JP2657923B2 - Automatic blood pressure measurement device - Google Patents

Automatic blood pressure measurement device

Info

Publication number
JP2657923B2
JP2657923B2 JP63058174A JP5817488A JP2657923B2 JP 2657923 B2 JP2657923 B2 JP 2657923B2 JP 63058174 A JP63058174 A JP 63058174A JP 5817488 A JP5817488 A JP 5817488A JP 2657923 B2 JP2657923 B2 JP 2657923B2
Authority
JP
Japan
Prior art keywords
pressure
blood pressure
pump device
pressurized air
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63058174A
Other languages
Japanese (ja)
Other versions
JPH01232931A (en
Inventor
正 深美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oken Seiko Co Ltd
Original Assignee
Oken Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oken Seiko Co Ltd filed Critical Oken Seiko Co Ltd
Priority to JP63058174A priority Critical patent/JP2657923B2/en
Publication of JPH01232931A publication Critical patent/JPH01232931A/en
Application granted granted Critical
Publication of JP2657923B2 publication Critical patent/JP2657923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気体を圧縮、加圧するポンプ装置を用い
て、自動的に人体の血圧を測定する自動血圧測定装置に
関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic blood pressure measurement device that automatically measures the blood pressure of a human body using a pump device that compresses and pressurizes a gas.

〔従来の技術〕[Conventional technology]

一般に血圧の測定は、医師等の医療従事者によつて手
動ポンプに連結した水銀柱と聴診器を用いて行なわれて
いた。しかし、近年の医療技術の発達と国民の健康増進
を願う認識から家庭でも血圧を計りたいとの要望が高ま
り、簡単な操作で血圧が測定できる自動血圧測定器が普
及するに至つている。
In general, the measurement of blood pressure has been performed by medical staff such as doctors using a mercury column and a stethoscope connected to a manual pump. However, the demand for measuring blood pressure at home has been increasing due to the recent development of medical technology and recognition of wishing to improve the health of the nation, and automatic blood pressure measuring devices that can measure blood pressure with simple operations have become widespread.

第9図は従来の自動血圧測定器の構成図である。図に
おいて、10は直流モータ10aとこの直流モータの回転に
より高圧の空気を吐出する加圧機構部10bからなる加圧
ポンプ装置、30はこの加圧ポンプ装置10で加圧された空
気を各部に送る加圧配管、40は血圧測定のとき被測定者
の上腕部に取付け血管を圧迫すすための腕帯、50は腕帯
40の圧力を検出する圧力センサ、60は腕帯40に蓄積され
た加圧空気を除々に排出する微排弁、70は血圧測定終了
後腕帯40に残留した加圧空気を一気に排出する急排弁で
ある。80は制御部であり、加圧ポンプ装置10の起動制
御、及び腕帯40内の圧力調整を行なうと共に、この調整
で得られた圧力センサ50からの信号に基づき血圧値を算
出し表示部90に表示する。
FIG. 9 is a configuration diagram of a conventional automatic blood pressure measurement device. In the drawing, reference numeral 10 denotes a pressurizing pump device including a DC motor 10a and a pressurizing mechanism unit 10b that discharges high-pressure air by rotation of the DC motor, and 30 denotes air pressurized by the pressurizing pump device 10 to each unit. Pressurized piping to be sent, 40 is an arm band to be attached to the upper arm of the subject when measuring blood pressure and compresses blood vessels, 50 is an arm band
40 is a pressure sensor for detecting the pressure, 60 is a fine exhaust valve for gradually discharging the pressurized air accumulated in the arm band 40, and 70 is a rapid exhaust valve for rapidly discharging the pressurized air remaining in the arm band 40 after the end of the blood pressure measurement. Exhaust. A control unit 80 controls the activation of the pressurizing pump device 10 and adjusts the pressure in the arm band 40, calculates a blood pressure value based on a signal from the pressure sensor 50 obtained by the adjustment, and displays a display unit 90. To be displayed.

さて、この自動血圧測定器で血圧を測定する手順を第
10図に示した特性図を用いて説明する。まず、腕帯40を
被測定者の上腕部に取付け加圧ポンプ装置10によりこの
腕帯40を加圧する。次に、時間T1後に腕帯40が上腕の
「最高血圧」を測定するのに充分な圧力例えば250mmHg
に達すると(点P)、制御部80は加圧ポンプ10を停止さ
せる。微排弁60は小穴の形状を有しており、加圧ポンプ
10が停止すると徐々に加圧空気を排出し腕帯40内部の圧
力を低下させる。そして、例えば圧力150mmHg(点H)
のとき上腕の血液が流れ始めたことを圧力センサ50が検
出すると、制御部80はこのときの圧力を「最高血圧」と
判断する。さらに腕帯40の圧力が低下して、例えば圧力
90mmHg(点L)のとき血液の脈動を圧力センサ50が検出
すると、制御部80はこのときの圧力を「最低血圧」と判
断する。このようにして、血圧測定が完了すると急排弁
70を開き腕帯40に残留している加圧空気を全て排出し
(点C)、表示部90に「最高血圧150」,「最低血圧9
0」を表示する。
Now, the procedure for measuring blood pressure with this automatic blood pressure monitor will be described.
This will be described with reference to the characteristic diagram shown in FIG. First, the arm band 40 is attached to the upper arm of the person to be measured, and the pressure band device 40 pressurizes the arm band 40. Next, sufficient pressure for example 250mmHg for arm band 40 after a time T 1 is to measure the "systolic blood pressure" in the upper arm
Reaches (point P), the controller 80 stops the pressurizing pump 10. The fine exhaust valve 60 has the shape of a small hole,
When 10 stops, pressurized air is gradually discharged to lower the pressure inside the arm band 40. And, for example, a pressure of 150 mmHg (point H)
At this time, when the pressure sensor 50 detects that the blood in the upper arm has begun to flow, the control unit 80 determines that the pressure at this time is “systolic blood pressure”. Further, the pressure of the arm band 40 decreases, for example, the pressure
When the pressure sensor 50 detects the pulsation of the blood at 90 mmHg (point L), the control unit 80 determines that the pressure at this time is “diastolic blood pressure”. In this way, when the blood pressure measurement is completed,
70 is opened to release all the pressurized air remaining in the cuff 40 (point C), and the display section 90 displays “systolic blood pressure 150” and “diastolic blood pressure 9”.
Displays "0".

この血圧を測定する手順は、前述した医師等が手動ポ
ンプと聴診器で行なう手順をそのまま踏襲したもので、
原理的には問題がないが従来の手順では最初に「最高血
圧」を測定するため第10図に示すように腕帯40の初期圧
力を250mmHgまで短時間で上昇しなければならず、その
結果加圧ポンプ装置の消費電力が大きくなる原因となつ
ていた。また、微排弁60が必要となり、構成が複雑にな
つていた。
The procedure for measuring the blood pressure follows the procedure performed by a doctor or the like with a manual pump and a stethoscope as it is,
Although there is no problem in principle, in the conventional procedure, the initial pressure of the arm band 40 must be increased to 250 mmHg in a short time as shown in FIG. 10 in order to measure `` systolic blood pressure '' first, and as a result, This causes the power consumption of the pressurized pump device to increase. In addition, the necessity of the minute exhaust valve 60 required a complicated structure.

このため、第11図に示す特性図のように改良した手順
が提案されている。すなわち、腕帯40への圧力を徐々に
上昇させ、前述とは逆に血液の脈動がなくなつたとき
(点L)を「最低血圧」と判断し、さらに腕帯40の圧力
を上げ血液の流れが上つたとき(点H)を「最高血圧」
と判断する。そして、被測定者の「最高血圧」を測定し
た後、急排弁を開いて腕帯40の加圧空気を排出する(点
C)。このような手順であれば、加圧空気を徐々に排出
する手順がないので微排弁60が不明であるばかりか腕帯
40の初期圧力を短時間で250mmHgまで上昇する必要がな
く、この点で前述の手順より優れている。
For this reason, an improved procedure has been proposed as shown in the characteristic diagram of FIG. That is, the pressure on the cuff 40 is gradually increased, and when blood pulsation stops (point L), the pressure is determined to be “diastolic blood pressure”, and the pressure on the cuff 40 is further increased. When the flow rises (point H), the "systolic blood pressure"
Judge. Then, after measuring the "systolic blood pressure" of the subject, the quick exhaust valve is opened to discharge the pressurized air of the arm band 40 (point C). With such a procedure, there is no procedure for gradually discharging the pressurized air, so not only is the fine exhaust valve 60 unknown but also the arm band
There is no need to raise the initial pressure of 40 to 250 mmHg in a short time, which is superior to the procedure described above in this respect.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、第11図で説明した手順では加圧ポンプ
装置10から腕帯40に加圧している途中で「最低血圧」
(点L)及び「最高血圧」(点H)を測定しているた
め、血圧値を測定する圧力センサ50が血液の脈動と加圧
ポンプ装置10による加圧された空気の脈動を誤認してし
まう恐れがあり、正確な血圧測定が期待できなかつた。
However, in the procedure described with reference to FIG. 11, while the pressurizing pump device
(Point L) and the "systolic blood pressure" (point H) are measured, the pressure sensor 50 measuring the blood pressure value mistakes the pulsation of the blood and the pulsation of the air pressurized by the pressurizing pump device 10. There is a danger that accurate blood pressure measurement cannot be expected.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は前述の問題を解決するため、加圧機構部の吐
出口に連通する十分長い狭路と、この狭路の途中に1つ
以上の圧力室とを有する容積不変の加圧調整器を備えて
いる。
In order to solve the above-mentioned problem, the present invention provides a volume-invariant pressure regulator having a sufficiently long narrow path communicating with the discharge port of the pressure mechanism, and one or more pressure chambers in the middle of the narrow path. Have.

〔作用〕[Action]

加圧ポンプ装置で加圧するとき発生する加圧空気の脈
動は、加圧調整器により除去される。
The pulsation of the pressurized air generated when pressurizing with the pressurizing pump device is removed by the pressurizing regulator.

〔実施例〕〔Example〕

以下、実施例について説明する。第1図は本発明に係
る一実施例を示す構成図である。図において第9図と同
一部分については同一符号を付する。20は加圧空気の脈
動を除去する加圧調整器である。第2図は加圧調整器20
の外観図を示しており、同図(a)はその正面図、同図
(b)は側面図である。同図において、21は吸入側容
器、22はパツキング、23は吸入側容器21と同一構造の吐
出側容器である。加圧調整器20はこの主たる3つの部品
から構成されており、パツキング22を中心として両側の
容器21,23がこれを挟み込むようにボルト24とナツト25
とで締結している。また、矢印Aは加圧ポンプ装置10か
ら送り込まれる空気を吸入する方向を示し、矢印Bは吐
出する方向を示す。第3図は加圧調整器20における構成
部品の組立図である。図において、21aは吸入口、21bは
凹部、21cは溝部、22bは凹部21bと同じ径で形成された
パツキング22の流通口、21d,22d,23dはボルト24を通す
ための貫通穴、21eは吸入口21aに連結した凹部である。
なお、前述したように吸入側容器21と吐出側容器23は同
一構造となつているため、第3図に図示はしていないが
吐出側容器23に吐出口23a,凹部23b、溝部23c、吐出口23
aに連結した凹部23eが形成されている。第4図(a)は
第3図の記号Cからみた吸入側容器21の平面図、同図
(b)は同図(a)のIVB−IVB断面図である。同図
(a)において、溝部21cは、凹部21eから凹部21bま
で、充分の距離が得られるように屈曲させて配置されて
いる。また、溝部21cは同図(b)に示すように小さな
溝断面を形成するのに対し、凹部21b,凹部21eは充文大
きな断面(容積)を有している。第5図は第2図(a)
のV−V断面図である。図において、吸入側容器21にお
ける溝部21cはパツキング22と面することにより、凹部2
1eから凹部21bまで狭路を形成する(第1の狭路と呼
ぶ)。また、凹部21eも同様にパツキング22に面するこ
とにより圧力室を形成し(第1の圧力室と呼ぶ)、凹部
21bは流通口22bを介して凹部23bと連結して凹部21b及び
凹部23bの2つの容積を有する圧力室を形成する(第2
の圧力室と呼ぶ)。さらに、吐出側容器23における溝部
23cも前述と同様に凹部23bから凹部23eまでの狭路を形
成し(第2の狭路と呼ぶ)、凹部23eも圧力室を形成す
る(第3の圧力室と呼ぶ)。
Hereinafter, examples will be described. FIG. 1 is a block diagram showing an embodiment according to the present invention. In the figure, the same parts as those in FIG. 9 are denoted by the same reference numerals. Reference numeral 20 denotes a pressure regulator for removing the pulsation of the pressurized air. Figure 2 shows the pressure regulator 20
1A is a front view, and FIG. 1B is a side view. In the figure, 21 is a suction side container, 22 is packing, and 23 is a discharge side container having the same structure as the suction side container 21. The pressure regulator 20 is composed of these three main components. A bolt 24 and a nut 25 are arranged so that the containers 21 and 23 on both sides of the packing 22 sandwich the packing regulator 22.
And has concluded. Arrow A indicates the direction in which air sent from the pressure pump device 10 is sucked, and arrow B indicates the direction in which air is discharged. FIG. 3 is an assembly view of components of the pressure regulator 20. In the figure, 21a is a suction port, 21b is a concave portion, 21c is a groove portion, 22b is a flow port of a packing 22 formed with the same diameter as the concave portion 21b, 21d, 22d, 23d are through holes for passing bolts 24, 21e is This is a recess connected to the suction port 21a.
As described above, since the suction side container 21 and the discharge side container 23 have the same structure, the discharge port 23a, the concave portion 23b, the groove 23c, the discharge Exit 23
A concave portion 23e connected to a is formed. 4 (a) is a plan view of the suction side container 21 as viewed from the symbol C in FIG. 3, and FIG. 4 (b) is a cross-sectional view taken along the line IVB-IVB in FIG. In FIG. 9A, the groove 21c is bent and arranged so as to obtain a sufficient distance from the recess 21e to the recess 21b. The groove 21c has a small groove cross section as shown in FIG. 2B, whereas the recess 21b and the recess 21e have a large cross section (volume). FIG. 5 is FIG. 2 (a)
FIG. In the figure, the groove 21c of the suction side container 21 faces the packing 22 so that the recess 2c is formed.
A narrow path is formed from 1e to the recess 21b (referred to as a first narrow path). Similarly, the recess 21e faces the packing 22 to form a pressure chamber (referred to as a first pressure chamber).
The pressure chamber 21b is connected to the recess 23b through the flow port 22b to form a pressure chamber having two volumes of the recess 21b and the recess 23b (second
Pressure chamber). Furthermore, a groove in the discharge side container 23
23c also forms a narrow path from the concave part 23b to the concave part 23e as described above (referred to as a second narrow path), and the concave part 23e also forms a pressure chamber (referred to as a third pressure chamber).

次に動作について説明する。第1図の構成において、
第11図で説明した手順で血圧測定を行なう場合、まず制
御部80は加圧ポンプ装置10を起動させる。次に、加圧ポ
ンプ装置10から加圧された空気は加圧調整器20の吸入口
21aに供給される。この供給された加圧空気は第6図に
示すブロツク図のように凹部21eで形成された第1の圧
力室に送られる。この第1の圧力室は供給された加圧空
気を蓄積して、加圧空気が次の第1の狭路を通過すると
きに流量低下するのを防止する。また、加圧空気を蓄積
したときに脈動するエネルギーの蓄積効果を生じさせ、
脈動のエネルギーを平滑化させる。次に、第1の狭路に
送り込まれた加圧空気は、空気抵抗の高い狭路によつて
脈動が減衰する。そして、この脈動が減衰した加圧空気
は凹部21b,23bで形成された第2の加圧室に送られる。
この圧力室の容量は、第1の狭路に比べ充分大きな容積
となるため、送り込まれた加圧空気に第1の圧力室で除
去できなかつた脈動があつても、脈動するエネルギーの
蓄積効果により、再度脈動のエネルギーを平滑化させ
る。さらに、加圧空気が第1の狭路と同一構造の第2の
狭路を通過することにより、ほぼ脈動が除去された加圧
空気が第3の圧力室へ送られる。第3の圧力室は、第2
の圧力室と同一の作用を行なうと共に、腕帯40へ供給す
る加圧空気の圧力を安定化させる。このように加圧調整
器20は、加圧ポンプ装置10から供給される加圧空気の脈
動を完全に除去する。なお、この作用の基本的な原理は
自動車等のマフラーに類似する。
Next, the operation will be described. In the configuration of FIG.
When blood pressure measurement is performed according to the procedure described with reference to FIG. 11, first, the control unit 80 starts the pressurizing pump device 10. Next, the air pressurized from the pressurizing pump device 10 is supplied to the inlet of the pressurizing regulator 20.
Supplied to 21a. The supplied pressurized air is sent to the first pressure chamber formed by the recess 21e as shown in the block diagram of FIG. This first pressure chamber accumulates the supplied pressurized air and prevents the flow rate of the pressurized air from decreasing when passing through the next first narrow path. In addition, the effect of accumulating pulsating energy when accumulating pressurized air is generated,
Smoothes the energy of the pulsation. Next, the pulsation of the pressurized air sent into the first narrow path is attenuated by the narrow path having high air resistance. Then, the pressurized air in which the pulsation has attenuated is sent to the second pressurized chamber formed by the concave portions 21b and 23b.
Since the capacity of the pressure chamber is sufficiently larger than that of the first narrow path, even if the supplied pressurized air has pulsation that cannot be removed by the first pressure chamber, the pulsating energy can be accumulated. As a result, the energy of the pulsation is smoothed again. Further, the compressed air passes through the second narrow path having the same structure as the first narrow path, so that the compressed air from which the pulsation has been substantially removed is sent to the third pressure chamber. The third pressure chamber is the second pressure chamber.
The same operation as that of the pressure chamber of the above is performed, and the pressure of the pressurized air supplied to the arm band 40 is stabilized. As described above, the pressure regulator 20 completely eliminates the pulsation of the pressurized air supplied from the pressure pump device 10. The basic principle of this operation is similar to a muffler of an automobile or the like.

従つて、圧力センサ50や他の各部に脈動が除去された
加圧空気が供給されるため、第11図で説明した「最低血
圧」(点L)及び「最高血圧」(点H)測定時におい
て、圧力センサ50が血液の脈動と加圧空気の脈動を誤認
することがなく正確な血圧測定が可能となる。
Therefore, since the pulsation-removed pressurized air is supplied to the pressure sensor 50 and other components, the "diastolic blood pressure" (point L) and the "systolic blood pressure" (point H) described in FIG. 11 are measured. In, the blood pressure and the pulsation of the pressurized air are not mistakenly recognized by the pressure sensor 50, and accurate blood pressure measurement can be performed.

また、加圧調整器20を加圧ポンプ装置10に連結するこ
とにより、第7図に示す特性図のような定流量特性が期
待できる。すなわち、前述したように加圧調整器20は、
2つの狭路と圧力室とで構成されているため、空気抵抗
が高く加圧ポンプ装置10の電圧を上げて圧力を上昇させ
ても、加圧調整器20を通過する加圧空気は一定量に制限
される。例えば、加圧調整器20を取付けていない場合の
加圧ポンプ装置10の特性aは、ポンプ電圧が増加すると
流量も直線的に増加する。これに対し、加圧調整器20を
取付けたときの特性b,c,dは、ポンプ電圧が増加すると
すぐに第1の圧力室が加圧ポンプ装置10の最高圧力に上
昇するため、その結果特性aの流量1に対して各流量が
1/2,1/3,1/5となる。このことは、使用電圧値が使用電
圧範囲で変動してもほぼ一定の流量が得られることを意
味しており、この特性により安定した血圧測定が可能と
なる。また、狭路の形状、圧力室の容積を変えることに
より、血圧測定に必要な所望の流量を特性b,c,dから選
択することができ、設計上の自由度を確保することがで
きる。
Further, by connecting the pressure regulator 20 to the pressure pump device 10, a constant flow rate characteristic as shown in the characteristic diagram of FIG. 7 can be expected. That is, as described above, the pressure regulator 20
Since it is composed of two narrow passages and a pressure chamber, even if the air resistance is high and the pressure is increased by increasing the voltage of the pressure pump device 10, a certain amount of pressurized air passes through the pressure regulator 20. Is limited to For example, the characteristic “a” of the pressurizing pump device 10 when the pressurizing regulator 20 is not attached indicates that the flow rate increases linearly as the pump voltage increases. On the other hand, the characteristics b, c, and d when the pressure regulator 20 is attached indicate that the first pressure chamber rises to the maximum pressure of the pressure pump device 10 as soon as the pump voltage is increased. For each flow rate 1 of characteristic a,
1 / 2,1 / 3,1 / 5. This means that a substantially constant flow rate can be obtained even when the working voltage value fluctuates in the working voltage range, and this characteristic enables stable blood pressure measurement. Further, by changing the shape of the narrow passage and the volume of the pressure chamber, a desired flow rate required for blood pressure measurement can be selected from the characteristics b, c, and d, and the degree of freedom in design can be secured.

なお、前述の実施例においては加圧ポンプ装置10と加
圧調整器20が別体の場合を示したが、第8図に示す破断
面図のように両者を一体構造にしてもよい。図において
第3図と同一部分または相当部分については同一符号を
付する。10cは直流モータの電線、26は加圧機構部10bか
ら吸入側容器21に加圧空気を供給するときに、空気漏れ
を防ぐパツキングである。
In the above-described embodiment, the case where the pressurizing pump device 10 and the pressurizing regulator 20 are separate bodies is shown. However, as shown in the sectional view of FIG. In the figure, the same or corresponding parts as in FIG. 3 are denoted by the same reference numerals. Reference numeral 10c denotes an electric wire of a DC motor, and reference numeral 26 denotes packing that prevents air leakage when pressurized air is supplied from the pressurizing mechanism 10b to the suction side container 21.

〔発明の効果〕〔The invention's effect〕

以上説明のように本発明は、加圧機構部の吐出口に十
分長く配設した狭路と、この狭路の途中に1つ以上の圧
力室とを有する容積不変の加圧調整器を設けたことによ
り、加圧空気の脈動を除去することができ、自動血圧測
定器に使用した場合、圧力センサが血液の脈動と加圧空
気の脈動を誤認することがなく正確な血圧測定が可能と
なる。また、加圧ポンプ装置の使用電圧範囲において一
定の流量特性が得られるため、血圧測定中にポンプ電圧
が変動しても安定した血圧値を測定することができる。
As described above, the present invention provides a volume-invariant pressure regulator having a narrow path disposed sufficiently long at the discharge port of the pressurizing mechanism and one or more pressure chambers in the middle of the narrow path. As a result, the pulsation of pressurized air can be eliminated, and when used in an automatic blood pressure measurement device, the pressure sensor can accurately measure blood pressure without erroneously recognizing pulsation of blood and pulsation of pressurized air. Become. Further, since a constant flow rate characteristic is obtained in the working voltage range of the pressurizing pump device, a stable blood pressure value can be measured even if the pump voltage fluctuates during blood pressure measurement.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を自動血圧測定器に使用した一実施例を
示す構成図、第2図(a)は加圧調整器の正面図、同図
(b)はその側面図、第3図は加圧調整器における構成
部品の組立図、第4図(a)は第3図の記号cからみた
吸入側容器21の平面図、同図(b)は同図(a)のIVB
−IVB断面図、第5図は第2図(a)のV−V断面図、
第6図は加圧空気の流れを示すブロツク図、第7図は流
量とポンプ電圧の特性図、第8図は加圧ポンプ装置の一
部断面図、第9図は従来の加圧ポンプ装置を自動血圧測
定器に使用した構成図、第10図は従来の圧力と時間の特
性図、第11図は提案されている圧力と時間の特性図であ
る。 10……加圧ポンプ装置、10a……直流モータ、10b……加
圧機構部、20……加圧調整部、30……加圧配管、40……
腕帯、50……圧力センサ、70……急排弁、80……制御
部、90……表示部。
FIG. 1 is a block diagram showing an embodiment in which the present invention is used in an automatic blood pressure monitor, FIG. 2 (a) is a front view of a pressure regulator, FIG. 2 (b) is a side view thereof, and FIG. Fig. 4 (a) is a plan view of the suction side container 21 as viewed from the symbol c in Fig. 3, and Fig. 4 (b) is an IVB of Fig. 3 (a).
FIG. 5 is a cross-sectional view taken along the line VV in FIG.
6 is a block diagram showing the flow of pressurized air, FIG. 7 is a characteristic diagram of flow rate and pump voltage, FIG. 8 is a partial sectional view of the pressurized pump device, and FIG. 9 is a conventional pressurized pump device. Is used in an automatic blood pressure monitor, FIG. 10 is a conventional pressure-time characteristic diagram, and FIG. 11 is a proposed pressure-time characteristic diagram. 10 ... Pressure pump device, 10a… DC motor, 10b… Pressure mechanism, 20… Pressure adjustment unit, 30… Pressure piping, 40…
Arm band, 50 ... Pressure sensor, 70 ... Sudden valve, 80 ... Control unit, 90 ... Display unit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】モータとこのモータの回転により高圧の気
体を吐出する加圧機構部からなる加圧ポンプ装置と、 この加圧機構部の吐出口に連通する十分長い狭路とこの
狭路の途中に1つ以上の加圧室とを有する容積が不変の
加圧調整器と、 この加圧調整器から送られる加圧空気を蓄積する腕帯と
を備え、 この加圧調整器により加圧ポンプ装置本来の能力を十分
低め、脈動を除去し、ポンプ電圧に対し定流量特性を持
たせたことを特徴とする自動血圧測定装置。
A pressurizing pump device comprising a motor and a pressurizing mechanism for discharging high-pressure gas by rotation of the motor; a sufficiently long narrow path communicating with a discharge port of the pressurizing mechanism; A pressure regulator having an invariable volume having one or more pressure chambers in the middle thereof, and a cuff for accumulating pressurized air sent from the pressure regulator, and pressurized by the pressure regulator. An automatic blood pressure measurement device characterized by sufficiently reducing the intrinsic capacity of the pump device, eliminating pulsation, and providing a constant flow characteristic with respect to the pump voltage.
JP63058174A 1988-03-14 1988-03-14 Automatic blood pressure measurement device Expired - Lifetime JP2657923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63058174A JP2657923B2 (en) 1988-03-14 1988-03-14 Automatic blood pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63058174A JP2657923B2 (en) 1988-03-14 1988-03-14 Automatic blood pressure measurement device

Publications (2)

Publication Number Publication Date
JPH01232931A JPH01232931A (en) 1989-09-18
JP2657923B2 true JP2657923B2 (en) 1997-09-30

Family

ID=13076636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63058174A Expired - Lifetime JP2657923B2 (en) 1988-03-14 1988-03-14 Automatic blood pressure measurement device

Country Status (1)

Country Link
JP (1) JP2657923B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002085357A (en) * 2000-09-14 2002-03-26 Mitsumi Electric Co Ltd Automatic sphygmomanometer for domestic use

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181092U (en) * 1985-10-18 1986-05-29

Also Published As

Publication number Publication date
JPH01232931A (en) 1989-09-18

Similar Documents

Publication Publication Date Title
EP0353315B1 (en) Method for measuring blood pressure and apparatus for automated blood pressure measuring
US4627440A (en) Sphygmomanometric cuff pressurizing system
JP2938234B2 (en) Blood pressure monitor device with finger cuff calibration device
JPH053858A (en) Blood pressure monitor device
JP2001333888A (en) Sphygmomanometer
JPS6244222A (en) Electronic hemomanometer
JP6241304B2 (en) Electronic blood pressure monitor and connection cuff type determination method
JP2657923B2 (en) Automatic blood pressure measurement device
KR101059109B1 (en) Cuff for blood pressure monitering
JPS58127634A (en) Apparatus for controlling pressure change and speed of manschet in hemomanometer apparatus
US5971932A (en) Oscillometric type electronic sphygmomanometer
JP2015146894A5 (en)
JP2938238B2 (en) Atherosclerosis measuring device
JP4819594B2 (en) Blood pressure measurement cuff, blood pressure measurement device, and blood pressure measurement method
US20040077959A1 (en) Vital-information obtaining apparatus
JPS63305840A (en) Digital electronic hemomanometer
JP2011234876A (en) Blood pressure measuring instrument
JPH02213324A (en) Arm band for measuring blood pressure and pulse wave moving time
TWI448271B (en) Method and apparatus for blood pressure measurement and noise eliminating unit
JP2002102184A (en) Method of displaying measurements for automatic sphygmomanometer
JP2662791B2 (en) Pressure regulator
JPS63311933A (en) Electronic hemomanometer
JPH02154738A (en) Automatic blood pressure measuring instrument
JP2626901B2 (en) Automatic blood pressure measurement device
JP7308077B2 (en) Automatic blood pressure measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11