JPS6133215A - Gas refining method - Google Patents

Gas refining method

Info

Publication number
JPS6133215A
JPS6133215A JP59156338A JP15633884A JPS6133215A JP S6133215 A JPS6133215 A JP S6133215A JP 59156338 A JP59156338 A JP 59156338A JP 15633884 A JP15633884 A JP 15633884A JP S6133215 A JPS6133215 A JP S6133215A
Authority
JP
Japan
Prior art keywords
component
raw material
target component
gas
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59156338A
Other languages
Japanese (ja)
Other versions
JPS6336815B2 (en
Inventor
Taio Nomura
野村 岱夫
Seiichi Fujikawa
静一 藤川
Yoshinori Matsukawa
松川 吉徳
Toru Hizuka
肥塚 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI GAS KOGYO KK
Iwatani Industrial Gases Corp
Original Assignee
FUJI GAS KOGYO KK
Iwatani Gas Development Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI GAS KOGYO KK, Iwatani Gas Development Laboratory Co Ltd filed Critical FUJI GAS KOGYO KK
Priority to JP59156338A priority Critical patent/JPS6133215A/en
Publication of JPS6133215A publication Critical patent/JPS6133215A/en
Publication of JPS6336815B2 publication Critical patent/JPS6336815B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To take out a prescribed gaseous component with high purity in a gas refining method by capturing the pure gas components moving in prescribed holding time by making use of the difference in the developing speed by the selective adsorption of a multi-component gaseous mixture. CONSTITUTION:The gaseous raw material is supplied from a gaseous raw material supply device 1 to a developer type separating column 7 (8) at one time to develop the gaseous raw material in the separating column. The impurity component preceding to the intended component, the intended component and the impurity component succeeding to the intended component are successively discharged from said column. A selector valve 22 is changed over to an impurity component discharge path 25 to discharge the impurity components through a discharge path when a detector 24 detects the impurity components. The selector valve is changed over to a capturing device to capture the intended component when the intended component is detected. A raw material supply column 5 is provided to the raw material supply device. The operation is started only after the residual components of the previous operation are removed under the reduced pressure by a vacuum pump 4.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、多成分混合ガスから所望のガス成分を分離精
製する方法に関し、例えば、アセチレン、プaバペブタ
ン、炭酸ガス、シランガス等を選択的吸着を利用してき
わめて高純度に、且つ、自動的に精製できるものを提供
する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a method for separating and purifying desired gas components from a multi-component mixed gas, for example, selectively separating and purifying acetylene, pervapebutane, carbon dioxide gas, silane gas, etc. To provide something that can be purified automatically to extremely high purity using adsorption.

〈従来技術とその問題点〉 多成分混合がスからの所望ガス成分の精製分離や微量不
純物の除去による原料ガスの精製方法として、従来では
、蒸気の凝縮液化による分離や、塩基性若しくは酸性吸
収剤による不純成分の除去(例えば、廃ガス中からのS
○工やNOxの除去)、若しくは半透膜による分離方法
等があった。
<Prior art and its problems> Conventionally, methods for purifying raw material gas by purifying and separating desired gas components from a multi-component mixed gas and removing trace impurities include separation by condensation and liquefaction of vapor, basic or acidic absorption, etc. Removal of impurity components by agents (e.g. S removal from waste gas)
There were several methods, such as ○ process, removal of NOx), and separation methods using semipermeable membranes.

例えば、アセチレンはその高い発熱量と優れた燃焼特性
により、金属の溶断に使用されるほか、分子内に三重結
合をもって親電子剤の攻撃を受は易い活性な特性から、
アセチレン化学の出発原料として重要な地位を占めて来
た。
For example, acetylene is used for cutting metals due to its high calorific value and excellent combustibility, and it also has active properties such as having a triple bond in its molecule and being easily attacked by electrophilic agents.
It has occupied an important position as a starting material for acetylene chemistry.

しかしながら、アセチレンの工業的供給の現状では、ア
セチレンガスを通常、アセトン等の法定溶剤に溶解させ
て市販しているので、容器から取出したアセチレンガス
中にはどうしても数%の溶剤蒸気を含むことになり、高
品質のカーボンブラックの製造や物理・化学用の研究資
料には適さず、各工業分野において高純度のアセチレン
ガスが要望されている。
However, in the current state of industrial supply of acetylene, acetylene gas is usually sold after being dissolved in legal solvents such as acetone, so the acetylene gas taken out of the container inevitably contains several percent of solvent vapor. Therefore, it is not suitable for producing high-quality carbon black or for research materials for physics and chemistry, and high-purity acetylene gas is required in various industrial fields.

また、炭酸飲料に使用する炭酸ガスは、食品に用いるた
め不純成分のできるだけ少ない方が良いが、工業的に供
給される炭酸がス中には、二酸化イオウ、メルカプタン
、硫化水素等のイオウ化合物が微量含まれており、臭気
を有するとともに、人体にも悪影響を与える虞れがあり
、やはりM製度の高い炭酸ガスが望まれるところである
Furthermore, since the carbon dioxide gas used in carbonated drinks is used for food, it is better to have as few impurities as possible, but industrially supplied carbon dioxide gas contains sulfur compounds such as sulfur dioxide, mercaptans, and hydrogen sulfide. It is contained in a small amount, has an odor, and may have an adverse effect on the human body, so carbon dioxide with a high M content is desired.

さらに、シリコン系半導体の主原料となるシランガスは
、半導体の品質を高めるためには高純度であることを要
するが、現状ではモアシラン5iHaに微量のジシラン
5i2Heが含まれて、純度を下げてしまうとともに、
このジシランは大気に接触すると自然発火する性質があ
って危険であるので、@量不純物たるジシランの除去が
要望されている。
Furthermore, silane gas, which is the main raw material for silicon-based semiconductors, needs to be highly pure in order to improve the quality of semiconductors, but currently Moasilane 5iHa contains a small amount of disilane 5i2He, which lowers the purity and lowers the purity. ,
Since this disilane has the property of spontaneously igniting and is dangerous when it comes into contact with the atmosphere, there is a demand for the removal of disilane as an impurity.

斯くのごとく、工業界には原料ガスの精製を要望する分
野が多くあるにも拘らず、従来がら、あらゆるガスに適
用して原料ガスの純度を容易、且つ、精確に高める方法
がほとんどなかった。
As described above, although there are many fields in the industry that require the purification of raw material gas, there have been few methods to easily and accurately increase the purity of raw material gas that can be applied to all gases. .

く問題点を解決するための手段〉 本発明は、多成分混合ガスを選択的吸着による展開速度
の差を利用して各成分がスに分離し、その中の所定成分
ガスを選択的に精製分離する方法であって、いわゆるガ
スクロマトグラフィーの原理を利用し、所定の保持時間
で移動する純粋成分ガスを捕獲して目的成分を高純度で
取り出そうとするものである。
Means for Solving Problems〉 The present invention separates a multi-component mixed gas into gases by utilizing the difference in deployment speed due to selective adsorption, and selectively purifies a predetermined component gas therein. This is a separation method that utilizes the principle of so-called gas chromatography to capture pure component gases that move over a predetermined retention time and extract target components with high purity.

元来、ガスクロマトグラフィーは分析技術をその適用対
象とするもので、近年は分析精度の向上に伴う微量分析
の領域を指向して、分離管の口径をより細<(1mm以
下)、その長さをより長く(数十メートル程度)設計し
ているのが現状である。
Originally, gas chromatography was applied to analysis technology, but in recent years, the diameter of the separation tube has become smaller (1 mm or less) and the length Currently, they are designed to be longer (about several tens of meters).

本発明は、この現状とは異なり、ガスクロマトグラフィ
ーを分析技術としてではなく、精製技術として用いるも
ので、分析を可能にする構成に、目的成分を捕獲し、そ
れ以外の不純成分を自動的に排除で軽る選択的捕獲構成
を付加して、目的成分を高純度に精製分離できる方法を
提供する。
The present invention differs from this current state of affairs by using gas chromatography not as an analysis technique but as a purification technique, and has a configuration that enables analysis by capturing target components and automatically removing other impurity components. To provide a method in which a target component can be purified and separated to a high degree of purity by adding a selective capture configuration that is light in exclusion.

即ち、展開剤を充填した分離塔7(8)、不純成分排出
路25及び目的威分捕1!!を器28 (30)にょ)
ン分離装置を構成し、分離塔7(8)の下流側に成分検
出器2−tと連動した切換弁22を配置し、切換弁22
の下流側を分岐して一方を捕獲器28(30)に、池方
を不純成分排出路25に各々接続する。
That is, a separation column 7 (8) filled with a developing agent, an impurity component discharge passage 25, and a separation column 1! ! 28 (30) Nyo)
A switching valve 22 is arranged downstream of the separation column 7 (8) in conjunction with the component detector 2-t.
The downstream side is branched, and one side is connected to the trap 28 (30), and the other side is connected to the impurity component discharge path 25, respectively.

そして、原料ガス供給装置1から原料ガスを展開剤式分
離塔7(8)に一挙に供給し、展開剤式分離塔7(8)
内で原料ガスを展開させて、目的成分に先行する先行不
純成分、目的成分及び目的成分に接続する後続不純成分
を順次流出させ、先行不純成分及び後続不純成分を検出
器24が検出すれば切換弁22を不純成分排出路25に
切換えて、不純成分を排出路25から排出し、また、目
的成分を検出器24が検出すれば切換弁22を捕獲器2
8(30)に切換えて、目的成分を捕獲器28 (30
)に捕獲し、当該目的成分捕獲器28 (30)から目
的成分を取出す方法である(符号は、第1図乃至第8図
を参照例として用いた)。
Then, the raw material gas is supplied all at once from the raw material gas supply device 1 to the developer-type separation column 7 (8), and the developer-type separation column 7 (8)
The raw material gas is expanded in the chamber, and the preceding impurity component preceding the target component, the target component, and the subsequent impurity component connected to the target component are sequentially flowed out, and when the detector 24 detects the preceding impurity component and the subsequent impurity component, switching is performed. The valve 22 is switched to the impurity component discharge path 25 to discharge the impurity component from the discharge path 25, and if the target component is detected by the detector 24, the switching valve 22 is switched to the trap 2.
8 (30), and capture the target component in the trap 28 (30).
) and extract the target component from the target component capture device 28 (30) (the reference numerals are shown in FIGS. 1 to 8 as reference examples).

上記分離塔は、大口径・短小の円筒管が好ましく、例え
ば、口径10−20mm、長さ0.5m程度のものを使
用して、分析で通常使用されるサンプル量の略100倍
の原料仕入れ量を供給できるようにしている。
The above-mentioned separation column is preferably a cylindrical tube with a large diameter and short length. For example, one with a diameter of 10-20 mm and a length of about 0.5 m is used to purchase raw materials approximately 100 times the amount of samples normally used for analysis. We are able to supply the quantity.

また、分離塔に充填する展開剤としては、シリカゲル、
活性炭、活性アルミナ、合成ゼオライト等の吸着性固体
粉末にDMF、PEG等の低揮発性液体を含浸させたも
のを使用し、原料ガスがキャリヤーガスによって分離塔
内に送り込まれると、原料ガスの各成分の分子量の差異
及び当該成分と展開剤を構成している分子との間の分子
間力の大小の差により、分離塔内を吸着、脱着或いは吸
収、蒸発を繰り返して各成分に分離される。
In addition, as the developing agent packed in the separation tower, silica gel,
Adsorptive solid powders such as activated carbon, activated alumina, and synthetic zeolite are impregnated with low-volatility liquids such as DMF and PEG. Due to the difference in the molecular weight of the components and the difference in the magnitude of the intermolecular force between the component and the molecules constituting the developing agent, the component is separated into each component through repeated adsorption, desorption, absorption, and evaporation in the separation column. .

一方、原料ガスの成分検出器は、例えば、分離塔からの
キャリヤーガスと、キャリヤーガス及び原料ガスの混合
した溶離ガスとの二つの熱伝導度の差を信号として検出
し、この検出時間を予め設定している目的成分の現われ
る時間(即ち、保持時間)及び分離が終了する時間に対
比することにより、切換弁を操作して目的成分を捕獲器
に、また、目的成分に前・後する不純成分を不純成分排
出路に各々搬送するように自動的に切換えるものである
On the other hand, a raw material gas component detector detects, as a signal, the difference in thermal conductivity between the carrier gas from the separation column and the eluate gas, which is a mixture of the carrier gas and the raw material gas, and this detection time is determined in advance. By comparing the set time for the target component to appear (i.e., retention time) and the time for separation to end, the switching valve can be operated to transfer the target component to the trap, or to control impurities before or after the target component. The components are automatically switched to be conveyed to the impure component discharge path.

〈実施例〉 以下、本発明方法を実施するためのガス精製装置を説明
する。
<Example> A gas purification apparatus for carrying out the method of the present invention will be described below.

第1図乃至第8図は本精製装置の概略系統図であり、精
製装置は原料供給装置1及び分離装置6から成り、原料
供給装置1は原料ガス及びキャリヤーガスの輸送路2.
3と真空ポンプ4を各々原料供給塔5に接続して構成さ
れ、分離装置6は二基の分離塔7.8、目的成分捕獲器
28.30、不純成分排出路25及び捕集ボンベ35か
ら構成される(第4図参照)。
1 to 8 are schematic system diagrams of the present purification apparatus. The purification apparatus consists of a raw material supply apparatus 1 and a separation apparatus 6. The raw material supply apparatus 1 is connected to a transport path 2 for raw material gas and carrier gas.
3 and a vacuum pump 4 are connected to a raw material supply tower 5, and the separation device 6 includes two separation towers 7.8, a target component capture device 28.30, an impure component discharge path 25, and a collection cylinder 35. (See Figure 4).

上記原料ガス輸送路2とキャリヤーガス輸送路3を四方
弁13を介して接続し、原料ガス輸送路2の途上に減圧
弁14を、またキャリヤーガス輸送路3の途上にニード
ル弁15を介装するとともに、四方弁13の下流側を分
岐して、その一方を原料供給塔5に、その他方を四方弁
16に各々接続する。
The raw material gas transport path 2 and the carrier gas transport path 3 are connected via a four-way valve 13, and a pressure reducing valve 14 is interposed in the middle of the raw material gas transport path 2, and a needle valve 15 is interposed in the middle of the carrier gas transport path 3. At the same time, the downstream side of the four-way valve 13 is branched, and one side is connected to the raw material supply tower 5 and the other side is connected to the four-way valve 16.

また、真空ポンプ4を原料ガス輸送路2に三方弁17を
介して接続し、三方弁17と四方弁13を結ぶ輸送路2
上に三方弁18を介装し、その分岐路19を原料供給塔
5の下端に接続する。
Further, the vacuum pump 4 is connected to the raw material gas transport path 2 via the three-way valve 17, and the transport path 2 connects the three-way valve 17 and the four-way valve 13.
A three-way valve 18 is interposed at the top, and its branch passage 19 is connected to the lower end of the raw material supply tower 5.

一方、原料供給装置1と分離装置6を結ぶ四方弁16の
下流側を三方向に分岐し、そのうちの二方向に分離塔7
.8を並列に接続し、残る一方向を大気放出路20に接
続する。
On the other hand, the downstream side of the four-way valve 16 connecting the raw material supply device 1 and the separation device 6 is branched into three directions, and two of the two directions are connected to a separation column 7.
.. 8 are connected in parallel, and the remaining one direction is connected to the atmosphere discharge path 20.

分離塔7.8の両下端を四方弁21を介して接続し、そ
の下流側に位置する捕獲・排出作業用の切換四方弁22
と当該四方弁21を二股状の輸送路で接続し、その一方
の分岐路23に成分検出器24を介装して切換四方弁2
2に連動するとともに、その他方を不純成分排出路25
とする。
Both lower ends of the separation tower 7.8 are connected via a four-way valve 21, and a four-way switching valve 22 for capture and discharge operations is located downstream of the four-way valve 21.
The four-way valve 21 is connected to the four-way valve 21 by a bifurcated transport path, and a component detector 24 is interposed in one of the branch paths 23 to convert the switching four-way valve 2 to the four-way valve 21.
2, and the other side is connected to impurity component discharge path 25.
shall be.

当該切換四方弁22は、成分検出器24の信号を受けて
、不純成分排出路25と後述の目的成分捕獲器2 B 
(30)とに切換可能に設定される。
The four-way switching valve 22 receives the signal from the component detector 24 and connects the impurity component discharge path 25 and the target component capture device 2B, which will be described later.
(30).

そして、上記切換四方弁22の下流側を分岐して、その
一方に四方弁26を、その他方に三方弁27を各々接続
し、四方弁26の三方向の分岐路のうち、二つに二基の
目的成分捕獲器28.30の入口を各々並列に接続し、
残る一つに原料取出路31を接続する。
Then, the downstream side of the switching four-way valve 22 is branched, and the four-way valve 26 is connected to one side, and the three-way valve 27 is connected to the other side, and two of the three-way branch paths of the four-way valve 26 are connected to two. The inlets of the target component traps 28 and 30 are each connected in parallel,
The raw material extraction path 31 is connected to the remaining one.

また、上記捕獲器28.30の各上部出口を三方弁27
に接続してキャリヤーガスを搬送する再主路32.33
とする。
In addition, each upper outlet of the trap 28, 30 is connected to the three-way valve 27.
Re-main line 32.33 that connects to the carrier gas and conveys the carrier gas.
shall be.

当該捕獲器28及び30は、ともに液化窒素を循環させ
て容器内を、例えば−196℃前後に冷却して、原料ガ
ス中の目的成分とキャリヤーガスを気液分離若しくは気
固分離可能に構成する。
Both of the traps 28 and 30 are configured to circulate liquefied nitrogen to cool the inside of the container to, for example, around -196° C., so that the target component in the raw material gas and the carrier gas can be separated into a gas-liquid or a gas-solid. .

そして、前記原料取出路31はptfJ8図に示すよう
に、その下流側に入・切弁34を介して捕集ボンベ35
を接続し、さらに捕集ボンベ35を入・切弁36を介し
て真空ポンプ37につないで、原料取出路31を減圧可
能にする。
As shown in the PTFJ8 diagram, the raw material take-out passage 31 is connected to the collecting cylinder 35 through an inlet/off valve 34 on the downstream side thereof.
Further, the collection cylinder 35 is connected to a vacuum pump 37 via an on/off valve 36, thereby making it possible to reduce the pressure in the raw material extraction passage 31.

また、原料取出路31のうも、入・切弁34の上流側よ
りキャリヤーガスの排出路38を分岐して、この排出路
38を入・切弁39を介して前記原料供給装置1に組込
んだ真空ポンプ4に接続する。
In addition, a carrier gas discharge passage 38 is branched from the raw material take-out passage 31 upstream of the inlet/off valve 34, and this discharge passage 38 is assembled into the raw material supply device 1 via the inlet/cut valve 39. Connect to the vacuum pump 4 installed.

斯く几でなるガス精製装置を使用しで目的成分を精製分
離する工程を、アセチレンガスの精製を例にとって順次
説明する。
The process of purifying and separating target components using a gas purification apparatus having such a gas purification system will be sequentially explained using purification of acetylene gas as an example.

即ち、前述した如く、市販されている溶解アセチレン〃
又は、アセトン等の法定溶剤の他に、メタン、水素、−
酸化炭素、二酸化炭素、酸素及び窒素等を不純成分とし
て数%含有するので、これを本精製装置を使用して精製
しようとするものである。
That is, as mentioned above, commercially available dissolved acetylene
Or, in addition to legal solvents such as acetone, methane, hydrogen, -
Since it contains several percent of impurity components such as carbon oxide, carbon dioxide, oxygen, and nitrogen, it is intended to be purified using this purification apparatus.

尚、分離塔内で原料ガスを各成分に展開させるためのキ
ャリヤーがスは、水素、ヘリウム、窒素或いはアルゴン
のような不活性ガスが望まし−1゜本精製工程には、こ
のうちの水素を用いた。
The carrier for developing the raw material gas into each component in the separation column is preferably an inert gas such as hydrogen, helium, nitrogen, or argon. was used.

(1)真空引き工程 第1図に示すように、三方弁17及び18を切換操作し
、原料供給塔5を真空ポンプ4に連通して、原料供給塔
5内にある前回操作による残留成分を減圧排除する。
(1) Vacuuming step As shown in FIG. 1, the three-way valves 17 and 18 are switched, the raw material supply tower 5 is connected to the vacuum pump 4, and the residual components from the previous operation in the raw material supply tower 5 are removed. Eliminate vacuum.

尚、本工程のガスの流れを図中符号で示せば、5→19
→18→17→4となる。
In addition, if the gas flow in this process is indicated by the symbols in the figure, it is 5 → 19.
→18→17→4.

(2)原料アセチレンがスの供給工程 第2図に示すように、三方弁17を原料ガス輸送路2の
方へ切換えてアセチレンガス供給塔5に連通し、減圧弁
14を通じて予めキャリヤーガス圧力より低く設定され
た圧力で、定量のアセチレンガスを原料供給塔5に供給
する。
(2) Process for supplying raw material acetylene gas As shown in FIG. A fixed amount of acetylene gas is supplied to the raw material supply tower 5 at a low pressure.

尚、本工程の原料ガスの流れは、14→17→18→1
9→5となる。
In addition, the flow of the raw material gas in this process is 14 → 17 → 18 → 1
9→5.

(3)キャリヤーガスの搬送による原料アセチレンガス
の分離塔への供給工程 第3図に示すように、四方弁13をキャリヤーガス輸送
路3に切換え、三方弁18を分岐路19に切換えて、キ
ャリヤーがス供給源を原料供給塔5に連通し、ニードル
弁15により所定流量を維持しながら連続的に原料供給
塔5に供給される。
(3) Process of supplying raw material acetylene gas to the separation column by conveying carrier gas As shown in FIG. A gas supply source is communicated with the raw material supply tower 5, and the gas is continuously supplied to the raw material supply tower 5 while maintaining a predetermined flow rate through the needle valve 15.

この際、四方弁16を分離塔7に切換えると、四方弁1
3の上記切換操作によって原料供給塔、5は分離塔7に
連通されるので、供給塔内にある原料アセチレンが又は
キャリヤーガスに搬送されながら分離塔7に導入される
At this time, when the four-way valve 16 is switched to the separation column 7, the four-way valve 1
By the above-mentioned switching operation in step 3, the raw material supply tower 5 is communicated with the separation tower 7, so that the raw material acetylene in the supply tower is introduced into the separation tower 7 while being carried by the carrier gas.

尚、本工程のキャリヤーガスの流れは、15→3→13
→18→19→5→13→16→7となり、原料アセチ
レンガスの流れは5→13→16→7となる。
The flow of carrier gas in this process is 15 → 3 → 13
→18→19→5→13→16→7, and the flow of raw material acetylene gas becomes 5→13→16→7.

(4)プリカット工程 第4図に示すように、上記原料アセチレンがスを一方の
分離塔7に導入すれば、四方弁21を分岐路23に切換
えて、原料ガスのアセチレン成分に先行して展開される
先行不純成分、例えば、酸素、窒素、二酸化炭素及びメ
タン等の各成分をブリカットする。
(4) Pre-cut process As shown in FIG. 4, when the raw material acetylene gas is introduced into one of the separation towers 7, the four-way valve 21 is switched to the branch path 23, and the acetylene component of the raw material gas is expanded before the acetylene component. Preliminary impurity components such as oxygen, nitrogen, carbon dioxide, and methane are bricuted.

即ち、゛分離塔7の出口から導出される分離ガスは成分
検出器24により追跡されているので、目的アセチレン
成分に先行する不純成分が分岐路23を流れている間は
、検出器24からの信号により切換四方弁22は自動的
に不純成分排出路25の側に切換えられるのである。
That is, since the separated gas led out from the outlet of the separation column 7 is tracked by the component detector 24, while the impure components preceding the target acetylene component are flowing through the branch path 23, the gas from the detector 24 is In response to the signal, the four-way switching valve 22 is automatically switched to the impurity component discharge path 25 side.

この場合、四方弁21の上記切換操作によって不純成分
排出路25は他方の分離塔8に連通され、当該分離塔8
は、四方弁16の本工程における切換操作によって大気
放出路20に連通されるので、先行不純成分は分離塔8
を通じて大気に放出されることになる。
In this case, by the above-mentioned switching operation of the four-way valve 21, the impurity component discharge path 25 is communicated with the other separation column 8, and the separation column 8 is connected to the other separation column 8.
is communicated with the atmospheric discharge passage 20 by the switching operation of the four-way valve 16 in the main process, so the preceding impurity components are removed from the separation column 8.
will be released into the atmosphere through

尚(本工程の不純成分ガスの流れは7→21→24→2
2→25→21→8→16→2oとなる。
(The flow of impure component gas in this process is 7 → 21 → 24 → 2
2→25→21→8→16→2o.

また、本工程では、分離塔の展nRが進行しているので
、キャリヤーガスは分離塔7内を連続的に搬送されてお
り(以下の工程でも同様である)、従って、不純成分ガ
スと同じ流路を通って放出される。
In addition, in this step, as the expansion of the separation column is progressing, the carrier gas is continuously conveyed within the separation column 7 (the same applies in the following steps), and therefore the carrier gas is the same as the impure component gas. released through a channel.

(5)捕獲工程 第5図に示すように、分離塔7の展開が進んで目的成分
たるアセチレンガスが出口から分岐路23内に流れ出す
と、検出器24の信号が切換四方弁22に送られて、当
該四方弁22を捕獲器への迷路に切換える。
(5) Capture process As shown in FIG. 5, when the separation tower 7 progresses and acetylene gas, which is the target component, flows out from the outlet into the branch passage 23, the signal from the detector 24 is sent to the four-way switching valve 22. Then, the four-way valve 22 is switched to the trap maze.

このとき、四方弁26は一方の捕獲器28に切換えられ
るとともに、三方弁27は入切四方弁2−2への送路に
切換えられるので、高純度のアセチレン成分は捕獲器2
8に捕獲され、液化窒素による極低1n(−i96℃前
後)で冷却されて凝固する(因みに、アセチレンの常圧
での融点は一82℃であ養)。
At this time, the four-way valve 26 is switched to one of the traps 28, and the three-way valve 27 is switched to the on/off four-way valve 2-2, so that the high-purity acetylene component is transferred to the trap 28.
8 and is cooled by liquid nitrogen at an extremely low temperature (around -i96°C) to solidify (by the way, the melting point of acetylene at normal pressure is -82°C).

また一方、上記捕獲器28に搬送されるキャリヤーガス
(水素ガス)は、その沸点が一253’C(常圧)であ
るためがス状を保持し、アセチレンと容易に気・面分離
される。
On the other hand, since the carrier gas (hydrogen gas) conveyed to the trap 28 has a boiling point of 1253'C (normal pressure), it maintains a soot-like state and is easily separated into gas and plane from acetylene. .

そして、このキャリヤー〃又は、捕獲器28から不純成
分排出路25を通って、展開を行なっていない方の分離
塔8に入り、大気放出路2゜から大気に放出されるので
ある。
Then, from this carrier or trap 28, it passes through the impure component discharge passage 25, enters the separation tower 8 which is not being expanded, and is discharged into the atmosphere from the atmosphere discharge passage 2°.

その際、上記分離塔8には純粋なキャリヤーガスが下方
から上方に搬送されるので、前精製工程で分離塔内の展
開剤に残留する不純成分を排除して分離塔の再生を行な
うことができる。
At this time, since pure carrier gas is conveyed from below to above to the separation column 8, the impurity components remaining in the developing agent in the separation column can be removed in the pre-purification step to regenerate the separation column. can.

尚、本工程の高純度アセチレンガスの流れは、7→21
→24→22→26→28であり、キャリヤーガスの流
れは、7→21→24→22→26→28→27→22
→25→21→8→16→20である。
The flow of high-purity acetylene gas in this process is from 7 to 21.
→24→22→26→28, and the flow of carrier gas is 7→21→24→22→26→28→27→22
→25→21→8→16→20.

(6)バックフラッジユニ程 第6図に示すように、分離塔7がらの分離成分がアセチ
レンガスに後続する不純成分になると、検出器24の信
号が切換四方弁22に送られて、当該四方弁22を不純
成分排出路25に切換えて、前述のプリカット工程と同
様の操作を行ない、後続不純成分、例えば水、7セトン
等を大気に放出する。
(6) Backfluge unit process As shown in FIG. 6, when the separated components from the separation column 7 become impure components that follow the acetylene gas, a signal from the detector 24 is sent to the four-way switching valve 22, and the corresponding The four-way valve 22 is switched to the impurity component discharge path 25, and the same operation as in the pre-cut process described above is performed to discharge subsequent impurity components, such as water and 7 setone, into the atmosphere.

尚、本工程の不純成分〃スの流れは、7→21→24→
22→25→21→8→16→20となる。
The flow of impurity components in this process is 7 → 21 → 24 →
22→25→21→8→16→20.

(7)捕獲器からのキャリヤーガス除去工程第7図に示
すように、四方弁26を原料取出路31に切換え、入・
切回39を開いて、hnn容器28真空ポンプ4に連通
ずる。このとき、四方弁26の上記切換操作により、捕
獲器28と分離塔7の接続は断たれるのである。
(7) Carrier gas removal process from the trap As shown in FIG.
Open the cutout 39 to communicate with the hnn container 28 and the vacuum pump 4. At this time, the connection between the trap 28 and the separation column 7 is cut off by the switching operation of the four-way valve 26.

斯くして、捕獲器28内に貯留するキャリヤーガスは排
出路38から排除されるので、高純度アセチレンガスを
取出す際に不純物として混入して来る虞れをなくすこと
ができる。
In this way, the carrier gas stored in the trap 28 is removed from the exhaust passage 38, so there is no possibility that the carrier gas will be mixed in as impurities when taking out the high-purity acetylene gas.

(8)高純度アセチレンの取出工程 fj&8図に示すように、入・切回39を閉じ、ンベ3
5に連通し、ボンベ内を減圧状態にしたのち、入・切回
36を閉じて入・切回34を開く。
(8) Removal process of high purity acetylene As shown in Fig.
5 to bring the inside of the cylinder into a reduced pressure state, then close the in/out turn 36 and open the in/out turn 34.

そして、捕獲器28を常温に戻すことにより、固化した
アセチレン成分をガス状にして捕集ボンベ35に取出す
のである。
Then, by returning the trap 28 to room temperature, the solidified acetylene component is turned into a gas and taken out into the collection cylinder 35.

尚、高純度アセチレンが入の流れは、28→26→31
→35となる。
The flow of high-purity acetylene is 28 → 26 → 31
→It becomes 35.

斯くしてなるアセチレン精製工程においては、上記バッ
クフラッジユニ程を終わって一方の分離が完了した時点
で、他方の分離塔の再生が同時に終了するので、予め原
料供給塔に供給されていた原料ガス(即ち、次回の精製
サイクルは、既に(2)の原料供給工程まで進行してい
る)を再生が終了した分離塔に供給し始めて、捕獲工程
に進んでいくのである。
In this acetylene refining process, when one of the separations is completed after the backflipping process, the regeneration of the other separation tower ends at the same time, so that the raw material previously supplied to the raw material supply tower is The gas (that is, the next refining cycle has already progressed to the raw material supply step (2)) is started to be supplied to the separation column where regeneration has been completed, and the process proceeds to the capture step.

即ち、一つの精製工程が終了しない内に、空いている分
離塔及び捕獲器を利用すべく、次回の精製工程を並列的
に進行させて、精製効率を高めているのである。
That is, before one purification process is completed, the next purification process is performed in parallel to utilize vacant separation columns and traps, thereby increasing purification efficiency.

以上のサイクル運転は、実際には成分検出器の示をベー
スとしたプログラム・コントローラーと、空気圧作動弁
により全自動化されており、この自動システムの中に例
えば運転開始時の特別処理操作や停電時に対する安全操
作等を組込んで、精製操作の安全と管理を容易にしてい
る。
The cycle operation described above is actually fully automated using a program controller based on the indications from the component detector and a pneumatically operated valve. Safety operations are incorporated to facilitate safety and management of refining operations.

第9図は、上記精製装置により原料アセチレンガスを回
分的に継続した分離クロマトグラムであり、保持時間の
範囲を示す符号のうち、A部分は目的成分に先行する不
純成分に相当し、プリカット工程を実施すべき範囲であ
り、B部分は目的アセチレン成分に相当し、捕獲工程を
実施すべき範囲であり、また、C部分は目的アセチレン
成分に後続する不純成分に相当し、バック7ラツシユエ
程を実施すべき範囲である。
FIG. 9 is a separation chromatogram obtained by batchwise continuation of the raw material acetylene gas using the above-mentioned purification device. Of the symbols indicating the retention time range, part A corresponds to the impurity component preceding the target component, and the pre-cutting step Part B corresponds to the target acetylene component and is the range in which the capture process should be performed. Part C corresponds to the impurity components following the target acetylene component, and the back 7 latching steps are performed. This is the scope of implementation.

以下、本精製方法を種々の原料ガスに適用した場合の実
験例を順次述べる。
Experimental examples in which this purification method is applied to various raw material gases will be described below.

(実験例1 ) 本N51!方法を市販の溶解アセチレンガスに適用して
取出される高純度アセチレンがスについて、その組成を
分析したところ下記の結果な得・た。
(Experiment Example 1) Book N51! When the composition of the high-purity acetylene gas extracted by applying the method to commercially available dissolved acetylene gas was analyzed, the following results were obtained.

尚、比較のため、精製を施さないままの市販アセチレン
ガスの組成を併記した。
For comparison, the composition of commercially available acetylene gas without being purified is also shown.

上記結果によれば、本精製方法を施したアセチレンが又
は、99.9999%(いわゆる、シックス・ナイン)
以上の高純度を達成することかでb、純粋な物理、化学
用の研究資料として好適であるばかりでなく、高品質の
ブラック・カーボンの製造にも不可欠のものになりうる
According to the above results, the acetylene subjected to this purification method is 99.9999% (so-called six nine)
By achieving the above-mentioned high purity, it is not only suitable as a research material for pure physics and chemistry, but also can be indispensable for the production of high-quality black carbon.

また、残存不純物の主なものは、上表によれば酸素(0
,2ppm)と窒素(0,5ppm)であり、本精製方
法を実施する装置の系内に残留する空気成分であること
が明らかなので、精製装置の運転を継続するにつれて、
更に高純度のアセチレンガスを得ることが期待できる。
Also, according to the table above, the main residual impurity is oxygen (0
, 2 ppm) and nitrogen (0.5 ppm), and it is clear that these are air components remaining in the system of the equipment that implements this purification method.
It is expected that acetylene gas of even higher purity can be obtained.

(実験例2) 本精製方法を市販の工業用ブタンに適用して精製分離さ
れたノルマルブタンとイソブタンについて、その組成を
分析したところ下記の結果を得た。
(Experimental Example 2) The compositions of normal butane and isobutane purified and separated by applying this purification method to commercially available industrial butane were analyzed, and the following results were obtained.

尚、上記精製操作において、分離塔内に充填する展開材
はDMF26%を活性アルミナに担持させたちのを使用
し、分離されたノルマルブタン及びイソブタンは液化窒
素によって冷却した捕獲器により液化捕獲された。
In the above purification operation, the developing material packed into the separation column was DMF 26% supported on activated alumina, and the separated normal butane and isobutane were liquefied and captured in a trap cooled with liquefied nitrogen. .

また、比較のため、精製を施さないままの工業用ブタン
の組成を併記した。
For comparison, the composition of industrial butane without being purified is also shown.

(以下余白) ブタンの新しい用途として注目されているものに、ニア
ゾル缶に用いるプロペラントがあり、従来使用していた
オゾン層を破壊する等の弊害があるので、これをブタン
系のもの、詳しくは、ノルマルブタン、イソブタン及び
プロパンの混合物で所定の蒸気圧を有するものに代替し
て、封入薬剤として用いることが試みられている。
(Left below) One of the new uses of butane that is attracting attention is the propellant used in near-sol cans. has been attempted to be used as an encapsulated drug in place of a mixture of normal butane, isobutane and propane having a predetermined vapor pressure.

しかるに、工業用ブタンは上表のごとく、ノルマルブタ
ンとイソブタンの混合物であり、このままの混合比では
適切な噴射圧を得ることができないので、当該混合物か
ら各ブタン異性体を分離して所定の割合に混合すること
により蒸気圧を調整することが要望される。
However, as shown in the table above, industrial butane is a mixture of normal butane and isobutane, and since it is not possible to obtain an appropriate injection pressure with the current mixing ratio, each butane isomer is separated from the mixture and the prescribed ratio is adjusted. It is desired to adjust the vapor pressure by mixing with

そこで、工業用ブタンを本精製方法で精製すれば、上表
にみるように、ノルマルブタンを純度99.99%、ま
た、イソブタンを純度99.96%で取出すことができ
、適切な噴射圧を単位成分の混合により簡単且つ迅速に
得ることができる。
Therefore, if industrial butane is purified using this purification method, normal butane can be extracted with a purity of 99.99% and isobutane with a purity of 99.96%, as shown in the table above, and the appropriate injection pressure can be obtained. It can be obtained simply and quickly by mixing unit components.

°   しかも、本精製方法によれば、工業用ブタンに
本来的に含まれ、通常悪臭の原因となるイオウ化合物を
、0.01pp+n以下に排除できるので、得られる高
純度ブタン成分はエアゾル缶用のプロペラントとして好
適なものとなる。
° Moreover, according to this purification method, the sulfur compounds that are originally contained in industrial butane and usually cause bad odors can be eliminated to 0.01pp+n or less, so the high purity butane component obtained can be used for aerosol cans. It is suitable as a propellant.

〈発明の効果〉 本発明は、不純成分を含有する原料ガスを選択的吸着を
利用して目的成分と不純成分に分離し、成分検出器とこ
れに連動した切換弁により、目的を有する。
<Effects of the Invention> The present invention has an object of separating a raw material gas containing impure components into a target component and an impure component using selective adsorption, using a component detector and a switching valve interlocked therewith.

(1)展開剤による選択的吸着を利用し、これに原料ガ
スを通すことにより、原料ガス中の各成分をその展開速
度の差で分離するので、取出された目的成分の純度をき
わめて高くできる。
(1) By utilizing selective adsorption by a developing agent and passing the raw material gas through it, each component in the raw material gas is separated based on the difference in development speed, so the purity of the extracted target component can be extremely high. .

即ち、従来の分離精製方法である凝縮液化による分離で
は各成分量の大きい混合ガスには適用できても、微量の
不純成分を含む原料ガスには適用し難く、また、吸着剤
による排煙脱硫等では、中性反応を通じて不純成分を除
くtこめ、あらゆる原料ガスに適用するというわけにも
いかないうえ、不純成分ガスの溶解度にも限界があるの
で、微量不純物の除去には向かない。
In other words, although separation by condensation and liquefaction, which is a conventional separation and purification method, can be applied to mixed gases containing large amounts of each component, it is difficult to apply to raw gas containing trace amounts of impure components. However, since impurity components are removed through a neutral reaction, it cannot be applied to all raw material gases, and there is also a limit to the solubility of impurity component gases, so it is not suitable for removing trace impurities.

ところが、本精製方法は、原料ガスを展開剤に化学吸着
させてこれを展開させるので、微量成分でも精確に展開
できるうえあらゆる種類の原料ガスに適用できる。
However, in this purification method, the raw material gas is chemically adsorbed on the developer and developed, so even trace components can be developed accurately and it can be applied to all kinds of raw material gases.

(2)本精製方法は、分離塔で展開分離された目的成分
と不純成分とを成分検出器で追跡確認するうえ、この検
出器に連動した切換弁により、自動的に目的成分のみを
捕獲できるので、目的成分の取出しが容易であり、原料
ガスの精製を自動化して迅速、容易な高純度成分を取出
すことができる。
(2) In this purification method, a component detector is used to track and confirm the target component and impure components that are developed and separated in a separation column, and a switching valve linked to this detector allows automatic capture of only the target component. Therefore, it is easy to take out the target component, and by automating the purification of the raw material gas, it is possible to quickly and easily take out the high-purity component.

(3)このことは、本精製方法を上記実施例の溶解アセ
チレンガス以外にも適用することができることを示す。
(3) This shows that the present purification method can be applied to other than the dissolved acetylene gas in the above example.

例えば、工業用液化炭酸中にはイオウ化合物等の臭気成
分が不純物として含有されているので、本精製方法によ
って不純臭気成分を除去して高純度の炭酸ガスを得れば
、これを炭酸飲料に使用できる。
For example, industrial liquefied carbonic acid contains odor components such as sulfur compounds as impurities, so if these purification methods remove impure odor components and obtain highly pure carbon dioxide gas, this can be used to make carbonated drinks. Can be used.

また、工業的に供給されるモノシランガス中には、自然
発火性のジシランを不純成分として含有するので、本精
製方法によってジシラン成分を除去して高純度のモアシ
ランガスを得れば、高品質のシリコン半導体を容易に製
造できるうえ、火災の危険を円滑になくすことができる
6さりしこ、工業用プロパン〃入中しこは7yン、エタ
ン、メタン等のパラフィン成分やイオウ化合物を不純成
分として含有1−、るので、本精製方法によって、不純
成分を除去して高純度プロパンがスを得れば、実験例2
で既述したように、エアゾル缶用のプロペラント剤に適
用して所定の噴射圧を得ることかで外るとともに、イオ
ウ化合物の排除による無臭プロパンを与えるので、プロ
ペラント剤としての付加価値を高めることができる。
In addition, industrially supplied monosilane gas contains pyrophoric disilane as an impurity component, so if this purification method removes the disilane component and obtains high-purity moasilane gas, high-quality silicon Not only can semiconductors be easily manufactured, but the danger of fire can be smoothly eliminated. 6 Sarishiko contains industrial propane. Nakashiko contains paraffin components such as 7yn, ethane, and methane, and sulfur compounds as impurity components. 1-, so if this purification method removes impurity components and obtains high-purity propane, Experimental Example 2
As mentioned above, it can be applied to a propellant agent for aerosol cans to obtain the specified injection pressure, and it also provides odorless propane by eliminating sulfur compounds, so it has added value as a propellant agent. can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は本精製方法の各工程を示す精製装置
の概略系統図、第9図は原料アセチレンガスを精製分離
した場合の〃スクロマトグラムである。 1・・・原料ガス供給装置、6・・・分離装置、7・8
・・・分離塔、22・・・切換弁、24・・・成分検出
器、25・・・不純成分排出路、28・30・・・目的
成分捕獲器。
1 to 8 are schematic diagrams of a purification apparatus showing each step of the present purification method, and FIG. 9 is a chromatogram when raw material acetylene gas is purified and separated. 1... Raw material gas supply device, 6... Separation device, 7/8
Separation tower, 22... Switching valve, 24... Component detector, 25... Impure component discharge path, 28, 30... Target component capture device.

Claims (1)

【特許請求の範囲】 1、原料ガス供給装置1から原料ガスを分離装置6に供
給し、分離装置6で原料ガスから目的成分を分離して取
出すガス精製方法において、展開剤を充填した分離塔7
(8)、不純成分排出路25及び目的成分捕獲器28(
30)により分離装置6を構成し、分離塔7(8)の下
流側に成分検出器24と連動した切換弁22を配置し、
切換弁22の下流側を分岐して一方を捕獲器28(30
)に、他方を不純成分排出路25に各々接続し、原料ガ
ス供給装置1から原料ガスを展開剤式分離塔7(8)に
一挙に供給し、展開剤式分離塔7(8)内で原料ガスを
展開させて、目的成分に先行する先行不純成分、目的成
分及び目的成分に後続する後続不純成分を順次流出させ
、先行不純成分及び後続不純成分を検出器24が検出す
れば切換弁22を不純成分排出路25に切換えて、不純
成分を排出路25から排出し、また、目的成分を検出器
24が検出すれば切換弁22を捕獲器28(30)に切
換えて、目的成分を捕獲器28(30)に捕獲し、当該
目的成分捕獲器28(30)から目的成分を取出すこと
を特徴とするガス精製方法 2、原料ガスをキャリヤーガスで展開剤式分離器7(8
)に供給し、目的成分の捕獲時には目的成分捕獲器28
(30)内を冷却手段で冷却して、目的成分捕獲器28
(30)内で目的成分を固化させるとともに、目的成分
に混入するキャリヤーガスを気体のまま残し、このキャ
リヤーガスを目的成分捕獲器28(30)外に流出させ
ながら、固化した目的成分を捕獲器28(30)内に貯
留したのちに、目的成分捕獲器28(30)内を加温手
段で加温して、固化した目的成分を気体状態にして捕獲
器28(30)から取出すことを特徴とする特許請求の
範囲第1項に記載したガス精製方法 3、分離塔7(8)を複数塔設けて、キャリヤーガスを
複数の分離塔7(8)のうちの一つに供給し、この分離
塔7(8)内で原料ガスを展開させたのち、目的成分捕
獲時に捕獲器7(8)より流出されるキャリヤーガスを
、展開分離操作を行なっている以外の分離塔7(8)に
通過させて、当該分離塔7(8)をキャリヤーガスで再
生することを特徴とする特許請求の範囲第1項又は第2
項に記載したガス精製装置
[Claims] 1. In a gas purification method in which a raw material gas is supplied from a raw material gas supply device 1 to a separation device 6, and a target component is separated and taken out from the raw material gas in the separation device 6, a separation column filled with a developing agent is used. 7
(8), impurity component discharge path 25 and target component capture device 28 (
30) constitutes a separation device 6, and a switching valve 22 interlocked with a component detector 24 is arranged on the downstream side of the separation column 7 (8),
The downstream side of the switching valve 22 is branched and one side is connected to the trap 28 (30
), and the other end is connected to the impurity component discharge path 25, and the raw material gas is supplied all at once from the raw material gas supply device 1 to the developer type separation column 7 (8), and the raw material gas is connected in the developer type separation column 7 (8). The raw material gas is expanded, and the preceding impurity component preceding the target component, the target component, and the subsequent impurity component following the target component are sequentially flowed out, and when the detector 24 detects the preceding impurity component and the subsequent impurity component, the switching valve 22 is switched to the impure component discharge path 25 to discharge the impure component from the discharge path 25, and if the target component is detected by the detector 24, the switching valve 22 is switched to the trap 28 (30) to capture the target component. A gas purification method 2 characterized in that the target component is captured in a vessel 28 (30) and the target component is taken out from the target component trap 28 (30).
), and when capturing the target component, the target component capture device 28
(30) Cool the inside of the target component capture device 28 with a cooling means.
(30), while leaving the carrier gas mixed in with the target component as a gas, and while this carrier gas flows out of the target component trap 28 (30), the solidified target component is removed from the trap. After being stored in the target component trap 28 (30), the target component trap 28 (30) is heated by a heating means to turn the solidified target component into a gaseous state and taken out from the trap 28 (30). In the gas purification method 3 as set forth in claim 1, a plurality of separation columns 7 (8) are provided, a carrier gas is supplied to one of the plurality of separation columns 7 (8), and this After the raw material gas is developed in the separation tower 7 (8), the carrier gas flowing out from the trap 7 (8) when capturing the target component is transferred to the separation tower 7 (8) other than the one that is performing the development separation operation. Claim 1 or 2, characterized in that the separation column 7 (8) is regenerated with a carrier gas by passing through the separation column 7 (8).
Gas purification equipment described in section
JP59156338A 1984-07-25 1984-07-25 Gas refining method Granted JPS6133215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59156338A JPS6133215A (en) 1984-07-25 1984-07-25 Gas refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59156338A JPS6133215A (en) 1984-07-25 1984-07-25 Gas refining method

Publications (2)

Publication Number Publication Date
JPS6133215A true JPS6133215A (en) 1986-02-17
JPS6336815B2 JPS6336815B2 (en) 1988-07-21

Family

ID=15625585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59156338A Granted JPS6133215A (en) 1984-07-25 1984-07-25 Gas refining method

Country Status (1)

Country Link
JP (1) JPS6133215A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273144A (en) * 2001-03-21 2002-09-24 Japan Atom Energy Res Inst Gas separation device
JP2013013897A (en) * 2012-09-25 2013-01-24 Iwatani Industrial Gases Corp Acetylene storage material, acetylene storage container, apparatus for supplying highly pure acetylene, and purification apparatus for highly pure acetylene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183596A (en) * 1975-01-20 1976-07-22 Hitachi Ltd RYUROKIRIKAESOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183596A (en) * 1975-01-20 1976-07-22 Hitachi Ltd RYUROKIRIKAESOCHI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002273144A (en) * 2001-03-21 2002-09-24 Japan Atom Energy Res Inst Gas separation device
JP2013013897A (en) * 2012-09-25 2013-01-24 Iwatani Industrial Gases Corp Acetylene storage material, acetylene storage container, apparatus for supplying highly pure acetylene, and purification apparatus for highly pure acetylene

Also Published As

Publication number Publication date
JPS6336815B2 (en) 1988-07-21

Similar Documents

Publication Publication Date Title
JP5202836B2 (en) Xenon recovery system and recovery device
US5486227A (en) Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility
JPH0248406A (en) Inert-gas purifying method to large quantity of nitrogen using no hydrogen or other reducing gases
EP0114911B1 (en) Novel repressurization for pressure swing adsorption system
KR101686085B1 (en) Recovery of NF3 from Adsorption Operation
EP0862938A1 (en) PSA process for removal of nitrogen oxides, carbon dioxide and water from gas
JPS6012117A (en) Drying of gas stream
KR100501423B1 (en) Process and adsorbent for the recovery of krypton and xenon from a gas or liquid stream
JPH10113502A (en) Method and apparatus for producing low temperature fluid in high purity liquid
US20150360165A1 (en) Separation of biologically generated gas streams
JPH09188886A (en) Method for comprehensive treatment of natural gas in depositry
JPS6133215A (en) Gas refining method
JPH05124808A (en) Treatment of gaseous raw material in purification plant of high-purity gaseous carbon dioxide
KR101780199B1 (en) Method for Producing High Purity Germane by a Continuous or Semi-Continuous Process
US3616602A (en) Low-temperature purification of fluids
JP3268177B2 (en) Method for producing neon and helium
JPS6137970B2 (en)
JPH0554880B2 (en)
JP7421553B2 (en) System with co-current gas absorption method and reinforced absorber
JPH10130009A (en) Purifying method of gaseous carbon dioxide and device therefor
JP3294067B2 (en) Krypton manufacturing method
WO2021032315A1 (en) Method and arrangement for recovering helium
JPH0230607A (en) Production of highly pure nitrogen
US3630666A (en) Precontacting hydrogen sulfide containing gas streams with rich sulfinol
US6702874B2 (en) Gas separation apparatus and gas separation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees