JPS6132883B2 - - Google Patents

Info

Publication number
JPS6132883B2
JPS6132883B2 JP55117434A JP11743480A JPS6132883B2 JP S6132883 B2 JPS6132883 B2 JP S6132883B2 JP 55117434 A JP55117434 A JP 55117434A JP 11743480 A JP11743480 A JP 11743480A JP S6132883 B2 JPS6132883 B2 JP S6132883B2
Authority
JP
Japan
Prior art keywords
voltage
insulating
partition wall
power supply
commercial power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55117434A
Other languages
Japanese (ja)
Other versions
JPS5743505A (en
Inventor
Yoshikata Matsumura
Toshuki Kanzaki
Tetsumi Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP55117434A priority Critical patent/JPS5743505A/en
Publication of JPS5743505A publication Critical patent/JPS5743505A/en
Publication of JPS6132883B2 publication Critical patent/JPS6132883B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は電気機器の空気層と絶縁性隔壁との
複合により構成された絶縁構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulating structure composed of a composite of an air layer and an insulating partition wall for electrical equipment.

この種の絶縁構造が多用される電気機器として
はたとえば配電盤があり、配電盤では母線や内装
電気品の端子部などの裸充電部の異極相互間、開
極部を挟む同極間および裸充電部と対地間などに
用いられ、配電盤本体の縮少化が図られているこ
とは周知のことである。しかしながらこのような
絶縁構造は隔壁が絶縁物であることから運転時の
商用電源電圧により帯電され、隔壁が電位を持つ
ことになる。したがつてこの電位が、高ければ保
守点検時に安全確認のために用いられる検電器な
などが点灯す場合があり、電気的には安全が立証
されていたとしても最終的安全が確認できないと
いう欠点がある。このことは配電盤などのように
商用電源の電圧とともに雷サージなどのインパル
ス電圧に対しての絶縁確保も要求される絶縁構造
に対して両者の電圧の値のみで設計計画され、周
波数の差すなわち商用電源の場合のたとえば50
Hz,60Hzとインパルス電圧の場合の約10kHzに対
する考慮がなされていなかつたために周波数の低
い商用電源による電荷が残存する結果によるもの
である。なおここでインパルス電圧の周波数
Viを約10kHzとしたことは、インパルス電圧にお
ける1×40μsの標準波形がその減衰過程で波頭
値Vpより10μs経過後の値が0.85Vpとなるとこ
ろから、この間を正弦波の角変化に置き換え33゜
として次式により算出したもので、一般に用いら
れている数値である。
Examples of electrical equipment that often uses this type of insulation structure include switchboards, where bare live parts such as busbars and terminals of internal electrical components are connected between different poles, between the same poles across open poles, and between bare live charging parts. It is well known that the switchboard is used between the switchboard and the ground to reduce the size of the switchboard itself. However, in such an insulating structure, since the partition wall is an insulator, it is charged by the commercial power supply voltage during operation, and the partition wall has a potential. Therefore, if this potential is high, voltage detectors used to confirm safety during maintenance inspections may light up, and even if electrical safety has been proven, final safety cannot be confirmed. There is. This means that for insulation structures such as switchboards, which are required to ensure insulation against commercial power voltage as well as impulse voltages such as lightning surges, designs are planned based only on the values of both voltages, and the difference in frequency, i.e. For example 50 for power supply
Hz, 60Hz and approximately 10kHz in the case of impulse voltage were not taken into consideration, resulting in the residual charge from the low frequency commercial power supply. Here, the frequency of the impulse voltage is
The reason for setting Vi to approximately 10kHz is that the standard waveform of 1 x 40μs in the impulse voltage becomes 0.85Vp after 10μs from the wave front value Vp during its attenuation process, so this period is replaced by a sine wave angular change33 It is calculated using the following formula as °, and is a commonly used numerical value.

Vi=1(Sec)/10(μs)×10−6×33
Γ/360Γ ≒10(kHz) そして配電盤では国際電気技術委員会(IEC)
においても人体に対する安全面からの設計条件や
その検証方法が規定されていることもあり、空気
層や隔壁の板厚を増すことなくしかも検電器など
簡単な手段で安全が確認すなわち点灯しない安価
な絶縁構造の開発が待望されていた。
Vi=1(Sec)/10(μs)× 10-6 ×33 (
Γ ) /360 ( Γ ) ≒10 (kHz) And for the switchboard, the International Electrotechnical Commission (IEC)
In Japan, design conditions and verification methods are stipulated in terms of safety for the human body, and safety can be confirmed using simple means such as a voltage detector without increasing the thickness of the air layer or bulkhead. The development of an insulating structure has been long awaited.

この発明は上記に鑑みインパルス耐電圧特性が
確保されるとともに運転時の商用電源により絶縁
性隔壁に帯電される電荷の電位が下がりもつて安
全が立証されしかも安価な絶縁構造を提供するこ
とを目的とする。
In view of the above, it is an object of the present invention to provide an insulating structure that ensures impulse voltage withstand characteristics, lowers the potential of charges charged on insulating partition walls by commercial power during operation, and proves safety and is inexpensive. shall be.

この発明によれば上記目的は異極裸充電部相互
間や開極部を挾む同極裸充電部相互間ならびに裸
充電部と対地間などに設けられた空気層と絶縁性
隔壁とで複合構成されインパルス電圧と商用電源
電圧との絶縁が確保される絶縁構造において、前
記絶縁性隔壁を2枚の絶縁板とその間に挟持され
それぞれの絶縁板に密着されるとともに接地され
た高抵抗薄地とで構成し、前記インパルス電圧と
商用電源電圧とで電圧分担が変るようにすること
により達せられる。
According to this invention, the above-mentioned purpose is achieved by combining an air layer and an insulating partition provided between bare live parts of different polarities, between bare live parts of the same polarity sandwiching an open contact part, and between a bare live part and the ground. In the insulating structure configured to ensure insulation between the impulse voltage and the commercial power supply voltage, the insulating partition wall is sandwiched between two insulating plates and a high-resistance thin material that is closely attached to each insulating plate and grounded. This is achieved by changing the voltage sharing between the impulse voltage and the commercial power supply voltage.

以下この発明の実施例を図面に基づき説明す
る。まず第1図ないし第3図により原理を説明す
ると、第1図において上部電極1とを接地された
下部電極2があり、上部電極1と下部電極2との
間隙には接地された高抵抗値を有する抵抗Rが密
着並設された隔壁3が配置されており、その等価
回路は第2図に示すようになつている。そしてこ
の発明により絶縁構造は前述したように商用電源
とインパルス電圧との間に約200倍の周波数の差
があることから、この周波数の差によつて変わる
上部電極1あるいは下部電極2と絶縁隔壁3との
間の漂遊容量Cのインピーダンスと、周波数の差
によつては変わらない抵抗Rのインピーダンスと
の兼ね合いによりインパルス電圧Viと商用電源
電圧Vaとでは電圧分坦が変わることを利用した
ものである。その関係を第3図に示す。第3図は
縦軸に第1図における電極1,2間の距離Iをと
り、横軸に電圧Vをとつて、電極1,2間に、所
定の電圧値Vmを有するインパルス電圧または商
用電圧を印加したときの電極1,2間の各位置の
電圧変化を示すものである。第3図の曲線は隔
壁3に抵抗Rが設けられていないすなわち従来の
絶縁構造の電圧分担を示すものであり、隔壁3の
設けられたI3の位置の電圧はインパルス電圧を印
加した場合および商用電源電圧を印加した場合の
いずれにおいても同一のV3となる。これに対す
る曲線,は隔壁3に抵抗Rを付加した場合の
電圧分担を示すものであり、曲線はインパルス
電圧を印加した場合の電圧分担を、曲線は商用
電源電圧を印加した場合の電圧分担を示すもの
で、これから明らかなように隔壁3の設けられた
I3の位置の電圧はそれぞれV2,V1と異なつた値と
なる。隔壁3の電圧分担値は、インパルス電圧印
加時に高く、商用電圧印加時に低くなり、この値
は抵抗Rの値を選定することによつて調整可能で
ある。したがつて本発明によればインパルス耐電
圧を確保しながら運転時に帯電され検電電圧にな
る商用電源電圧Vaに対する電圧分担値V1を低く
抑えることが可能である。
Embodiments of the present invention will be described below based on the drawings. First, the principle will be explained with reference to Figures 1 to 3. In Figure 1, there is a lower electrode 2 that is connected to the upper electrode 1 and is grounded. A partition wall 3 in which resistors R having . According to the present invention, since there is a frequency difference of about 200 times between the commercial power supply and the impulse voltage as mentioned above, the insulation structure is constructed such that the upper electrode 1 or the lower electrode 2 and the insulation partition wall change depending on this frequency difference. This takes advantage of the fact that the voltage polarity changes between the impulse voltage Vi and the commercial power supply voltage Va due to the impedance of the stray capacitance C between be. The relationship is shown in FIG. In Figure 3, the distance I between the electrodes 1 and 2 in Figure 1 is taken on the vertical axis, and the voltage V is taken on the horizontal axis, and an impulse voltage or commercial voltage having a predetermined voltage value Vm is applied between the electrodes 1 and 2 It shows the voltage change at each position between electrodes 1 and 2 when the voltage is applied. The curve in FIG. 3 shows the voltage distribution of a conventional insulation structure in which the resistor R is not provided on the partition wall 3, and the voltage at the position I 3 where the partition wall 3 is provided is when an impulse voltage is applied and The same V 3 is obtained in both cases when the commercial power supply voltage is applied. The curve , corresponding to this, shows the voltage sharing when a resistor R is added to the partition wall 3, the curve shows the voltage sharing when an impulse voltage is applied, and the curve shows the voltage sharing when a commercial power supply voltage is applied. As is clear from this, the bulkhead 3 was installed.
The voltage at the position I 3 has different values from V 2 and V 1 , respectively. The voltage sharing value of the partition wall 3 is high when an impulse voltage is applied and becomes low when a commercial voltage is applied, and this value can be adjusted by selecting the value of the resistor R. Therefore, according to the present invention, it is possible to keep the voltage sharing value V 1 low with respect to the commercial power supply voltage Va that is charged during operation and becomes the detection voltage while ensuring the impulse withstand voltage.

なお、第3図の縦軸におけるI1は第1図の電極
1の位置をそしてI2は電極2の位置を示してい
る。
Note that I 1 on the vertical axis of FIG. 3 indicates the position of electrode 1 in FIG. 1, and I 2 indicates the position of electrode 2.

次に第4図によりこの発明の一実施例につき説
明する。図は前述の原理設明に対応するもので、
開極部を挾む同極性充電部相互間の絶縁構造であ
る。図において一部しか図示されていない列盤構
成になる配電盤11の上方に区画された母線室1
2内には、前述の上部電極1に対応する3相母線
13が列盤間を貫通するように配設され、母線室
12の内壁に取付けられた絶縁支持物14によつ
て支持されている。絶縁支持物14には3相母線
13に各相別に接続される電源側断路接触子15
が一体的に設けられている。母線室12の下方に
は図示されていない支持物により支持された負荷
に接続される負荷側断路接触子16が配置され、
電源側断路接触子15と負荷側断路接触子16と
にはそれぞれに接離可能となる断路接触子17,
18を備えた引出形しや断器19が接続されてい
る。一方母線室12内の3相母線13と負荷側断
路接触子16との間に前述の絶縁隔壁3に対応す
る絶縁性隔壁20が配設され、この間の絶縁が確
保されている。絶縁性隔壁20は2枚のたとえば
フエノール樹脂系の絶縁板21と、その間に挾ま
れたたとえばグラフアイトを混入したワニスが塗
布された高抵抗薄膜22とにより構成されてお
り、高抵抗薄膜22の材質としては母線13など
の裸充電部と高抵抗薄膜22などの抵抗面間の通
常の静電容量が数pF〜数100pFであることから
表面抵抗が106Ω〜108Ωのものがよく、このよう
なものとしては前述のもの以外にグラフアイトま
たはカーボンを混抄した紙、フイルムに金属を蒸
着またはイオノマー結合させたものがよい。なお
この場合、高抵抗薄膜22を2枚の絶縁板21で
挾む形で隔壁20を構成したがこれは高抵抗薄膜
が紙やフイルムをベースとしたものであるところ
から機械的に弱いことと、万一の盤内閃絡事故の
アーク熱にも弱いことからなされたもので電圧分
担のみを考えた時には挾む必要のないことは明ら
かである。従つて一方がたとえば接地された側壁
や点検通路などで機械的破損および焼損などの恐
れのない場合にはその方になる絶縁板を省くこと
ができることは当然である。なおこのように、1
枚の絶縁板と高抵抗薄膜とで隔壁を構成するよう
な場合には抵抗値の調整に難点があるが、高抵抗
薄膜をグラフアイトやカーボンなどが混入された
ワニスを直接絶縁板に塗布してもよい。
Next, one embodiment of the present invention will be explained with reference to FIG. The diagram corresponds to the above-mentioned principle establishment,
This is an insulating structure between live parts of the same polarity that sandwich the opening part. A busbar room 1 partitioned above a switchboard 11 having a side-by-side configuration, only a portion of which is shown in the figure.
2, a three-phase busbar 13 corresponding to the above-mentioned upper electrode 1 is disposed so as to penetrate between the rows of boards, and is supported by an insulating support 14 attached to the inner wall of the busbar chamber 12. . The insulating support 14 has power supply side disconnecting contacts 15 connected to the three-phase bus 13 for each phase.
are integrally provided. A load-side disconnection contact 16 is arranged below the busbar chamber 12 and is connected to a load supported by a support (not shown).
The power supply side disconnection contact 15 and the load side disconnection contact 16 each have a disconnection contact 17 that can be connected to and separated from them.
A drawer type with 18 and a disconnector 19 are connected. On the other hand, an insulating partition wall 20 corresponding to the above-mentioned insulating partition wall 3 is disposed between the three-phase bus bar 13 and the load-side disconnection contact 16 in the bus bar chamber 12 to ensure insulation therebetween. The insulating partition wall 20 is composed of two insulating plates 21 made of, for example, phenol resin, and a high-resistance thin film 22 coated with, for example, graphite-mixed varnish, which is sandwiched between them. The material should preferably have a surface resistance of 10 6 Ω to 10 8 Ω, since the normal capacitance between a bare live part such as the bus bar 13 and a resistive surface such as the high-resistance thin film 22 is from several pF to several 100 pF. In addition to the above-mentioned materials, examples of such materials include paper mixed with graphite or carbon, and materials in which metal is vapor-deposited or ionomer bonded to a film. In this case, the partition wall 20 was constructed by sandwiching the high-resistance thin film 22 between two insulating plates 21, but this is because the high-resistance thin film is based on paper or film and is mechanically weak. This was done because it is vulnerable to arc heat in the unlikely event of an internal flash fault, and it is clear that there is no need to worry about it when only voltage sharing is considered. Therefore, it is natural that if one side is a grounded side wall or an inspection passage and there is no risk of mechanical damage or burnout, the insulating plate on that side can be omitted. In this way, 1
When a partition wall is made up of two insulating plates and a high-resistance thin film, it is difficult to adjust the resistance value. It's okay.

以上述べたようにこの発明によれば絶縁性隔壁
を商用電源電圧に対しては接地板のように、また
インパルス電圧に対しては絶縁隔壁として作用さ
せることができるため、絶縁性隔壁の商用電源に
より帯電された電位が下がることから検電器が点
灯がなく従つて安全確認時の不安は排除され、し
かも高抵抗薄膜を付加したのみであることから安
価に製作できる効果が得られる。
As described above, according to the present invention, the insulating partition wall can act like a ground plate for the commercial power supply voltage and as an insulating partition wall for the impulse voltage. Since the electrical potential charged by the voltage drop is lowered, the voltage detector does not light up, eliminating concerns during safety confirmation.Furthermore, since only a high-resistance thin film is added, it can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の絶縁構造を説明するための
原理図、第2図は第1図の等価回路を示す図、第
3図は第1図の電圧分担を示す線図、第4図は第
1図にもとづく一実施例の絶縁構造の断面図であ
る。 13……3相母線(裸充電部)、16……負荷
側断路接触子(裸充電部)、20……絶縁性隔
壁、21……絶縁板、22……高抵抗薄膜。
Fig. 1 is a principle diagram for explaining the insulation structure of the present invention, Fig. 2 is a diagram showing the equivalent circuit of Fig. 1, Fig. 3 is a diagram showing the voltage division of Fig. 1, and Fig. 4 is a diagram showing the voltage division of Fig. 1. 2 is a cross-sectional view of an example insulation structure based on FIG. 1; FIG. 13... Three-phase bus bar (bare live part), 16... Load side disconnection contact (bare live part), 20... Insulating partition, 21... Insulating plate, 22... High resistance thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 異極裸充電部相互間、同極裸充電部相互間な
らびに裸充電部と対地間に設けられた空気層と絶
縁性隔壁とで複合構成されインパルス電圧と商用
電源電圧との絶縁が確保される絶縁構造におい
て、前記絶縁性隔壁を2枚の絶縁板とその間に挟
持されそれぞれの絶縁板に密着されるとともに接
地された高抵抗薄膜とで構成し、前記インパルス
電圧と商用電源電圧とでは電圧分担が変わるよう
にしたことを特徴とする電気機器の絶縁構造。
1 Composite construction of an air layer and an insulating partition wall provided between bare live parts of different polarities, between bare live parts of the same polarity, and between bare live parts and ground, ensuring insulation between impulse voltage and commercial power supply voltage. In the insulating structure, the insulating partition wall is composed of two insulating plates and a high-resistance thin film sandwiched between them and closely attached to each insulating plate and grounded, and the impulse voltage and the commercial power supply voltage are equal to each other. An insulating structure for electrical equipment, characterized in that the roles are changed.
JP55117434A 1980-08-26 1980-08-26 Insulating structure for electric device Granted JPS5743505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55117434A JPS5743505A (en) 1980-08-26 1980-08-26 Insulating structure for electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55117434A JPS5743505A (en) 1980-08-26 1980-08-26 Insulating structure for electric device

Publications (2)

Publication Number Publication Date
JPS5743505A JPS5743505A (en) 1982-03-11
JPS6132883B2 true JPS6132883B2 (en) 1986-07-30

Family

ID=14711544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55117434A Granted JPS5743505A (en) 1980-08-26 1980-08-26 Insulating structure for electric device

Country Status (1)

Country Link
JP (1) JPS5743505A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109180A (en) * 1978-02-15 1979-08-27 Hitachi Ltd Breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109180A (en) * 1978-02-15 1979-08-27 Hitachi Ltd Breaker

Also Published As

Publication number Publication date
JPS5743505A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
JP5362116B2 (en) Method and apparatus for protecting a power system from superparamagnetic pulses
JP5842021B2 (en) Fast current shunt
US3328632A (en) Vacuum-protective spark gap with trigger electrode
JPS6132883B2 (en)
JPH0363027B2 (en)
JPH0231482B2 (en)
Tominaga et al. Reliability and application of metal oxide surge arresters for power systems
JP3146910B2 (en) Substation with lightning arrester
JP2892870B2 (en) Building grounding automatic switch
JPS6029074B2 (en) Lightning arrester deterioration detection method
JPS6053522B2 (en) Fault position detection device for opening/closing equipment
JPS6027865A (en) Impulse voltage testing circuit for electric appliance
JP2890462B2 (en) Lightning proof terminal block
JP2890466B2 (en) Lightning proof terminal block
JPH07298476A (en) Lightening response relay device
JP2010022081A (en) Gas-insulated equipment
Schork et al. Impacts of Grounding Concepts in IT DC-Grids on SPD Safety
JP2890467B2 (en) Lightning proof terminal block
JPS5843975B2 (en) Hiraikisetsuchihoushiki
AU2013201213B2 (en) High speed current shunt
JPH0572246A (en) Distributing apparatus having deterioration of insulation detecting function
JPS6356657B2 (en)
JPH0470568A (en) Surge voltage sensor
Koul Comparative requirements of IEC and IEEE standards for medium-voltage switchgear
JPS5598767A (en) Charging device of electrophotography