JPH05124808A - Treatment of gaseous raw material in purification plant of high-purity gaseous carbon dioxide - Google Patents

Treatment of gaseous raw material in purification plant of high-purity gaseous carbon dioxide

Info

Publication number
JPH05124808A
JPH05124808A JP3313155A JP31315591A JPH05124808A JP H05124808 A JPH05124808 A JP H05124808A JP 3313155 A JP3313155 A JP 3313155A JP 31315591 A JP31315591 A JP 31315591A JP H05124808 A JPH05124808 A JP H05124808A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gaseous carbon
gas
crude
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3313155A
Other languages
Japanese (ja)
Other versions
JP3080736B2 (en
Inventor
Kiyoshi Uenoyama
清 上野山
Osamu Wakamura
修 若村
Masanao Omori
正直 大森
Taizo Nakamura
泰三 中村
Takemitsu Moriyama
武光 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP03313155A priority Critical patent/JP3080736B2/en
Publication of JPH05124808A publication Critical patent/JPH05124808A/en
Application granted granted Critical
Publication of JP3080736B2 publication Critical patent/JP3080736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Abstract

PURPOSE:To stably maintain the purity of a gaseous carbon dioxide product at high degree by regulating the temperature and the pressure in a hydrocracking stage to the specified range in the preliminary treatment stage of crude gaseous carbon dioxide. CONSTITUTION:Crude gaseous carbon dioxide is obtained by treating gaseous carbon dioxide contained in combustion exhaust gas discharged from a boiler or the like by a pressure fluctuation adsorption method. Then, before this gaseous carbon dioxide is purified into high-purity gaseous carbon dioxide by a liqucfaction distillation purification equipment being in a compression state, the following treatment is performed. In other words, the crude gaseous carbon dioxide is preliminarily compressed at 3-5kg/cm<2> G and introduced into a tower packed with a catalyst for hydrocracking and hydrocracked in the conditions of 60--100 deg.C. Then the hydrocracked substance is pressurized at 15-20-kg/cm<2> G to remove moisture and odorous matter. Thereafter. the same is cooled at the saturation temperature or below of gaseous carbon dioxide and supplied to the liquefaction distillation purification equipment. By this treatment of the gaseous raw material, as pretreatment for introducing the crude gaseous carbon dioxide into the liquified carbon dioxide purification plant, not only deoxygenation but also decomposition of nitrogen oxide are completely performed and also deterioration of activity of a catalyst is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願発明は、ボイラー等からの燃
焼排ガスから炭酸ガス(以下CO2 とする)を分離し
て、粗製CO2 とした後、高純度CO2 液化製造プラン
トの原料ガスとする前処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention separates carbon dioxide gas (hereinafter referred to as CO 2 ) from combustion exhaust gas from a boiler or the like to obtain crude CO 2 and then uses it as a raw material gas for a high-purity CO 2 liquefaction production plant. Pretreatment method.

【0002】[0002]

【従来の技術】CO2 含有ガスから、CO2 を圧力変動
吸着(PSA:Pressure Swing Adsorption )装置で分
離精製することは、特開昭61−157322号公報の
CO2 含有ガスからCO2 を分離濃縮する方法で公知で
ある。
2. Description of the Related Art Separation and purification of CO 2 from a CO 2 -containing gas by a pressure swing adsorption (PSA) apparatus is carried out by separating CO 2 from the CO 2 -containing gas disclosed in JP-A-61-157322. It is known as a method of concentrating.

【0003】又PSA装置等を用いてボイラー等からの
燃焼排ガスからCO2 を分離精製する方法も、特開平1
−290517号公報(高純度液化炭酸精製プラントに
おける原料ガスの処理方法及び装置)により公知であ
る。
Further, a method for separating and purifying CO 2 from combustion exhaust gas from a boiler or the like using a PSA device or the like is also disclosed in Japanese Patent Laid-Open No.
-290517 (Method and apparatus for processing raw material gas in high-purity liquefied carbonic acid refining plant).

【0004】飲食品工業分野で使用される液化炭酸は、
食品衛生法基準としてCO2 が99.9%、NOが5pp
m 以下、NO2 ,SO2 ,H2 S,CO等がトレース
(痕跡量)と規定されている。ところで、ボイラー等か
らの燃焼排ガスからCO2 をPSA装置で分離した粗製
CO2 中には、特にO2 の他にNO,NO2 等がかなり
残留しており、高純度液化炭酸精製装置に入る前にNO
2 を除去しておいても、残留O2 とNOとの反応により
NO2 を生成し、このNO2 が液化CO2 側に移行し
て、製品液化炭酸の品質を下げる原因になっている。
Liquefied carbonic acid used in the food and drink industry is
CO 2 99.9%, NO 5pp as food hygiene law standards
Below m, NO 2 , SO 2 , H 2 S, CO, etc. are defined as traces (trace amount). By the way, in the crude CO 2 obtained by separating CO 2 from the combustion exhaust gas from a boiler or the like with a PSA device, NO, NO 2 and the like considerably remain in addition to O 2 , and the crude CO 2 enters the high-purity liquefied carbon dioxide purification device. NO before
Even if 2 is removed, NO 2 is produced by the reaction between residual O 2 and NO, and this NO 2 migrates to the liquefied CO 2 side, which causes the quality of the product liquefied carbonic acid to deteriorate.

【0005】そこで、本願出願人の1人は、先に特開平
1−290517号公報で、粗製炭酸ガスに含まれてい
るO2 を予め除去する脱酸素装置を脱湿器の上流側に設
けることにより、液化炭酸精製装置に送りこまれる粗製
炭酸ガス中の酸素含有量を下げて、液相側に移行する窒
素酸化物の量を減少させる方法を提案した。
Therefore, one of the applicants of the present application has previously disclosed, in Japanese Patent Laid-Open No. 1-290517, a deoxidizer for removing O 2 contained in crude carbon dioxide gas in advance on the upstream side of the dehumidifier. In this way, a method has been proposed in which the oxygen content in the crude carbon dioxide gas sent to the liquefied carbon dioxide refining device is reduced to reduce the amount of nitrogen oxides transferred to the liquid phase side.

【0006】この方法は、コンプレッサーで15kg/cm
2 程度に昇圧し、Pt,Ni等の金属触媒を充填した脱
酸素装置の内部温度40℃程度として、脱酸素装置にH
2 を導入し、粗製炭酸ガスに含まれているO2 を金属触
媒の作用でH2 と反応させ、H2 Oとして、後続の脱湿
器で除去するものである。
This method uses a compressor of 15 kg / cm.
Increase the pressure to about 2 and set the internal temperature of the deoxidizer filled with a metal catalyst such as Pt or Ni to about 40 ° C.
2 is introduced, O 2 contained in the crude carbon dioxide gas is reacted with H 2 by the action of the metal catalyst, and is converted into H 2 O by the subsequent dehumidifier.

【0007】[0007]

【発明が解決しようとする課題】前記の方法では、確か
に粗製炭酸ガスに含まれているO2 は水蒸気H2 Oとし
て除去されるが、NO,NO2 等の窒素酸化物を完全に
は除去できない。更に又コンプレッサー後の圧力15kg
/cm2 ,脱酸素装置内部温度40℃程度の条件下では、
発生する水蒸気H2 Oが露点以下に液化してPt,Ni
等の金属触媒活性が低下し易いことが判明した。
In the above method, the O 2 contained in the crude carbon dioxide gas is surely removed as water vapor H 2 O, but nitrogen oxides such as NO and NO 2 are not completely removed. Cannot be removed. Furthermore, the pressure after the compressor is 15 kg.
/ Cm 2 , under the conditions of the deoxidizer internal temperature of about 40 ℃,
The generated water vapor H 2 O is liquefied below the dew point to Pt, Ni
It has been found that the metal catalyst activity of such as is likely to decrease.

【0008】本発明の目的は、粗製炭酸ガスを液化炭酸
精製装置へ装入する前処理として、脱酸素のみでなく、
NO,NO2 等の窒素酸化物を完全に分解すると共に、
触媒活性の低下のない前処理方法を提供しようとするも
のである。
An object of the present invention is not only deoxidation but also pretreatment for charging crude carbon dioxide gas to a liquefied carbon dioxide refining apparatus.
Completely decomposes nitrogen oxides such as NO and NO 2 ,
An object of the present invention is to provide a pretreatment method that does not reduce the catalytic activity.

【0009】[0009]

【課題を解決するための手段】本発明者らは前記の課題
を解決するため鋭意研究を行った結果、水素化分解触媒
を使用して、圧力と温度条件とを特定の範囲内に制御す
ることによって、触媒活性の低下を防ぎ得るばかりでな
く、又脱酸素のみでなく、NO,NO2 等の窒素酸化物
をも完全に分解し得ることを見い出して本発明を完成し
た。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have used a hydrocracking catalyst to control pressure and temperature conditions within specific ranges. As a result, they have found that not only the catalyst activity can be prevented from being lowered, but also nitrogen oxides such as NO and NO 2 can be completely decomposed as well as deoxygenation.

【0010】すなわち本発明は、ボイラー等からの燃焼
排ガス中に含まれる炭酸ガスを圧力変動吸着法により処
理して、粗製炭酸ガスを得た後、圧縮状態下の液化蒸留
精製装置で高純度炭酸ガスに精製するに先立って、前記
粗製炭酸ガスを圧力3〜5kg/cm2 Gに予備圧縮し、水
素化分解用触媒充填塔に装入し、温度60℃以上、10
0℃以下の条件下で水素化分解し、次いで15〜20kg
/cm2 Gに加圧して、水分及び臭気分を除去してから炭
酸ガスの飽和温度以下に冷却し、液化蒸留精製装置へ供
給することを特徴とする高純度炭酸ガス精製プラントに
おける原料ガスの処理方法である。
That is, according to the present invention, carbon dioxide gas contained in combustion exhaust gas from a boiler or the like is treated by a pressure fluctuation adsorption method to obtain crude carbon dioxide gas, which is then purified by a liquefied distillation purification apparatus under a compressed state. Prior to purification into gas, the crude carbon dioxide gas was precompressed to a pressure of 3 to 5 kg / cm 2 G, charged into a hydrocracking catalyst packed column, and the temperature was 60 ° C. or higher and 10
Hydrocracked under 0 ℃ or less, then 15-20kg
Of the raw material gas in a high-purity carbon dioxide refining plant characterized by supplying water to a liquefaction distillation refining equipment by pressurizing to / cm 2 G to remove water and odor and then cooling to a temperature below the saturation temperature of carbon dioxide. It is a processing method.

【0011】以下詳細に説明する。ボイラー燃焼炉で燃
焼させるガスはとくに限定するものではないが、石油化
学、石油精製プラントオフガス等の他、製鉄所で副生す
る転炉ガス(LDG)、高炉ガス(BFG)、コークス
炉ガス(COG)、石灰炉ガスその他が利用できるが、
特に好ましいのは燃焼排ガス中の炭酸ガス濃度の高いL
DGボイラー排ガスからのCO2 回収に好適に利用でき
る。
The details will be described below. The gas burned in the boiler combustion furnace is not particularly limited, but in addition to petrochemicals, off-gas of petroleum refining plants, etc., converter gas (LDG), blast furnace gas (BFG), coke oven gas ( COG), lime furnace gas, etc. are available,
Particularly preferred is L, which has a high carbon dioxide concentration in the combustion exhaust gas.
It can be preferably used for CO 2 recovery from DG boiler exhaust gas.

【0012】ボイラー排ガスラインから分岐させた排ガ
スはPSA法によるCO2 分離装置で処理されるが、こ
の場合のPSA方法は前記した特開昭61−15732
2号公報(CO2 含有ガスからCO2 を分離濃縮する方
法)に記載されているCO2 /PSAプロセスの方法が
利用できる。
The exhaust gas branched from the boiler exhaust gas line is treated by a CO 2 separation device by the PSA method, and the PSA method in this case is described in the above-mentioned JP-A-61-15732.
The method of the CO 2 / PSA process described in Japanese Patent Publication No. 2 (method of separating and concentrating CO 2 from CO 2 containing gas) can be used.

【0013】このCO2 /PSAプロセスの原理は、一
般的には、A,B二塔方式による交互切替え方式によ
り、片方が常圧吸着している間に他方を真空脱着させる
タイプのPSA方式であり、各塔には活性炭等を吸着剤
として充填し使用できる。この際のA塔では、昇圧−吸
着−洗浄−脱着のタイムスケジュールに従い、一方B塔
では脱着−昇圧−吸着−洗浄のタイムスケジュールに従
うものである。かかるCO2 /PSAプロセスでは、吸
着成分であるCO2 を回収精製するPSAであり、製品
CO2 の純度を上げるためには、製品CO2 の一部を用
いて、共吸着成分(N2 )を洗浄(パージ)することが
必要である。
The principle of this CO 2 / PSA process is generally a PSA system of the type in which one column is adsorbed under normal pressure while the other is vacuum desorbed by the alternating switching system by the A and B double column system. Therefore, each tower can be filled with activated carbon or the like as an adsorbent and used. At this time, the tower A follows the time schedule of pressurization-adsorption-washing-desorption, while the tower B follows the time schedule of desorption-pressurization-adsorption-washing. In such CO 2 / PSA process, a PSA for recovery and purification of CO 2 is adsorbed components, in order to increase the purity of the product CO 2, using a portion of the product CO 2, co-adsorbed components (N 2) It is necessary to wash (purge).

【0014】PSAプロセスを出た精製CO2 ガスは更
に純度を上げる場合には、コンプレッサーで所定の液化
温度に維持するのに必要な圧力に予め加圧した後に液化
精製装置で蒸留精製されるが、通常この液化精製装置の
前処理として、粗製CO2 ガスを金属触媒を充填した脱
酸素塔、ゼオライト等を充填し、H2 Oを除く脱湿器及
び活性炭等を充填して、H2S,SO2 ,NO2 等を除
く脱臭塔等の予備処理を行っている。
When the purified CO 2 gas discharged from the PSA process is to be further purified, it is purified by distillation in a liquefaction purification apparatus after being prepressurized to a pressure required to maintain a predetermined liquefaction temperature with a compressor. Usually, as a pretreatment of this liquefaction refining apparatus, a crude CO 2 gas is charged with a deoxidizer tower filled with a metal catalyst, zeolite, etc., and a dehumidifier excluding H 2 O, activated carbon, etc., and H 2 S , SO 2 , NO 2 and other deodorization towers are pretreated.

【0015】この場合に、原料となる排ガス中にNO,
NO2 等のNOX(窒素酸化物)が含まれていた場合、
NO2 は前記脱臭塔で吸着除去することができ、又水に
対する反応性もあり洗浄塔でも除去できるが、NOは吸
着剤に対する吸着性が低く、又水に対する溶解度も高く
ないために、脱臭塔や、洗浄塔で除去することが困難で
ある。しかも、このNOは液化精製装置で、残留O2
反応してNO2 となり、液相側に移行して精製された炭
酸ガスの品質を下げる原因となる。
In this case, NO in the exhaust gas, which is the raw material,
When NOX (nitrogen oxide) such as NO 2 is contained,
NO 2 can be adsorbed and removed in the deodorization tower, and can also be removed in the washing tower because it has reactivity with water, but since NO has low adsorbability to the adsorbent and does not have high solubility in water, the deodorization tower Also, it is difficult to remove it with a washing tower. Moreover, this NO reacts with the residual O 2 in the liquefaction refining device to become NO 2 , which moves to the liquid phase side and deteriorates the quality of the purified carbon dioxide gas.

【0016】そこで本発明では水素化分解用金属触媒を
充填した塔で酸素ばかりでなくNO,NO2 等も水素化
分解し、又生成したH2 Oが凝縮して触媒活性を低下さ
せることのない条件を設定する。即ち、粗製CO2 ガス
を圧力3〜5kg/cm2 G程度に予備圧縮して、Pt,N
i等の水素化分解用金属触媒の充填塔にて、触媒層の温
度60℃以上、100℃以下の条件下で水素化分解し、
次いで、15〜20kg/cm2 Gに昇圧して水分及び臭気
分を除去してから、CO2 の飽和温度以下に冷却し、液
化蒸留精製装置へ供給する。この水素化分解はO2 はH
2 Oに、NOとNO2 はN2 とH2 Oに分解するもので
ある。なお、この水素化分解塔の前に活性炭を充填した
脱硫塔を設けて、金属触媒活性を低下させるSO2 ,H
2 S等を除去するのが望ましい。
In the present invention, therefore, not only oxygen but also NO, NO 2 and the like are hydrocracked in a column packed with a metal catalyst for hydrocracking, and the produced H 2 O is condensed to lower the catalytic activity. Set a condition that does not exist. That is, the crude CO 2 gas is pre-compressed to a pressure of about 3 to 5 kg / cm 2 G to obtain Pt, N
In a packed column of a metal catalyst for hydrocracking such as i, the catalyst layer is hydrocracked under the conditions of a temperature of the catalyst layer of 60 ° C. or higher and 100 ° C. or lower,
Next, the pressure is raised to 15 to 20 kg / cm 2 G to remove water and odor, and then the temperature is cooled to the saturation temperature of CO 2 or lower and supplied to the liquefaction distillation purification device. This hydrogenolysis is O 2 is H
2 O, NO and NO 2 decompose into N 2 and H 2 O. In addition, a desulfurization tower filled with activated carbon is provided in front of the hydrocracking tower to reduce SO 2 and H
It is desirable to remove 2 S, etc.

【0017】水素化分解塔にて、温度60℃以上、10
0℃以下に限定した理由は、温度60℃未満では、N
O,NO2 等の窒素酸化物の水素化分解が起こり難いと
同時に外気温度や系内の水分量にもよるが、水の露点に
近く凝縮水が発生して触媒活性が低下し易いことによ
る。又100℃超では、窒素酸化物の水素化でNH3
発生して、液化蒸留精製装置で得られる液化CO2 に不
純物として混入し、不快臭の原因になる。
In the hydrocracking tower, a temperature of 60 ° C. or higher, 10
The reason for limiting the temperature to 0 ° C or lower is that when the temperature is lower than 60 ° C, N
It is difficult for hydrogenolysis of nitrogen oxides such as O and NO 2 to occur, and at the same time, depending on the outside temperature and the amount of water in the system, condensed water is generated near the dew point of water, and the catalytic activity is likely to decrease. .. On the other hand, if the temperature exceeds 100 ° C., NH 3 is generated by hydrogenation of nitrogen oxides, which is mixed as an impurity in liquefied CO 2 obtained by the liquefaction distillation purification device, which causes an unpleasant odor.

【0018】圧力も、3kg/cm2 G未満であると、前記
の温度範囲でNO,NO2 の窒素酸化物の水素化分解が
起こり難く、5kg/cm2 G超であると、前記の温度範囲
でNH3 の発生が起こり易くなり好ましくない。
If the pressure is also less than 3 kg / cm 2 G, the hydrogenolysis of nitrogen oxides of NO and NO 2 is less likely to occur in the above temperature range, and if the pressure is more than 5 kg / cm 2 G, the above temperature is exceeded. In the range, NH 3 is easily generated, which is not preferable.

【0019】この水素化分解塔をでた粗製CO2 ガスは
次いでコンプレッサーで所定の液化温度に維持するに必
要な圧力、例えば、液化温度−30℃では16kg/cm2
Gに、液化温度−20℃では19kg/cm2 Gになるよう
に、圧縮したうえでゼオライト等を充填した脱湿器及び
活性炭等を充填した脱臭塔等の予備処理を行う。脱湿器
では、露点が−60℃程度になるまで脱湿させる。脱臭
塔では、硫化水素やアンモニア等を除去する。
The crude CO 2 gas leaving this hydrocracking tower is then pressured by the compressor to maintain a predetermined liquefaction temperature, for example 16 kg / cm 2 at a liquefaction temperature of -30 ° C.
G is subjected to a preliminary treatment such as a dehumidifier filled with zeolite or the like and a deodorizing tower filled with activated carbon or the like after being compressed so as to be 19 kg / cm 2 G at a liquefaction temperature of -20 ° C. The dehumidifier is dehumidified until the dew point reaches about -60 ° C. In the deodorization tower, hydrogen sulfide, ammonia, etc. are removed.

【0020】次いでフロンガス等による冷凍機にてCO
2 を飽和温度以下に凝縮液化させてから、液化蒸留精製
装置へ供給して、蒸留塔の上部からN2 主体のイナート
ガスを分離除去し、塔の下部から、精製された液化CO
2 を得ることができる。
Next, CO is fed by a refrigerator using CFC gas or the like.
After condensing and liquefying 2 below the saturation temperature, it is supplied to a liquefaction distillation purification device to separate and remove N 2 -based inert gas from the upper part of the distillation column, and purified liquefied CO from the lower part of the column.
You can get 2 .

【0021】[0021]

【作用】本発明は液化精製装置の前処理として、粗製C
2 ガスを金属触媒を充填させた水素化分解装置で、特
定の温度、圧力条件下で水素化分解により、NO,NO
2 等の窒化酸化物をN2 とH2 Oに、酸素をH2 Oに変
換し、しかも従来の脱酸素塔よりも低圧、高温であるの
で水分が触媒層で凝縮して、活性低下を起すこともな
く、液化精製装置にNO,NO2 ,NH3 などが流入す
ることがないため、NO2 やNH3 等の不純物のない飲
食品に好適な精製された液化CO2 を得ることができ
る。
The present invention uses crude C as a pretreatment for the liquefaction purification apparatus.
In a hydrocracking device filled with O 2 gas with a metal catalyst, NO, NO is generated by hydrocracking under specific temperature and pressure conditions.
Nitride oxide such as 2 to N 2 and H 2 O, and converts oxygen into H 2 O, yet moisture condenses in the catalyst layer since conventional is also low, at higher temperatures oxygen column, decreased activity Since NO, NO 2 , NH 3 and the like do not flow into the liquefaction refining apparatus without causing the occurrence, it is possible to obtain purified liquefied CO 2 that is suitable for food and drink without impurities such as NO 2 and NH 3. it can.

【0022】[0022]

【実施例】以下に実施例により、本発明を更に具体的に
説明するが、本発明は、この実施例によって何等限定さ
れるものではない。 (実施例1)(比較例1) CO2 ガスにO2 :200ppm ,NO:170ppm ,N
2 :3.0ppm 含有する原料ガスに、H2 :700pp
m を添加し、白金触媒を充填した反応塔の圧力及び触媒
層の温度を次にように変化させて、SV=5000で流
通させ、出口ガスのO2 ,NO,NO2 ,NH3 を分析
した。分析法はO2 ,H2 はガスクロマトグラフ法、N
O,NO2 ,NH3 は吸光光度法を使用した。その結果
を表1に示す。中央の枠内が実施例、周囲が比較例であ
る。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. (Example 1) (Comparative Example 1) O 2 in the CO 2 gas: 200 ppm, NO: 170 ppm, N
O 2 : 3.0 ppm in the raw material gas containing H 2 : 700 pp
m was added, the pressure of the reaction column filled with the platinum catalyst and the temperature of the catalyst layer were changed as follows, and the mixture was allowed to flow at SV = 5000, and the outlet gases O 2 , NO, NO 2 , and NH 3 were analyzed. did. The analysis method is O 2 , H 2 is gas chromatography, N is
Absorption spectrophotometry was used for O, NO 2 , and NH 3 . The results are shown in Table 1. The inside of the central frame is an example, and the periphery is a comparative example.

【0023】[0023]

【表1】 [Table 1]

【0024】(実施例2)(比較例2) 図2のフローダイヤグラムに示したのは従来の炭酸ガス
の予備処理工程に脱酸塔26を設けた比較例2である。
図2において、21は転炉ガス(LDG)の燃焼ボイラ
ーであり、22は該LDGの燃焼ガスである。23はP
SA装置であり、24は粗製炭酸ガスである。これをコ
ンプレッサー25で16kg/cm2 Gに圧縮し、脱酸素塔
26に装入し、一方でH2 ガスを装入して、温度40℃
でPt触媒と接触させ、O2 をH2 Oに変換する。
(Example 2) (Comparative Example 2) The flow diagram of FIG. 2 shows Comparative Example 2 in which the deoxidizing tower 26 is provided in the conventional carbon dioxide gas pretreatment step.
In FIG. 2, 21 is a converter gas (LDG) combustion boiler, and 22 is the LDG combustion gas. 23 is P
SA device, and 24 is a crude carbon dioxide gas. This was compressed to 16 kg / cm 2 G with a compressor 25 and charged into a deoxidizer 26, while H 2 gas was charged and the temperature was 40 ° C.
Is contacted with a Pt catalyst to convert O 2 into H 2 O.

【0025】この条件では温度が低いためO2 は1ppm
以下に低下したが、NOは水素量にもよるが、NH3
生成を抑えた水素量では40〜50ppm のNOが残存
し、NOは脱湿器28,脱臭器30でも除去されないた
め、液化蒸留精製装置32に入り、ここで大部分は塔頂
のオフガス中に分離される。この時O2 が残存すると塔
頂部でNOとO2 とが反応し、NO2 が生成し、塔底の
製品液化炭酸ガス中に混入するが、図2の従来装置でも
2 が充分除去されている場合にはこの問題は起らず、
製品中のNO2 は1ppm 以下に抑えられていた。
Under this condition, the temperature is low, so O 2 is 1 ppm.
Although it decreased to below, although NO depends on the amount of hydrogen, 40 to 50 ppm of NO remains with the amount of hydrogen that suppresses the generation of NH 3 , and NO is not removed by the dehumidifier 28 and the deodorizer 30, so it is liquefied. It enters the distillation / purification unit 32, where most of it is separated into the offgas at the top of the column. In this case O 2 is a reaction of the NO and O 2 at the top part when the remaining, NO 2 is produced, but mixed in the product liquefied carbon dioxide bottoms, O 2 is sufficiently removed even by the conventional apparatus of FIG. 2 If this is not the case,
NO 2 in the product was kept below 1 ppm.

【0026】しかし、ある時、この脱酸塔の反応熱によ
る温度上昇がなくなり、製品CO2 中のNOXが30〜
40ppm に上昇した。即ち脱酸塔の触媒機能喪失と判断
された。調査した結果、O2 が変換したH2 Oが、反応
温度が低いのと、圧力が高いため脱酸塔内で濃縮して触
媒機能を失わさせたものと判断された。しかし、この圧
力で温度を上昇させると、反応により生成したH2 Oの
影響もあり、NH3 の生成が多くなり、脱臭塔で活性炭
で脱臭してもNH3 を完全には除去できない問題が起
る。そこで、NH3 の生成もなく、O2 ,NO,NO2
も同時に除去できる水素化分解条件を見い出したのが本
発明である。
However, at some time, the temperature rise due to the reaction heat of this deoxidation tower disappears, and NOX in the product CO 2 is 30 to 30%.
It rose to 40ppm. That is, it was determined that the catalytic function of the deoxidizer was lost. As a result of the investigation, it was determined that H 2 O converted into O 2 had a low reaction temperature and was concentrated in the deoxidation tower due to the high pressure to lose the catalytic function. However, if the temperature is raised at this pressure, the amount of NH 3 produced increases due to the effect of H 2 O produced by the reaction, and there is a problem that NH 3 cannot be completely removed even if deodorized with activated carbon in the deodorization tower. It happens. Therefore, there is no generation of NH 3 and O 2 , NO, NO 2
It is the present invention to find out the conditions for hydrocracking which can be simultaneously removed.

【0027】図1は本発明の方法を具体化したフローダ
イアグラムである。1は転炉ガス(LDG)の燃焼ボイ
ラーであり、この燃焼ガス2中のNO2 をPSA装置の
活性炭等の吸着剤保護のため脱NO2 塔を設けNO2
除去してあるが、フローには図示を省略した。NOガス
は除去できない。次にPSA装置3で炭酸ガスを吸着分
離する。4は粗製CO2 ガスである。
FIG. 1 is a flow diagram embodying the method of the present invention. 1 is a combustion boiler converter gas (LDG), but the NO 2 in the combustion gas 2 are removed NO 2 provided de NO 2 column for the adsorbent protection such as activated carbon of PSA device, flows Illustration is omitted. NO gas cannot be removed. Next, carbon dioxide is adsorbed and separated by the PSA device 3. 4 is a crude CO 2 gas.

【0028】このガスをコンプレッサー5により、3〜
5kg/cm2 Gに昇圧し、水素化分解塔8の触媒保護のた
めの脱硫塔6に装入する。この脱硫粗製CO2 ガスを、
2 ガスと共に水素化分解塔に温度60〜100℃で装
入する。触媒としては白金系触媒、パラジウム系触媒等
が使用可能であった。ここでO2 はH2 Oに、NOはN
2 とH2 Oに、NO2 もN2 とH2 Oに分解される。温
度が従来より高く、圧力が低いので、塔内での水蒸気の
凝縮が起らず、触媒活性を長く保持できる。なお圧力が
低いので、NH3 の生成が起らず、後続の脱臭塔での負
担が軽くなる。
This gas is supplied to the compressor 3 to
The pressure is increased to 5 kg / cm 2 G, and the hydrocracking tower 8 is charged into the desulfurization tower 6 for protecting the catalyst. This desulfurization crude CO 2 gas is
It is charged into a hydrocracking tower together with H 2 gas at a temperature of 60 to 100 ° C. As the catalyst, a platinum-based catalyst, a palladium-based catalyst or the like could be used. Here, O 2 is H 2 O and NO is N
2 and H 2 O, and NO 2 is also decomposed into N 2 and H 2 O. Since the temperature is higher and the pressure is lower than before, condensation of steam in the column does not occur and the catalyst activity can be maintained for a long time. Since the pressure is low, NH 3 is not generated and the burden on the subsequent deodorization tower is lightened.

【0029】この水素化分解塔を出たガス9は、コンプ
レッサー10で、所定の液化温度に維持するに必要な圧
力15〜20kg/cm2 Gに昇圧され、ゼオライトを充填
した脱湿器11を通して水分を除き、活性炭を充填した
脱臭器13を通して、残存する微量のSO2 ,H2 S,
NO2 等を除去した後、液化原料ガス14として、液化
蒸留精製装置15に装入される。塔頂からは、オフガス
17として、大部分N2 ガスを、残りは微量のNOガス
が抜きとられる。塔底から目的とする液体炭酸ガス16
を抜き出す。この液化炭酸ガスは、CO2 99.9%
以上、露点−60℃以下、NO 0.1ppm 以下、SO
2 ,H2 S,NO2 ,CO共にtrace であって、食品衛
生法基準を満足するものであった。
The gas 9 leaving the hydrocracking tower is pressurized by a compressor 10 to a pressure of 15 to 20 kg / cm 2 G required to maintain a predetermined liquefaction temperature, and passes through a dehumidifier 11 filled with zeolite. After removing the water content, a small amount of residual SO 2 , H 2 S,
After removing NO 2 and the like, the liquefied raw material gas 14 is charged into the liquefaction distillation purification device 15. From the top of the column, most of the N 2 gas is removed as the off-gas 17, and the rest is a slight amount of NO gas. Target liquid carbon dioxide gas from the bottom of the tower 16
Pull out. This liquefied carbon dioxide gas is 99.9% CO 2 .
Above, dew point -60 ℃ or less, NO 0.1ppm or less, SO
2 , H 2 S, NO 2 and CO were all traces and satisfied the Food Sanitation Law standards.

【0030】[0030]

【発明の効果】粗製炭酸ガスの予備処理工程で、水素化
分解工程の温度を60〜100℃にし、圧力を3〜5kg
/cm2 Gにすることにより、生成水蒸気の塔内凝縮を防
ぎ、NO,NO2 を殆んど完全に分解すると共に、NH
3 の生成を抑えることができたので、後続の脱臭塔の負
担が軽減され、液化蒸留精製装置に入るNO量も極めて
微量にすることができ、製品炭酸ガスの純度を安定して
高度に維持することを可能にした。
EFFECT OF THE INVENTION In the pretreatment process of crude carbon dioxide gas, the temperature of the hydrocracking process is set to 60 to 100 ° C. and the pressure is set to 3 to 5 kg.
/ Cm 2 G prevents the generated water vapor from condensing in the tower, decomposes NO and NO 2 almost completely, and
Since the generation of 3 could be suppressed, the burden on the subsequent deodorization tower was reduced, and the amount of NO entering the liquefaction distillation purification device could be made extremely small, and the purity of the product carbon dioxide gas could be stably maintained at a high level. Made it possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高純度炭酸ガス精製プラントのフロー
ダイアグラムである。
FIG. 1 is a flow diagram of a high-purity carbon dioxide purification plant of the present invention.

【図2】従来の炭酸ガス精製プラントのフローダイヤグ
ラムである。
FIG. 2 is a flow diagram of a conventional carbon dioxide refining plant.

【符号の説明】[Explanation of symbols]

1 転炉ガス燃焼ボイラー 2 LDG燃焼ガス 3 PSA装置 4 粗製炭酸ガス 5 コンプレッサー 6 脱硫塔 7 脱硫粗製炭酸ガス 8 水素化分解塔 9 水素化分解粗製CO2 ガス 10 コンプレッサー 11 脱湿器 12 脱湿粗製CO2 ガス 13 脱臭塔 14 液化原料CO2 ガス 15 液化蒸留精製装置 16 製品液化CO2 17 オフガス 21 転炉ガス燃焼ボイラー 22 LDG燃焼ガス 23 PSA装置 24 粗製炭酸ガス 25 コンプレッサー 26 脱酸素塔 27 水素化分解粗製CO2 ガス 28 脱湿器 29 脱湿粗製CO2 ガス 30 脱臭塔 31 液化原料CO2 ガス 32 液化蒸留精製装置 33 製品液化CO2 34 オフガス1 Converter Gas Combustion Boiler 2 LDG Combustion Gas 3 PSA Device 4 Crude Carbon Dioxide 5 Compressor 6 Desulfurization Tower 7 Desulfurization Crude Carbon Dioxide 8 Hydrocracking Tower 9 Hydrolysis Crude CO 2 Gas 10 Compressor 11 Dehumidifier 12 Dehumidification Crude CO 2 gas 13 Deodorization tower 14 Liquefaction raw material CO 2 gas 15 Liquefaction distillation purification equipment 16 Product liquefaction CO 2 17 Off gas 21 Converter furnace gas combustion boiler 22 LDG combustion gas 23 PSA equipment 24 Crude carbon dioxide gas 25 Compressor 26 Deoxygenation tower 27 Hydrogenation Decomposition crude CO 2 gas 28 Dehumidifier 29 Dehumidification crude CO 2 gas 30 Deodorization tower 31 Liquefaction raw material CO 2 gas 32 Liquefaction distillation purification device 33 Product liquefaction CO 2 34 Off gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 正直 千葉県君津市君津1 新日本製鐵株式会社 君津製鐵所内 (72)発明者 中村 泰三 千葉県千葉市道場北1−20−22 (72)発明者 森山 武光 千葉県君津市久保3−9−15 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Omori 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Kimitsu Works (72) Inventor Taizo Nakamura 1-20-22 Kita, Chiba City Dojo North (72) ) Inventor Takemitsu Moriyama 3-9-15 Kubo, Kimitsu City, Chiba Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボイラー等からの燃焼排ガス中に含まれ
る炭酸ガスを圧力変動吸着法により処理して、粗製炭酸
ガスを得た後、圧縮状態下の液化蒸留精製装置で高純度
炭酸ガスに精製するに先立って、前記粗製炭酸ガスを圧
力3〜5kg/cm2 Gに予備圧縮し、水素化分解用触媒充
填塔に装入し、温度60℃以上、100℃以下の条件下
で水素化分解し、次いで15〜20kg/cm2 Gに加圧し
て、水分及び臭気分を除去してから炭酸ガスの飽和温度
以下に冷却し、液化蒸留精製装置へ供給することを特徴
とする高純度炭酸ガス精製プラントにおける原料ガスの
処理方法。
1. A carbon dioxide gas contained in a combustion exhaust gas from a boiler or the like is treated by a pressure fluctuation adsorption method to obtain a crude carbon dioxide gas, which is then purified to a high purity carbon dioxide gas by a liquefaction distillation purification device under a compressed state. Prior to this, the crude carbon dioxide gas was pre-compressed to a pressure of 3 to 5 kg / cm 2 G, charged into a hydrocracking catalyst packed column, and hydrocracked under conditions of a temperature of 60 ° C. or higher and 100 ° C. or lower. And then pressurized to 15 to 20 kg / cm 2 G to remove water and odor, cooled to the saturation temperature of carbon dioxide gas or lower, and supplied to the liquefaction distillation purification device. Raw gas processing method in a refining plant.
JP03313155A 1991-11-01 1991-11-01 Processing method of raw material gas in high purity carbon dioxide gas purification plant Expired - Lifetime JP3080736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03313155A JP3080736B2 (en) 1991-11-01 1991-11-01 Processing method of raw material gas in high purity carbon dioxide gas purification plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03313155A JP3080736B2 (en) 1991-11-01 1991-11-01 Processing method of raw material gas in high purity carbon dioxide gas purification plant

Publications (2)

Publication Number Publication Date
JPH05124808A true JPH05124808A (en) 1993-05-21
JP3080736B2 JP3080736B2 (en) 2000-08-28

Family

ID=18037776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03313155A Expired - Lifetime JP3080736B2 (en) 1991-11-01 1991-11-01 Processing method of raw material gas in high purity carbon dioxide gas purification plant

Country Status (1)

Country Link
JP (1) JP3080736B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683135A1 (en) * 1994-05-20 1995-11-22 Linde Aktiengesellschaft Preparation of high purity carbon dioxide
JPH1133356A (en) * 1997-07-25 1999-02-09 Osaka Oxygen Ind Ltd Air cleaner
JPH11209117A (en) * 1998-01-27 1999-08-03 Ube Ind Ltd Refining method and refining device for coarse gaseous carbon dioxide for production of liquefied carbonic acid
KR100659355B1 (en) * 2005-05-09 2006-12-19 코아텍주식회사 Manufacturing Method and Apparatus of High Purity Carbon Dioxide
JP2006347842A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing device for ultrahigh purity liquefied carbon dioxide
JP2006347843A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing method for ultrahigh purity liquefied carbon dioxide
JP2010533119A (en) * 2007-07-11 2010-10-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Process and apparatus for the separation of gas mixtures
CN111762784A (en) * 2020-07-16 2020-10-13 重庆同辉气体有限公司 Production process of high-purity carbon dioxide
CN111879061A (en) * 2020-07-16 2020-11-03 重庆同辉气体有限公司 Liquid carbon dioxide production process
KR20220014599A (en) * 2020-07-29 2022-02-07 디아이지에어가스 주식회사 Apparatus for producing ultra high purity electronics grade carbondioxide
CN115417408A (en) * 2022-08-19 2022-12-02 都安春旭新材料科技有限责任公司 Preparation method of agricultural high-purity carbon dioxide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683135A1 (en) * 1994-05-20 1995-11-22 Linde Aktiengesellschaft Preparation of high purity carbon dioxide
JPH1133356A (en) * 1997-07-25 1999-02-09 Osaka Oxygen Ind Ltd Air cleaner
JPH11209117A (en) * 1998-01-27 1999-08-03 Ube Ind Ltd Refining method and refining device for coarse gaseous carbon dioxide for production of liquefied carbonic acid
KR100659355B1 (en) * 2005-05-09 2006-12-19 코아텍주식회사 Manufacturing Method and Apparatus of High Purity Carbon Dioxide
JP2006347842A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing device for ultrahigh purity liquefied carbon dioxide
JP2006347843A (en) * 2005-06-20 2006-12-28 Showa Tansan Co Ltd Refining/packing method for ultrahigh purity liquefied carbon dioxide
JP2010533119A (en) * 2007-07-11 2010-10-21 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Process and apparatus for the separation of gas mixtures
CN111762784A (en) * 2020-07-16 2020-10-13 重庆同辉气体有限公司 Production process of high-purity carbon dioxide
CN111879061A (en) * 2020-07-16 2020-11-03 重庆同辉气体有限公司 Liquid carbon dioxide production process
KR20220014599A (en) * 2020-07-29 2022-02-07 디아이지에어가스 주식회사 Apparatus for producing ultra high purity electronics grade carbondioxide
CN115417408A (en) * 2022-08-19 2022-12-02 都安春旭新材料科技有限责任公司 Preparation method of agricultural high-purity carbon dioxide
CN115417408B (en) * 2022-08-19 2024-04-19 都安春旭新材料科技有限责任公司 Preparation method of high-purity carbon dioxide for agriculture

Also Published As

Publication number Publication date
JP3080736B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
AU649823B2 (en) Process for the purification of the inert gases
KR100192690B1 (en) The use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to further process
JPH04219111A (en) Manufacture of high purity gas
US7306651B2 (en) Method for treatment of a gaseous mixture comprising hydrogen and hydrogen sulphide
JP4088632B2 (en) Gas purification method
US7183326B2 (en) Installation and method for producing and disaggregating synthesis gases from natural gas
JPH0359727B2 (en)
KR20110088511A (en) Method and device for desulfurization
CA2269891C (en) Co2 purification system
JPH05124808A (en) Treatment of gaseous raw material in purification plant of high-purity gaseous carbon dioxide
JPH0313161B2 (en)
EP3369703A1 (en) Hydrogen recovery method
EP0052482B1 (en) Process for treating industrial gas stream
KR930012038B1 (en) Refining method of inert gas stream
US9174853B2 (en) Method for producing high purity germane by a continuous or semi-continuous process
JPH10130010A (en) Purifying method of gaseous carbon dioxide and device therefor
JPH10130009A (en) Purifying method of gaseous carbon dioxide and device therefor
JPH11209117A (en) Refining method and refining device for coarse gaseous carbon dioxide for production of liquefied carbonic acid
JPS59116115A (en) Method for recovering carbon monoxide
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JP2021049482A (en) Method for production of refined gas, and gas purifier
JPH01290518A (en) Method and apparatus for preliminary treatment of raw gas in liquified co2 plant
JPH0780685B2 (en) Method and apparatus for processing raw material gas in high-purity liquefied carbon dioxide production plant
JPS6257628A (en) Pretreatment of by-product gas from ironworks
JPH04170309A (en) Method for recovering argon

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000523

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12