JPS6133147B2 - - Google Patents

Info

Publication number
JPS6133147B2
JPS6133147B2 JP53122795A JP12279578A JPS6133147B2 JP S6133147 B2 JPS6133147 B2 JP S6133147B2 JP 53122795 A JP53122795 A JP 53122795A JP 12279578 A JP12279578 A JP 12279578A JP S6133147 B2 JPS6133147 B2 JP S6133147B2
Authority
JP
Japan
Prior art keywords
light
output
photo
photo sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53122795A
Other languages
Japanese (ja)
Other versions
JPS5548623A (en
Inventor
Yoshibumi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12279578A priority Critical patent/JPS5548623A/en
Publication of JPS5548623A publication Critical patent/JPS5548623A/en
Publication of JPS6133147B2 publication Critical patent/JPS6133147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10851Circuits for pulse shaping, amplifying, eliminating noise signals, checking the function of the sensing device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 本発明はアルミ箔小片などの光の反射体の検知
装置に関し、例えば書留郵便自動引受機の書留番
号票の検知器などに応用できる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection device for a light reflector such as a small piece of aluminum foil, and can be applied to, for example, a registered mail number slip detector for an automatic registered mail acceptance machine.

従来の反射体検知装置について説明する。第1
図はその概略構成図を示し、1はフオトセンサブ
ロツクであり、S1,S2…Soからなる指向性の広
く感度のほぼ等しい太陽電池等の平面状のフオト
センサ2を一平面上に貼りつけている。線状の光
源であるフイラメントランプ3からでた光はレン
ズ4で絞られて被検知物5の上では細い筋状の光
束6となる。その反射光7が被検知物5の傾きに
よつていろいろの方向に向かうので、フオトセン
サブロツク1は大きな面積を有しており、その光
反射体8から反射光7を必ず受光するようになつ
ている。光反射体8のアルミ箔に光束があたる時
は、よく光を反射するので、フオトセンサブロツ
ク1のいずれかのセンサ2には被検知物の他の部
分からの反射光に比べ、相当強い光が当る。
A conventional reflector detection device will be explained. 1st
The figure shows a schematic diagram of its configuration. 1 is a photo sensor block, and a planar photo sensor 2 such as a solar cell with wide directivity and almost equal sensitivity consisting of S 1 , S 2 . . . S o is pasted on one plane. I'm wearing it. Light emitted from a filament lamp 3, which is a linear light source, is focused by a lens 4 and becomes a thin streak-like light beam 6 on an object to be detected 5. Since the reflected light 7 travels in various directions depending on the inclination of the detected object 5, the photo sensor block 1 has a large area and always receives the reflected light 7 from its light reflector 8. ing. When the light beam hits the aluminum foil of the light reflector 8, it reflects well, so one of the sensors 2 of the photo sensor block 1 receives a light that is considerably stronger than the light reflected from other parts of the object to be detected. is correct.

第2図は従来の検知装置の回路構成図で、フオ
トセンサ2のS1,S2…SoはダイオードDA1
DA2…DAoで構成される最大値選択回路9に接続
され、被検知物5からの反射光7の内最も強い光
を受けたフオトセンサ2は最も高い出力電圧を出
すこととなる。その出力電圧Aは増幅器10に入
力されて増幅され、コンデンサ11と抵抗12で
構成される微分回路を通つたその出力Bは比較器
13でE1なる比較電圧と比べられる。
Fig. 2 is a circuit diagram of a conventional detection device, where S 1 , S 2 . . . S o of the photo sensor 2 are diodes DA 1 ,
The photo sensor 2 connected to the maximum value selection circuit 9 composed of DA2 ... DAo and receiving the strongest light among the reflected light 7 from the object 5 will output the highest output voltage. The output voltage A is input to an amplifier 10 and amplified, and the output B, which has passed through a differentiator circuit composed of a capacitor 11 and a resistor 12, is compared with a comparison voltage E1 by a comparator 13.

第1図で被検知物5を矢印X方向へ動かした場
合の出力A,Bと比較器13の出力Cの関係を第
3図に示す。被検知物5表面にフイラメントラン
プ3の光があたつた時の最大値選択回路9の出力
Aをe1とし、光反射体8に光があたつた時をe2
し、下記の(1)式の条件が満足されるように比較電
圧E1を調整すると、光反射体8であるアルミ箔
を、検出した時のみ比較器12の出力Cにパルス
状の電圧が得られる。
FIG. 3 shows the relationship between the outputs A and B and the output C of the comparator 13 when the detected object 5 is moved in the direction of the arrow X in FIG. 1. The output A of the maximum value selection circuit 9 when the light from the filament lamp 3 hits the surface of the object to be detected 5 is e1 , and the time when the light hits the light reflector 8 is e2, and the following ( 1 If the comparison voltage E1 is adjusted so that the condition of the equation ) is satisfied, a pulse-like voltage is obtained at the output C of the comparator 12 only when the aluminum foil that is the light reflector 8 is detected.

e1<E1<e2−e1 ところで、従来のこのような検知装置において
は、次のような問題がある。被検知物5の厚みの
大きな、反射光の多い白封筒等では、フイラメン
トランプ3と被検知物5、被検知物5とフオトセ
ンサブロツク1との距離が減少するため、被検知
物5からの反射光7の量が増す。そのためe1>E1
となる場合があつて、第4図のように比較器13
の出力CにミスパルスEpが出て来る。また被検
知物5にセロハンテープが貼られていると、光が
その表面で反射して、所定の光反射体8の検知時
と同様な出力Aが出ることがあり、検知ミスをす
る。さらにアルミ箔がいろいろな方向を向いてい
ても、その反射光を検知させるためにフオトセン
サブロツク1は相当大きなものが必要で、センサ
の数が多く、コスト高となる。
e 1 <E 1 <e 2 −e 1 However, such a conventional detection device has the following problem. When the object 5 to be detected is thick and reflects a lot of light, such as a white envelope, the distances between the filament lamp 3 and the object 5 and between the object 5 and the photo sensor block 1 are reduced, so that the distance between the object 5 and the photo sensor block 1 is reduced. The amount of reflected light 7 increases. Therefore e 1 > E 1
In some cases, the comparator 13 as shown in FIG.
A miss pulse Ep appears at the output C of. Furthermore, if cellophane tape is attached to the object to be detected 5, the light may be reflected on the surface and an output A similar to that obtained when detecting the predetermined light reflector 8 may be produced, resulting in a detection error. Furthermore, even if the aluminum foil is oriented in various directions, the photo sensor block 1 needs to be quite large in order to detect the reflected light, and the number of sensors is large, resulting in high cost.

本発明はこれらの検知ミスを解決し、センサの
数も減らすことのできる光反射体検知装置を提案
するもので、以下その一実施例について説明す
る。
The present invention proposes a light reflector detection device that can solve these detection errors and reduce the number of sensors, and one embodiment thereof will be described below.

第5図a,bにおいて、14は被検知物、15
は被検知物14上に設けた光反射体としてのアル
ミ箔、16はセンサユニツトで、被検知物14の
移動用ベルトコンベア17に対向して設置され、
基板18上に指向性の広い散乱光を発するランプ
や発光ダイオード等の光源19とレンズ等のつい
たフオトセンサ20が規則正しく被検知物14の
幅だけ配置されて構成されている。例えば定形郵
便物に限ると、長さ(14〜23.5cm)、幅(9〜12
cm)、厚さ(1cm以下)の大きさであり、長さ方
向(第10図の矢印Y方向)にベルトコンベア1
7で被検知物14を動かし、センサユニツト16
で検知させるようにすると、センサユニツト16
の検知範囲はガイド21および22内の12cmに限
られる。1列に配置されたS1〜S11の各フオトセ
ンサ20は指向性が約11度のものであり、その真
下の被検知物14の表面の状態しか感知せず、例
えば第5図aのセンサユニツト16と被検知物1
4との距離hが30mmでは約12mmの円の中、距離h
が20mmでは約8mmの円の中しか感知しない。フオ
トセンサ20の取付ピツチpは12mmであり、アル
ミ箔15の大きさは12mm×12mmであるので、第5
図aのようにフオトセンサS3の直下にアルミ箔1
5があるときは隣りのフオトセンサS2やS4はアル
ミ箔15を感知しない。そして第6図のようにア
ルミ箔15が傾いても各フオトセンサS2〜S4は斜
線の範囲の指向性なので、離れた光源19からの
反射光がフオトセンサS3の範囲内に入り、他のフ
オトセンサS2,S4の範囲内には入らない。ところ
がフオトセンサS2とS3の丁度中間にアルミ箔15
がくると、フオトセンサS2とS3のどちらにも反射
光が入るので、第5図bのように更にもう1列の
フオトセンサS12〜S21を前記フオトセンサS1
S11列に隣接して、かつフオトセンサS12がフオト
センサS1とS2との中間の位置、フオトセンサS13
がフオトセンサS2とS3との中間の位置となるよう
に、それぞれ千鳥状に配置する。すると、この列
のフオトセンサS12〜S21の中で、フオトセンサ
S13のみ感知し、隣りのフオトセンサS12とS14
は反射光が当らないので、感知しない。
In Figures 5a and 5b, 14 is the object to be detected, 15
16 is an aluminum foil as a light reflector provided on the detected object 14, and 16 is a sensor unit, which is installed facing the belt conveyor 17 for moving the detected object 14.
On a substrate 18, a light source 19 such as a lamp or a light emitting diode that emits widely directional scattered light, and a photo sensor 20 with a lens etc. are regularly arranged by the width of the object 14 to be detected. For example, limited to regular-sized mail items, length (14-23.5 cm), width (9-12 cm)
cm), thickness (1 cm or less), and belt conveyor 1 in the length direction (direction of arrow Y in Figure 10).
7 to move the detected object 14 and move the sensor unit 16.
When the sensor unit 16
The detection range is limited to 12 cm within the guides 21 and 22. Each of the photo sensors 20 S 1 to S 11 arranged in one row has a directivity of about 11 degrees, and senses only the state of the surface of the object 14 directly below it. For example, the sensor shown in FIG. 5a Unit 16 and detected object 1
If the distance h from 4 is 30 mm, the distance h is in a circle of about 12 mm.
But at 20mm, it only senses inside a circle of about 8mm. The mounting pitch p of the photo sensor 20 is 12 mm, and the size of the aluminum foil 15 is 12 mm x 12 mm, so the fifth
Place aluminum foil 1 directly under photo sensor S 3 as shown in figure a.
5, the adjacent photo sensors S2 and S4 do not detect the aluminum foil 15. Even if the aluminum foil 15 is tilted as shown in FIG. 6, each of the photo sensors S 2 to S 4 has directivity within the shaded range, so the reflected light from the distant light source 19 enters the range of the photo sensor S 3 and other It does not fall within the range of photo sensors S 2 and S 4 . However, the aluminum foil 15 was placed exactly between photo sensors S 2 and S 3 .
, the reflected light enters both photo sensors S 2 and S 3 , so as shown in FIG. 5b, one more row of photo sensors S 12 to S 21 is connected to the photo sensors S 1 to
Adjacent to column S 11 and with photo sensor S 12 located midway between photo sensors S 1 and S 2 , photo sensor S 13
They are arranged in a staggered manner so that the photo sensors S 2 and S 3 are located at intermediate positions. Then, among the photo sensors S 12 to S 21 in this row, the photo sensor
Only S 13 is sensed, and the adjacent photo sensors S 12 and S 14 are not sensed because reflected light does not hit them.

前述のように定形郵便物は幅が12cmに限られる
ので、フオトセンサS1〜S21の合計21個となる。
また光源19はL1〜L44の44個からなり、第5図
bのようにフオトセンサS1〜S21を囲んで配置さ
れている。
As mentioned above, since the width of a standard mail piece is limited to 12 cm, there are a total of 21 photo sensors S 1 to S 21 .
The light sources 19 are composed of 44 light sources L 1 to L 44 and are arranged surrounding the photo sensors S 1 to S 21 as shown in FIG. 5b.

第7図は検知回路の構成図であり、図に従つて
検知原理を説明する。L1〜L44の光源は電源E3
発光する。フオトセンサS1〜S21は奇数番号のも
のと偶数番号のもの、および列によつて4つのブ
ロツクに分け、各々がダイオードDD1〜DD6
DE1〜DE5,DF1〜DF5,DG1〜DG5で構成される
センサの最大値選択回路23〜26に接続され
る。今第5図aのようにフオトセンサS3の真下に
アルミ箔15があり、被検知物14に他の光反射
体がないとすれば、4つの最大値選択回路23〜
26の出力D〜Gは、Dにあつてはアルミ箔15
を検知したフオトセンサS3の出力値となり、E〜
Gにあつては被検知体15上の文字や模様を検知
しているので、出力Dに比べて小さく、その相互
の電圧差も小さい。27〜30は差動増幅器で、
入力差が零の時はその出力は零である。そして出
力D,Eは差動増幅器27,28に図のように入
力され、出力F,Gは差動増幅器29,30に図
のように入力されるので、差動増幅器27の出力
は正の最大、差動増幅器28は負の最大、差動増
幅器29と30の出力はほぼ零となる。するとダ
イオードDH1〜DH4で構成される最大値検出回路
31の出力Hには差動増幅器27の出力が選択さ
れる。そして比較電圧E2に比べて出力Hの値が
大きいとき、比較器32の出力Jが現われる。こ
の場合の各出力D〜Jのタイミングチヤートを第
8図に示す。ただし、第5図aのようにアルミ箔
15がフオトセンサS3の真下を通過する場合であ
る。被検知物14の先端がフオトセンサS1〜S11
の列にくると、出力D,Eが、そしてフオトセン
サS12〜S21の列にくると出力F,Gが上昇する
が、相互の電圧差がない。アルミ箔15がフオト
センサS3の真下にくると、出力Dの出力が最大と
なり、Hに出力パルスが現われる。続いてフオト
センサS13とS14の中間を通過するが、出力F,G
には同じ出力増加が起るが、差動増幅器29また
は30でその差が比較されるため、差が零とな
り、出力Hは現われない。
FIG. 7 is a block diagram of the detection circuit, and the detection principle will be explained according to the diagram. The light sources L1 to L44 emit light from the power source E3 . The photo sensors S 1 to S 21 are divided into four blocks according to odd numbered ones, even numbered ones, and columns, and each block has a diode DD 1 to DD 6 ,
It is connected to maximum value selection circuits 23 to 26 of the sensors, which are configured by DE 1 to DE 5 , DF 1 to DF 5 , and DG 1 to DG 5 . Now, assuming that there is an aluminum foil 15 directly below the photo sensor S 3 as shown in FIG.
Outputs D to G of 26 are aluminum foil 15 for D.
This is the output value of photo sensor S3 that detected E~
Since the output G detects characters and patterns on the detected object 15, it is smaller than the output D, and the voltage difference between them is also small. 27 to 30 are differential amplifiers,
When the input difference is zero, the output is zero. The outputs D and E are input to the differential amplifiers 27 and 28 as shown in the figure, and the outputs F and G are input to the differential amplifiers 29 and 30 as shown in the figure, so the output of the differential amplifier 27 is positive. At the maximum, the differential amplifier 28 is at the negative maximum, and the outputs of the differential amplifiers 29 and 30 are approximately zero. Then, the output of the differential amplifier 27 is selected as the output H of the maximum value detection circuit 31 composed of diodes DH 1 to DH 4 . Then, when the value of the output H is larger than the comparison voltage E2 , the output J of the comparator 32 appears. A timing chart of each output D to J in this case is shown in FIG. However, this is the case where the aluminum foil 15 passes directly under the photo sensor S3 as shown in FIG. 5a. The tip of the detected object 14 is a photo sensor S 1 to S 11
When they come to the column of photo sensors S 12 to S 21 , the outputs D and E rise, and when they come to the column of photo sensors S 12 to S 21 , the outputs F and G rise, but there is no voltage difference between them. When the aluminum foil 15 comes directly below the photo sensor S3 , the output of the output D becomes the maximum, and an output pulse appears at the output H. Next, it passes between photo sensors S 13 and S 14 , but the outputs F and G
The same increase in output occurs, but since the difference is compared in the differential amplifier 29 or 30, the difference becomes zero and the output H does not appear.

次にフオトセンサS3の真下でなく、少しズレた
所をアルミ箔15が通過する場合について説明す
る。この場合フオトセンサS3の隣りのフオトセン
サS2にも光があたり、出力E,Gにも出力D,F
より低いが出力が出てくる。そして差動増幅器2
7〜30により差がとられ、出力Hに出力が現わ
れる。そして出力Hと比較電圧E2が比較され、
検出出力Jが現われる。その時のタイミングチヤ
ートを第9図に示す。
Next, a case will be described in which the aluminum foil 15 passes not directly below the photo sensor S3 but at a location slightly shifted from the photo sensor S3. In this case, the photo sensor S 2 next to the photo sensor S 3 is also exposed to light, and the outputs E and G are also exposed to the outputs D and F.
Although it is lower, the output comes out. and differential amplifier 2
The difference is taken from 7 to 30, and the output appears at output H. Then, the output H and the comparison voltage E2 are compared,
A detection output J appears. The timing chart at that time is shown in FIG.

第8図の出力Hと第3図の出力Bを対比すると
わかるように、本実施例においては被検知物14
の通過の初めにミスパルスがでない。さらに第1
0図のようにセンサユニツト16に対して被検知
物14上のセロハンテープ34や窓あき封筒の透
明窓のセロハン33により光を反射する場合で
も、隣り合うフオトセンサ20が受ける受光量の
差を比較しているため、差が零となり、このよう
な場合にも誤差出力パルスが現われ難い。この結
果例えば封筒などの処理においてアルミ箔よりな
る番号票を貼つていない封筒の番号票検知ミスが
ほとんどなくなつた。
As can be seen by comparing the output H in FIG. 8 with the output B in FIG.
There are no missed pulses at the beginning of the passage. Furthermore, the first
Even when light is reflected from the cellophane tape 34 on the object to be detected 14 or cellophane 33 on the transparent window of a window-opened envelope to the sensor unit 16 as shown in Figure 0, the difference in the amount of light received by adjacent photo sensors 20 can be compared. Therefore, the difference becomes zero, and an error output pulse is unlikely to appear even in such a case. As a result, when processing envelopes, for example, errors in detecting number tags on envelopes that do not have aluminum foil number tags attached to them have been virtually eliminated.

なお、フオトセンサ出力の差を検出しているた
め、フオトセンサ20と被検知物14との距離を
約20〜30mmと近くとることができ、このため第6
図のようにアルミ箔の傾きがあつても比較的狭い
センサユニツト16で検知でき、フオトセンサ2
0の数も合計21個と少なくでき、光源19の数は
増すものの全体としてのコストを安くできる。
In addition, since the difference in the photo sensor output is detected, the distance between the photo sensor 20 and the detected object 14 can be kept close to about 20 to 30 mm.
As shown in the figure, even if the aluminum foil is tilted, it can be detected by the relatively narrow sensor unit 16, and the photo sensor 2
The number of 0's can be reduced to 21 in total, and although the number of light sources 19 increases, the overall cost can be reduced.

これまでの説明では、12mm角のアルミ箔の小片
の検知について限つたが、もの形は丸や三角でも
よく、その大きさも12mmに限られるものではな
く、検知対象の大きさにあわせて、フオトセンサ
の配置のピツチや、検知対象とフオトセンサの距
離を変えることにより簡単に検知できる。
The explanation so far has been limited to the detection of a small piece of aluminum foil 12 mm square, but the shape of the object may be round or triangular, and the size is not limited to 12 mm. It can be easily detected by changing the pitch of the arrangement and the distance between the detection target and the photo sensor.

またセンサユニツト16を固定し、被検知物1
4を移動する場合を説明したが、逆に被検知物を
固定し、センサユニツトを移動しても同様に検知
できる。
In addition, the sensor unit 16 is fixed and the object to be detected 1 is
Although the case where the sensor unit 4 is moved has been described, conversely, even if the object to be detected is fixed and the sensor unit is moved, the detection can be performed in the same way.

以上本発明によれば、センサユニツトはフオト
センサの配置ピツチを光反射体と対応させること
ができ、所定の大きさ以上の光反射体で光が反射
した場合は打ち消されて誤検出がなく、正確な検
出ができ、またフオトセンサが2列でかつ全体と
して千鳥状に配置されているため、1列目のフオ
トセンサの中間に光反射体が来てもそれによる検
出はなく、2列目のフオトセンサにより検出する
ので誤動作、検出ミスは起らない。
As described above, according to the present invention, the sensor unit can match the arrangement pitch of the photo sensor with the light reflector, and when the light is reflected by the light reflector larger than a predetermined size, it is canceled out and there is no false detection, resulting in accurate detection. In addition, since the photo sensors are arranged in two rows in a staggered manner, even if a light reflector comes between the photo sensors in the first row, there will be no detection due to it, and the photo sensors in the second row will not detect it. Since the detection is performed, malfunctions and detection errors do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の概略構成図、第2図は従来の回
路構成図、第3図および第4図はそのタイミング
チヤート、第5図a,bは本発明の一実施例を示
すセンサユニツトと被検知物の配置を示す断面図
およびセンサユニツトの下面図、第6図は光反射
体が傾いた場合を説明する断面図、第7図は回路
構成図、第8図および第9図はそのタイミングチ
ヤート、第10図はセンサユニツトと被検知物の
配置を示す平面図である。 14……被検知物、15……アルミ箔(光反射
体)、16……センサユニツト、19,L1〜L44
…光源、20,S1〜S21……フオトセンサ、23
〜26……最大値選択回路、27〜30……差動
増幅器、31……最大値検出回路、32……比較
回路。
FIG. 1 is a conventional schematic configuration diagram, FIG. 2 is a conventional circuit configuration diagram, FIGS. 3 and 4 are timing charts thereof, and FIGS. 5a and 5b are sensor units showing an embodiment of the present invention. A cross-sectional view showing the arrangement of the object to be detected and a bottom view of the sensor unit, Fig. 6 is a cross-sectional view explaining the case where the light reflector is tilted, Fig. 7 is a circuit configuration diagram, and Figs. 8 and 9 are the same. The timing chart, FIG. 10, is a plan view showing the arrangement of the sensor unit and the object to be detected. 14... Object to be detected, 15... Aluminum foil (light reflector), 16... Sensor unit, 19, L 1 to L 44 ...
...Light source, 20, S 1 to S 21 ... Photo sensor, 23
~26...Maximum value selection circuit, 27-30...Differential amplifier, 31...Maximum value detection circuit, 32...Comparison circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 反射体へ光を照射するための複数の光源と、
該光源の反射体による反射光を同時に2ケ所以内
で受けることが可能な間隔で直線状に配置された
フオトセンサの列を2列隣接して備え、一方の列
の各フオトセンサの配置が他方の列の隣合うフオ
トセンサの中間位置になるようにして、各フオト
センサが千鳥状に配置されたセンサユニツトと、
前記各列のフオトセンサの1つおきに選択したも
のをブロツクに分け、各ブロツクの中で最も強い
反射光を受光したフオトセンサを選択する最大値
選択回路と、各列ごとの最大値選択回路の出力の
差を検出する検出回路と、該検出回路の出力と比
較電圧を比較し、検出出力のいずれか1つでも該
比較電圧より大きいときに出力する比較回路とを
備え、前記複数の光源を前記各フオトセンサの周
囲をかこむように配置した光の反射体検知装置。
1 multiple light sources for irradiating light to the reflector;
Two adjacent rows of photo sensors arranged in a straight line at intervals such that light reflected by the reflector of the light source can be received at two places or less at the same time are provided, and the arrangement of each photo sensor in one row is different from that of the other row. a sensor unit in which each photo sensor is arranged in a staggered manner so that the photo sensor is located between adjacent photo sensors;
A maximum value selection circuit divides the selected photo sensors in each column into blocks and selects the photo sensor that receives the strongest reflected light among each block, and the output of the maximum value selection circuit for each column. a detection circuit that detects a difference between the plurality of light sources, and a comparison circuit that compares an output of the detection circuit with a comparison voltage and outputs an output when any one of the detection outputs is larger than the comparison voltage, A light reflector detection device is placed around each photo sensor.
JP12279578A 1978-10-04 1978-10-04 Optical reflector detecting device Granted JPS5548623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12279578A JPS5548623A (en) 1978-10-04 1978-10-04 Optical reflector detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12279578A JPS5548623A (en) 1978-10-04 1978-10-04 Optical reflector detecting device

Publications (2)

Publication Number Publication Date
JPS5548623A JPS5548623A (en) 1980-04-07
JPS6133147B2 true JPS6133147B2 (en) 1986-07-31

Family

ID=14844809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12279578A Granted JPS5548623A (en) 1978-10-04 1978-10-04 Optical reflector detecting device

Country Status (1)

Country Link
JP (1) JPS5548623A (en)

Also Published As

Publication number Publication date
JPS5548623A (en) 1980-04-07

Similar Documents

Publication Publication Date Title
FI109833B (en) Light scanner with interlaced camera fields and parallel light beams
US4954962A (en) Visual navigation and obstacle avoidance structured light system
CA1148234A (en) Apparatus and method for detection of overlapping objects
US5040116A (en) Visual navigation and obstacle avoidance structured light system
US7497021B2 (en) Multi-axis bubble vial device
US6775011B2 (en) Apparatus for determining measurements of an object utilizing negative imaging
US5266810A (en) Package height detector having a first group of light sensors selectively enabled by the detector outputs of a second group of light sensors
EP0394888B1 (en) Object detection apparatus of the photoelectric reflection type
US20110290989A1 (en) Optoelectronic sensor for detecting object edges
US20020053635A1 (en) Arrangement for determining the angle of incidence of light
US20200141716A1 (en) Methods and Systems for Mapping Retroreflectors
US5659396A (en) Dichotomous scan system for detection of edges of objects and overlapped objects having relatively uniform surfaces
US20190065002A1 (en) Two-Dimensional Position Sensing Systems and Sensors Therefor
US9519059B2 (en) Limited-area reflection type optical sensor and electronic device
CA1096955A (en) Automatic measurement of lengths of elongated workpieces
WO1999049277A1 (en) An optical sensor system for incorporation in a conveyor system and a method for determining the geometry and/or angular position of a moving object
JPH11326040A (en) Sensor having wide divergence optical system and detector
US4329047A (en) Optical velocity measuring apparatus of non-contact measurement type
US4296314A (en) Non-contact counter
JPS6133147B2 (en)
JPS5947270B2 (en) Light reflector detection device
JPS5925773Y2 (en) Article sorting device
CN211696441U (en) Linear light spot photoelectric sensor
US9983736B1 (en) Optical touch sensor
JP3445324B2 (en) Photoelectric sensor