), and the air is connected to the input side O 2 of the solenoid valve 21.
It is discharged to the atmosphere from the solenoid valve 21 through the orifice part 22, and the pressure is reduced at 2 to 3 mmHg/sec. At this time, the maximum and diastolic blood pressures are indicated on the display panel 2 by the appearance and disappearance of Korotkoff sounds from the microphone 15.
5 will be latched. When the measurement of the diastolic blood pressure is completed, the electromagnetic valve 2 is activated and the inlet 16 and the atmospheric opening 7 communicate with each other. Then, the air inside the cuff 3 is released to the atmosphere from the atmosphere opening 7 of the solenoid valve 2, and the pressure inside the cuff 3 becomes atmospheric pressure. On the other hand, the air within the bellows 4 is discharged to the atmosphere from the solenoid valve 21 through the orifice portion 22 and becomes atmospheric pressure. At this time, the air that escapes from the solenoid valve 21 is difficult to escape due to the resistance of the orifice portion 22, but since the volume of the bellows 4 is extremely small compared to the cuff 3, the inside of the bellows 4 reaches atmospheric pressure before the inside of the cuff 3 reaches atmospheric pressure. . Here, the value indicated by the meter 24 of the pressure detection section 6 is read as atmospheric pressure for zero calibration, and the return switch 28 is turned on to continue measurement. In the same way, perform zero calibration for each measurement and repeat the measurement. The reason why the present invention has two solenoid valves, the three-way solenoid valve 2 and the two-way solenoid valve 21, is as follows. Blood pressure can be measured using only the electromagnetic valve 2, but without the electromagnetic valve 21, air escapes from the orifice portion 22 for slow evacuation when the cuff 3 is pressurized, making it impossible to pressurize the cuff 3 quickly. Furthermore, if a solenoid valve with a complicated structure is used, similar control can be achieved with a single solenoid valve, but a special solenoid valve must be manufactured, which increases the cost. However, if two solenoid valves are used, a commercially available three-way solenoid valve 2 and a two-way solenoid valve 21 can be used, resulting in lower costs.

本発明にあつては、上述のように自動血圧計本
体内のポンプと三方弁よりなる電磁弁とを連結管
にて連結し、カフと上記連結管とをカフ連結管に
て連通せしめ、上記電磁弁の出力側と二方弁の電
磁弁の入力側とを連通管にて連通せしめ、ベロー
ズと差動トランスとを備えた圧力検知部と電磁弁
間の連通管とを分岐管にて連通せしめ、三方弁の
電磁弁に入力側の流入口と出力側の排出口と大気
開口部を設けて流入口と排出口乃至大気開口部と
を切換にて連通自在にし、二方弁の電磁弁の切換
にて閉塞乃至大気に開放自在にし、三方弁の電磁
弁の排出口側にオリフイス部を設けると共に二方
弁の電磁弁の入力側にオリフイス部を設けたの
で、カフにポンプにて空気が送られてカフ内の圧
力が上昇すると圧力検知部で圧力が検知され(こ
のとき三方弁の電磁弁の排出口側のオリフイス部
にて圧力変動のない圧力が圧力検知部に伝わり精
確に圧力が測定される)、カフ内圧力が最高血圧
以上になつたときポンプが停止され、二方弁の電
磁弁が大気に開放され、オリフイス部を介して
徐々に圧力が下がつて最高血圧と最低血圧とが測
定されるものであつて、徐々に圧力が下がること
により精確に血圧を測定できるものであり、しか
も三方弁の電磁弁に入力測の流入口と出力側の排
出口と大気開口部を設けて流入口と排出口乃至大
気開口部とを切換にて連通自在にしたので、最低
血圧を測定した後三方弁の電磁弁を切換えて連結
管と大気開口部とを連通させると共に連結管と圧
力検知部とを遮断でき、カフ内圧力を短時間で大
気圧にできる上、短時間で圧力検知部を大気圧に
できて連続して引続き測定する場合にも測定開始
毎にゼロ較正することができて、正確に血圧を測
定することができる。
In the present invention, as described above, the pump in the automatic sphygmomanometer main body and the electromagnetic valve consisting of a three-way valve are connected through a connecting pipe, the cuff and the above-mentioned connecting pipe are communicated through a cuff connecting pipe, and the above-mentioned The output side of the solenoid valve and the input side of the solenoid valve of the two-way valve are communicated through a communication pipe, and the pressure detection section equipped with a bellows and a differential transformer and the communication pipe between the solenoid valves are communicated through a branch pipe. Finally, a three-way solenoid valve is provided with an inlet on the input side, an outlet on the output side, and an atmosphere opening so that the inlet and the exhaust or atmosphere opening can be freely communicated by switching. An orifice part is provided on the outlet side of the solenoid valve of the three-way valve, and an orifice part is provided on the input side of the solenoid valve of the two-way valve. is sent and the pressure inside the cuff rises, the pressure is detected by the pressure detection part (at this time, the pressure without pressure fluctuation is transmitted to the pressure detection part at the orifice part on the discharge port side of the solenoid valve of the three-way valve, and the pressure is accurately measured. When the pressure inside the cuff reaches or exceeds the systolic blood pressure, the pump is stopped, the two-way solenoid valve is opened to the atmosphere, and the pressure gradually decreases through the orifice until the systolic blood pressure and minimum blood pressure are measured. Blood pressure is measured, and blood pressure can be measured accurately by gradually lowering the pressure. Moreover, the three-way solenoid valve has an inlet for input measurement, an outlet on the output side, and an atmospheric opening. Since the inlet and the outlet or the atmospheric opening can be freely switched to communicate with each other, after measuring the diastolic blood pressure, the solenoid valve of the three-way valve is switched to communicate the connecting pipe with the atmospheric opening, and the connecting pipe is connected with the atmospheric opening. It is possible to isolate the cuff from the cuff to atmospheric pressure in a short period of time, and the pressure sensing section can be brought to atmospheric pressure in a short period of time. Even if continuous measurements are to be taken, zero calibration is performed each time a measurement is started. and can accurately measure blood pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体斜視図、第2
図は同上の横断面図、第3図は第1図の縦断面
図、第4図は第1図の他の縦断面図、第5図は第
2図の電源オフ時の配管図、第6図は第2図の部
分拡大縦断面図である。図中1は自動血圧計本
体、2は三方弁の電磁弁、3はカフ、4はベロー
ズ、5は差動トランス、6は圧力検知部、21は
二方弁の電磁弁である。
FIG. 1 is an overall perspective view of one embodiment of the present invention, and FIG.
The figure is a cross-sectional view of the same as above, Fig. 3 is a longitudinal sectional view of Fig. 1, Fig. 4 is another longitudinal sectional view of Fig. 1, Fig. 5 is a piping diagram when the power is turned off in Fig. 2, FIG. 6 is a partially enlarged vertical sectional view of FIG. 2. In the figure, 1 is an automatic blood pressure monitor body, 2 is a three-way solenoid valve, 3 is a cuff, 4 is a bellows, 5 is a differential transformer, 6 is a pressure detection section, and 21 is a two-way solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 自動血圧計本体内のポンプと三方弁よりなる
電磁弁とを連結管にて連結し、カフと上記連結管
とをカフ連結管にて連通せしめ、上記電磁弁の出
力側と二方弁の電磁弁の入力側とを連通管にて連
通せしめ、ベローズと差動トランスとを備えた圧
力検知部と電磁弁間の連通管とを分岐管にて連通
せしめ、三方弁の電磁弁に入力側の流入口と出力
側の排出口と大気開口部を設けて流入口と排出口
乃至大気開口部とを切換にて連通自在にし、二方
弁の電磁弁の切換にて閉塞乃至大気に開放自在に
し、三方弁の電磁弁の排出口側にオリフイス部を
設けると共に二方弁の電磁弁の入力側にオリフイ
ス部を設けて成ることを特徴とする自動血圧計。
1 Connect the pump in the automatic blood pressure monitor main body to a solenoid valve consisting of a three-way valve through a connecting pipe, communicate the cuff with the connecting pipe through the cuff connecting pipe, and connect the output side of the solenoid valve with the two-way valve. The input side of the solenoid valve is connected to the input side of the three-way valve through a communication pipe, and the pressure detection section including a bellows and a differential transformer is connected to the communication pipe between the solenoid valves through a branch pipe. An inlet, an outlet on the output side, and an atmosphere opening are provided, and the inlet and outlet or atmosphere opening can be freely communicated by switching, and can be closed or opened to the atmosphere by switching the solenoid valve of the two-way valve. An automatic blood pressure monitor characterized in that an orifice part is provided on the discharge port side of a three-way solenoid valve, and an orifice part is provided on the input side of a two-way solenoid valve.
JP7020878A 1978-06-09 1978-06-09 Automatic tonometer Granted JPS54161783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7020878A JPS54161783A (en) 1978-06-09 1978-06-09 Automatic tonometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7020878A JPS54161783A (en) 1978-06-09 1978-06-09 Automatic tonometer

Publications (2)

Publication Number Publication Date
JPS54161783A JPS54161783A (en) 1979-12-21
JPS6133577B2 true JPS6133577B2 (en) 1986-08-02

Family

ID=13424869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7020878A Granted JPS54161783A (en) 1978-06-09 1978-06-09 Automatic tonometer

Country Status (1)

Country Link
JP (1) JPS54161783A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122868U (en) * 1973-02-14 1974-10-21

Also Published As

Publication number Publication date
JPS54161783A (en) 1979-12-21

Similar Documents

Publication Publication Date Title
JP4116444B2 (en) Non-invasive probe used to detect disease symptoms
TW200831054A (en) Cuff, device and method for measuring blood pressure, cuff and method of producing cuff
AU2006261351C1 (en) Mode detection and safety monitoring in blood pressure measurement
JP2938234B2 (en) Blood pressure monitor device with finger cuff calibration device
JPS62500220A (en) Calibrated arterial blood pressure measuring device
JPH0527417B2 (en)
US3906939A (en) Blood pressure measuring means
EP0483355A4 (en) Device for detecting and displaying information on blood circulation
JP2711019B2 (en) Blood pressure measurement device
JPS6133577B2 (en)
WO2006040295A1 (en) Blood pressure monitor and method for operating same
JPH02213324A (en) Arm band for measuring blood pressure and pulse wave moving time
US4510943A (en) Display inhibition in an electronic sphygmomanometer
JPS5829089B2 (en) automatic blood pressure monitor
JPH10328151A (en) Arterial medical information inspecting device
TWI334775B (en)
JPWO2004069049A1 (en) Blood pressure pulse wave measuring device and blood pressure pulse wave measuring wearing tool
JPS61234841A (en) Digital electronic hemomanometer
WO2023035488A1 (en) Pump valve assembly and sphygmomanometer using pump valve assembly
JP2657923B2 (en) Automatic blood pressure measurement device
US2118329A (en) Blood pressure testing apparatus
JPS63311933A (en) Electronic hemomanometer
JPH01308529A (en) Electronic hemomanometer
JP2994269B2 (en) Sphygmomanometer
JPH05103765A (en) Hyperbaric oxygen therapy device