JPS6132838B2 - - Google Patents

Info

Publication number
JPS6132838B2
JPS6132838B2 JP56093415A JP9341581A JPS6132838B2 JP S6132838 B2 JPS6132838 B2 JP S6132838B2 JP 56093415 A JP56093415 A JP 56093415A JP 9341581 A JP9341581 A JP 9341581A JP S6132838 B2 JPS6132838 B2 JP S6132838B2
Authority
JP
Japan
Prior art keywords
mol
materials
piezoelectric
mechanical strength
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56093415A
Other languages
Japanese (ja)
Other versions
JPS57208183A (en
Inventor
Yohachi Yamashita
Seiichi Yoshida
Katsunori Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56093415A priority Critical patent/JPS57208183A/en
Publication of JPS57208183A publication Critical patent/JPS57208183A/en
Publication of JPS6132838B2 publication Critical patent/JPS6132838B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はPb(Y1/2Nb1/2)O3−PbTiO3
PbZrO3で構成される三成分固溶体を基本組成と
する超音波振動子材料や圧電ブザー用材料等に適
した酸化物圧電材料に関する。 周知のように、PbTiO3とPbZrO3とをほぼ等モ
ルの組成からなる固溶体に調整したいわゆるPb
(TiZr)O3系酸化物圧電電歪材料は、BaTiO3
どの圧電材料にくらべてすぐれた特性を備えてお
り、電気−機械変換素子や電気−音響変換素子な
どとして利用されている。又、 Pb(CoW)1/2O3などを固着させた三成分系
圧電材料やさらにこれらにMnO2やNiO等を添加
した材料も広く用いられている。しかし、これら
強誘電体材料を超音波振動子や圧電ブザー用振動
子として使用するには特性的に問題となる点がい
くつかある。すなわち最近の電子回路部品は小型
化への要請が強く、又、使用周波数も高周波数化
への傾向が強いが、周知のように圧電振動子の共
振周波数はその形状の逆関数であり、高周波にな
れば振動子の形状は小型、薄板となりその電気的
特性のみらなず機械的強度が加工工程あるいは組
立工程において問題となつてくる。 一般的にPb(TiZr)O3系に添加物を加えて特
性改善を図る場合、添加物はその効果により2つ
のグループに分けられる。第1グループは、
MnO,Fe2O3,Cr2O3,CoO等で、これらを添加
すると一般に抗電界が増大して圧電性は低下する
が、機械品質係数Qmは大きくなり、いわゆる硬
い材料となる。第2グループは、La2O3
Nb2O5,WO3.Ta2O3等でこれらを添加すると抗電
界が減少するため分極が容易となり圧電性が向上
するが、Qmは低下しいわゆる柔かい材料とな
る。高Qmの材料は、機械的強度子に優れ薄板化
に対しても製造不留りが低下することは少ないが
Qmが100以下の柔かい材料は、機械的強度が弱
く薄板化に対して歩留りが悪いという難点があ
る。しかしながらたとえば低Qmの材料は、圧電
ブザー振動子を作成した時に柔らかい音色が得ら
れ、また周波数の広帯域化が計れる等の点でスピ
ーカー用材料として好ましい。このため低Qmで
機械的強度に優れ薄板加工の容易な圧電材料が望
まれていた。 より具体的に説明すると、100μm程度の薄板
状のセラミツクを得る方法は種々あるが、ドクタ
ーブレード法により形成し、焼成を行う方法が、
生産性、コストの面で有利であり、これが主流に
なつて来ている。しかし、従来のPbTiO3
PbZrO3−Pb(Y1/2Nb1/2)O3のPbの一部を
Ba,Sr,Caのいずれかで一部置換した材料は、
Qmが100以下と圧電ブザー用振動子材料として
適しているが、100μm程度の薄板振動子の作成
においては機械的強度が充分でなく、加工中の割
れ、かけ等により歩留りが大きく低下する。又振
動子の薄板化に伴い従来の銀ペーストを塗付して
焼成する電極構成方法では銀ペーストのフリツト
成分の浸み込みにより振動子の電気機械結合係数
や誘電率の大幅な低下が起る。このため電極をニ
ツケルメツキ等により構成する方法が主流となり
つつある。が、この場合も、従来のPbTiO3
PbTiO3−Pb(Y1/2Nb1/2)O3のPbの一部を
Ba,Sr,Caのいずれかで一部置換した材料では
メツキ板の浸透により電極の短絡が起り実用上の
問題となつていた。 本発明は上記の欠点を改良し、Qmの値が100
以下の材料でありながら機械的強度の優れた圧電
ブザー振動子材料として有用な酸化物圧電材料を
提供することを目的とするものである。 本発明に係る酸化物圧電材料は、基本組成が
PbTiO340.0〜50.0モル%、PbTiO345〜59.5モル
%およびPb(Y1/2Nb1/2)O30.5〜5.0モル%
からなる固溶体であつて、その組成中のPbの一
部をRa,Sr,Caのうち1種または2種以上の組
合せで10モル%以下置換すると共に、In2O3
MgO,Sb2O3から選ばれた少くとも1種を0.1〜
1.0重量%含むことを特徴としている。 本発明において主成分となるPbTiO3 PbZrO3
−Pb(Y1/2Nb1/2)O3三元系組成比を
PbTiO340.0〜50.0モル%、PbZrO345〜59.5モル
%、Pb(Y1/2Nb1/2)O30.5〜5.0モル%とそ
れぞれ限定したのは次の理由による。PbTiO3
40モル%以下でもまた50モル%以上でも所望の電
機械結合係数(KP)や誘電率(ε)を得るこが
出来ない。又、Pb(Y1/2Nb1/2)O3は、0.5
モル%以下では焼結性を改善するという効果がほ
とんど現われず、5モル%以下では均一な固溶体
が得にくく電機械結合係数(KP)が低下する。
従つてPbTiO3とPb(Y1/2Nb1/2)O3を上記
範囲に選び、残りをPbZrO3とする。 また組成中のPbの一部をBa,Sr,Caの1種類
または2種類以上の組合せで10モル%以下置換す
ると限定した理由は、10モル%以上となると焼結
性が悪くなり、さらに結合係数(KP)も低下す
るためである。更に添加物であるIn2O3,MgO,
Sb2O3の添加量を0.0〜1.0重量%と限定した理由
は0.1重量%以下では焼結密度を向上させた機械
的強度の向上を計る効果がほとんど現われず、
1.0重量%以上では均一に固溶せず一部析出する
ために材料の機械的強度が低下し、結合係数KP
も充分でなくなるためである。 本発明の酸化物圧電材料は一般的には粉未治金
方法により容易に製造しうる。例えば、PbO,
TiO2,ZrO2,Y2O3,Nb2O3,MgO,Sb2O3
SrCO3,CaCO3,BaCO3などの原料酸化物を所定
の割合に正確に秤量し、これらをボールミル等に
よつて混合する。次いでこの混合物を比較的低温
例えば600〜900℃で予備焼成し、さらにボールミ
ルなどによつて粉砕して調整粉末とする。しかる
後この調整粉末に水あるいはポリビニールアルコ
ールなどの粘結剤を添加配合し、0.5〜1.0ton/
cm2程度の圧力で加圧成形してから1120〜1180℃程
度の温度範囲内で0.5〜3時間程度焼成する。 かくして得た焼結体の両面に周知の手段で例え
ば1対の電極を設け、直流電場20〜30kV/cmを
80〜120℃程度のシリコーンオイル中で1時間程
度印加することによつて分極し得る。以上のよう
にして分極を行つた後に100℃で24時間エージン
グを行いさらに常温で24時間放置する。 こうして得られた圧電基板の圧電特性を評価す
るために、径方向振動における電気機械結合係数
KPを測定した。この測定はIREの標準回路の方
法に従つた。また誘電率εはキヤパタシタンスブ
リツジを用いて1kHzの周波数で測定した。Qmの
測定は次式を用いて算出した。 Qm=1/4π・C・R() ただし a=反共振周波数 r=共振周波数 C=容量 R=共振抵抗 曲げ強度の測定は、直径25mm、厚さ1.6mmの圧電
セラミツク円板を厚さ1mmまで両面研削を行つて
鏡面に仕上げ、その後にダイヤモンドカツターで
各円板の中心部分から幅3mmの試料板を切り出
し、切断面の傷の影響を取りのぞくために切断面
をSiCサンドペーパーで順次800#→1500#→
2000#と研磨したのちエツジを丸めて仕上げ、イ
ンストロン万能試験機を用いて三点曲げ法で行つ
た。 曲げ強度(抗折力)は次式による。 抗折力=3/2Pm/dw ここでPm;最大破壊荷重(Kg) ;支点間距離(cm) d;試料の厚さ(cm) w;試料の幅(cm) である。 本発明の実施例のデータを参考例と共に第1表
〜第4表に示す。
The present invention is based on Pb(Y1/2Nb1/2)O 3 −PbTiO 3
This invention relates to an oxide piezoelectric material suitable for ultrasonic transducer materials, piezoelectric buzzer materials, etc. whose basic composition is a three-component solid solution composed of PbZrO 3 . As is well known, so-called Pb is a solid solution of PbTiO 3 and PbZrO 3 with approximately equimolar composition.
(TiZr)O 3 -based oxide piezoelectrostrictive materials have superior properties compared to piezoelectric materials such as BaTiO 3 and are used as electro-mechanical transducers, electro-acoustic transducers, etc. In addition, three-component piezoelectric materials in which Pb(CoW)1/2O 3 or the like is fixed, and materials in which MnO 2 or NiO are added to these materials are also widely used. However, there are some problems in terms of characteristics when using these ferroelectric materials as ultrasonic vibrators or piezoelectric buzzer vibrators. In other words, there is a strong demand for miniaturization of recent electronic circuit components, and there is also a strong trend toward higher operating frequencies, but as is well known, the resonant frequency of a piezoelectric vibrator is an inverse function of its shape; Then, the shape of the vibrator becomes smaller and thinner, and not only its electrical properties but also its mechanical strength becomes a problem in the processing or assembly process. Generally, when adding additives to Pb(TiZr)O 3 systems to improve their properties, the additives are divided into two groups depending on their effects. The first group is
When MnO, Fe 2 O 3 , Cr 2 O 3 , CoO, etc. are added, the coercive electric field generally increases and the piezoelectricity decreases, but the mechanical quality factor Qm increases and the material becomes a so-called hard material. The second group is La 2 O 3 ,
Adding Nb 2 O 5 , WO 3 .Ta 2 O 3 , etc. reduces the coercive electric field, making polarization easier and improving piezoelectricity, but Qm decreases and the material becomes a so-called soft material. High Qm materials have excellent mechanical strength and do not suffer from a decline in manufacturing retention even when thinned.
Soft materials with a Qm of 100 or less have weak mechanical strength and have a low yield when thinning. However, for example, materials with low Qm are preferable as materials for speakers because they provide a soft tone when making a piezoelectric buzzer vibrator and can be used to widen the frequency band. Therefore, a piezoelectric material with low Qm, excellent mechanical strength, and easy processing into thin sheets has been desired. To explain more specifically, there are various methods for obtaining ceramics in the form of thin plates of about 100 μm, but the method of forming ceramics using a doctor blade method and firing them is the best.
It is advantageous in terms of productivity and cost, and is becoming mainstream. However, conventional PbTiO 3
Part of Pb in PbZrO 3 −Pb(Y1/2Nb1/2)O 3
Materials partially substituted with Ba, Sr, or Ca are
With a Qm of 100 or less, it is suitable as a vibrator material for piezoelectric buzzers, but it does not have sufficient mechanical strength when producing thin plate vibrators of about 100 μm, and the yield will be greatly reduced due to cracks and chips during processing. In addition, as resonators become thinner, the conventional electrode construction method of applying silver paste and firing causes a significant decrease in the electromechanical coupling coefficient and dielectric constant of the resonator due to penetration of the frit components of the silver paste. . For this reason, methods of forming electrodes using nickel plating or the like are becoming mainstream. However, in this case too, the conventional PbTiO 3
Part of Pb in PbTiO 3 −Pb(Y1/2Nb1/2)O 3
In materials partially substituted with Ba, Sr, or Ca, electrode short-circuits occur due to penetration of the plating plate, which has become a practical problem. The present invention improves the above drawbacks, and the value of Qm is 100.
The object of the present invention is to provide an oxide piezoelectric material that is useful as a piezoelectric buzzer resonator material and has excellent mechanical strength despite being the following material. The oxide piezoelectric material according to the present invention has a basic composition of
PbTiO3 40.0-50.0 mol%, PbTiO3 45-59.5 mol% and Pb(Y1/2Nb1/2) O3 0.5-5.0 mol%
A solid solution consisting of 10 mol % or less of Pb in its composition is replaced with one or a combination of two or more of Ra, Sr, and Ca, and In 2 O 3 ,
At least one selected from MgO, Sb 2 O 3 from 0.1 to
It is characterized by containing 1.0% by weight. PbTiO 3 PbZrO 3 which is the main component in the present invention
−Pb(Y1/2Nb1/2)O 3 ternary system composition ratio
The reasons for limiting PbTiO3 to 40.0 to 50.0 mol%, PbZrO3 to 45 to 59.5 mol%, and Pb(Y1/2Nb1/2)O3 to 0.5 to 5.0 mol% are as follows. PbTiO3 is
Even if it is less than 40 mol% or more than 50 mol%, the desired electromechanical coupling coefficient (KP) and dielectric constant (ε) cannot be obtained. Also, Pb(Y1/2Nb1/2)O 3 is 0.5
If it is less than 5 mol %, there is hardly any effect of improving sinterability, and if it is less than 5 mol %, it is difficult to obtain a uniform solid solution and the electromechanical coupling coefficient (KP) decreases.
Therefore, PbTiO 3 and Pb(Y1/2Nb1/2)O 3 are selected within the above range, and the rest is PbZrO 3 . In addition, the reason why we limited Pb in the composition to 10 mol% or less by one type or a combination of two or more of Ba, Sr, and Ca is that if it exceeds 10 mol%, sinterability deteriorates, and the bonding This is because the coefficient (KP) also decreases. Furthermore, additives In 2 O 3 , MgO,
The reason why the amount of Sb 2 O 3 added was limited to 0.0 to 1.0% by weight is that if it is less than 0.1% by weight, there is almost no effect on improving mechanical strength by improving sintered density.
If it exceeds 1.0% by weight, it will not dissolve uniformly and will partially precipitate, resulting in a decrease in the mechanical strength of the material and a decrease in the bonding coefficient KP.
This is because it is no longer sufficient. The oxide piezoelectric material of the present invention can generally be easily manufactured by a non-powder metallurgy method. For example, PbO,
TiO 2 , ZrO 2 , Y 2 O 3 , Nb 2 O 3 , MgO, Sb 2 O 3 ,
Raw material oxides such as SrCO 3 , CaCO 3 , BaCO 3 and the like are accurately weighed in a predetermined ratio and mixed using a ball mill or the like. Next, this mixture is preliminarily calcined at a relatively low temperature, for example, 600 to 900°C, and further pulverized using a ball mill or the like to obtain a prepared powder. After that, water or a binder such as polyvinyl alcohol is added to this adjusted powder to form a powder of 0.5 to 1.0 tons/
After pressure molding at a pressure of about cm 2 , it is fired at a temperature of about 1120 to 1180°C for about 0.5 to 3 hours. For example, a pair of electrodes is provided on both sides of the sintered body thus obtained by well-known means, and a DC electric field of 20 to 30 kV/cm is applied.
Polarization can be achieved by applying the voltage in silicone oil at about 80 to 120°C for about one hour. After polarization is performed as described above, aging is performed at 100°C for 24 hours and then left at room temperature for 24 hours. In order to evaluate the piezoelectric properties of the piezoelectric substrate obtained in this way, the electromechanical coupling coefficient in radial vibration was
KP was measured. This measurement followed the IRE standard circuit method. In addition, the dielectric constant ε was measured at a frequency of 1kHz using a capacitance bridge. The measurement of Qm was calculated using the following formula. Qm = 1/4π・C・R ( ar ) where a = anti-resonant frequency r = resonant frequency C = capacitance R = resonant resistance To measure the bending strength, use a piezoelectric ceramic disc with a diameter of 25 mm and a thickness of 1.6 mm. Both sides were ground to a thickness of 1 mm to give a mirror finish. Then, a 3 mm wide sample plate was cut from the center of each disk using a diamond cutter, and the cut surface was sanded with SiC sand to remove the effects of scratches on the cut surface. Paper sequentially 800#→1500#→
After polishing with 2000#, the edges were rounded and finished using the three-point bending method using an Instron universal testing machine. The bending strength (transverse rupture strength) is determined by the following formula. Transverse rupture strength = 3/2 Pm/d 2 w where Pm: Maximum breaking load (Kg); Distance between supporting points (cm) d: Thickness of the sample (cm) w: Width of the sample (cm). Data of Examples of the present invention are shown in Tables 1 to 4 together with Reference Examples.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第1図は、Pb(Y1/2Nb1/2)O3を4モル%
と一定にした組成に添加物Sb2O3,In2O3,MgO
を添加した実施例4、16、19の試料の焼結密度
を、無添加の参考例8、7、9の試料のそれと併
せて示したものである。無添加の材料では焼結密
度は7.5以下であるのに対し、Sb2O3,In2O3
MgOを添加した実施例では7.6〜7.7と焼結密度が
向上していることが明らかである。 第2図は第1図と同一の試料の結合係数KPを
示す。添加物を加えない組成ではKPは約60%で
あるがSb2O3,MgO,Ta2O5を添加することによ
りKPは5〜7%向上している。 第3図はやはり第1図と同じ試料の曲げ強度を
示す。無添加の材料では曲げ強度は5×102Kg/
cm2であるのに対して本実施例の材料では添加物の
効果により焼結密度が向上し曲げ強度10×102Kg
以上の値を示し機械的強度が向上していることが
明らかである。このため100μm前後の薄板セラ
ミツク振動子の加工時における割れ、かけが減少
し大幅な不留りの向上が出来る。 第4図は、添加物Sb2O3とMgOの添加量と曲げ
強度の関係を示したもので、実施例のものが大き
い曲げ強度を示していることがわかる。 ちなみに、本発明の実施例19の材料と添加物を
含まない参考例9の材料を用いて30mmφ×200μ
mの円板振動子を1000枚製作した時の最終工程ま
での歩留りは、前者で95%であるのに対し後者で
75%であつた。参考例の場合、薄板にしたときの
機械的強度が十分でないため、製造工程での割れ
やかけが多く最終歩留りが低くなつているのに対
し、実施例の場合高い歩留りが得られた。 以上の実施例および参考例から明らかな様に、
本発明にかかる酸化物圧電材料はすぐれた圧電特
性を有する一方、その機械的強度が従来品に比べ
て向上しているため、例えば100μm前後の薄板
加工も容易となり、実用上多くの利点を有するも
のであると言える。
[Table] Figure 1 shows 4 mol% of Pb(Y1/2Nb1/2)O 3
Additives Sb 2 O 3 , In 2 O 3 , MgO
The sintered densities of the samples of Examples 4, 16, and 19 in which the additive was added are shown together with those of the samples of Reference Examples 8, 7, and 9 in which no additive was added. While the sintered density of additive-free materials is less than 7.5, Sb 2 O 3 , In 2 O 3 ,
It is clear that in the examples in which MgO was added, the sintered density was improved to 7.6 to 7.7. FIG. 2 shows the coupling coefficient KP for the same sample as in FIG. In the composition without additives, KP is about 60%, but by adding Sb 2 O 3 , MgO, and Ta 2 O 5 , KP is improved by 5 to 7%. FIG. 3 again shows the bending strength of the same sample as in FIG. The bending strength of additive-free material is 5×10 2 Kg/
cm 2 , whereas in the material of this example, the sintered density is improved due to the effect of additives, and the bending strength is 10 × 10 2 Kg.
It is clear that the mechanical strength is improved. For this reason, cracks and chips during processing of thin plate ceramic resonators of around 100 μm are reduced, and retention can be significantly improved. FIG. 4 shows the relationship between the amounts of the additives Sb 2 O 3 and MgO and the bending strength, and it can be seen that the samples of Examples have a large bending strength. By the way, using the material of Example 19 of the present invention and the material of Reference Example 9 which does not contain additives, a 30mmφ×200μ
When manufacturing 1,000 disc resonators of m size, the yield up to the final process is 95% for the former, while for the latter.
It was 75%. In the case of the reference example, the final yield was low due to many cracks and chips during the manufacturing process due to insufficient mechanical strength when made into a thin plate, whereas in the case of the example, a high yield was obtained. As is clear from the above examples and reference examples,
While the oxide piezoelectric material according to the present invention has excellent piezoelectric properties, its mechanical strength is improved compared to conventional products, so it can be easily processed into thin sheets of, for example, around 100 μm, and has many practical advantages. It can be said that it is a thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例と参考例の焼結密度を示す図、
第2図は同じく結合係数を示す図、第3図は同じ
く曲げ強度を示す図、第4図は添加物の添加量と
曲げ強度の関係を示す図である。
Figure 1 is a diagram showing the sintered densities of Examples and Reference Examples;
FIG. 2 is a diagram similarly showing the coupling coefficient, FIG. 3 is a diagram similarly showing the bending strength, and FIG. 4 is a diagram showing the relationship between the amount of additive added and the bending strength.

Claims (1)

【特許請求の範囲】[Claims] 1 基本組成がPbTiO340.0〜50.0モル%、
PbZrO345〜59.5モル%およびPb(Y1/2Nb1/
2)O30.5〜5.0モルからなる固溶体であつて、そ
の組成中のPbの一部をBr,Sr,Caのうち1種ま
たは2種以上の組合せで10モル%以下置換すると
共に、In2O3,MgO,Sb2O3から選ばれた少なく
とも1種を0.1〜1.0重量%含むことを特徴とする
酸化物圧電材料。
1 Basic composition is PbTiO 3 40.0 to 50.0 mol%,
PbZrO3 45-59.5 mol% and Pb(Y1/2Nb1/
2) A solid solution consisting of 0.5 to 5.0 moles of O 3 , in which a portion of Pb in the composition is replaced with 10 mol % or less of one or a combination of two or more of Br, Sr, and Ca, and In 2 An oxide piezoelectric material comprising 0.1 to 1.0% by weight of at least one selected from O 3 , MgO, and Sb 2 O 3 .
JP56093415A 1981-06-17 1981-06-17 Oxide piezoelectric material Granted JPS57208183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56093415A JPS57208183A (en) 1981-06-17 1981-06-17 Oxide piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56093415A JPS57208183A (en) 1981-06-17 1981-06-17 Oxide piezoelectric material

Publications (2)

Publication Number Publication Date
JPS57208183A JPS57208183A (en) 1982-12-21
JPS6132838B2 true JPS6132838B2 (en) 1986-07-29

Family

ID=14081663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56093415A Granted JPS57208183A (en) 1981-06-17 1981-06-17 Oxide piezoelectric material

Country Status (1)

Country Link
JP (1) JPS57208183A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60123079A (en) * 1983-12-06 1985-07-01 Nippon Soken Inc Ceramic piezoelectric material
JPS61105881A (en) * 1984-10-30 1986-05-23 Nippon Soken Inc Ceramic piezoelectric material
JP2543021B2 (en) * 1984-12-17 1996-10-16 株式会社日本自動車部品総合研究所 Ceramic Piezoelectric Material for Actuator
JP3251796B2 (en) * 1994-12-28 2002-01-28 株式会社日本自動車部品総合研究所 Ceramic piezoelectric material
CN103603042A (en) * 2013-11-18 2014-02-26 中国科学院福建物质结构研究所 Ferroelectric monocrystal yttrium lead niobate-magnesium lead niobate-lead titanate as well as preparation and application thereof

Also Published As

Publication number Publication date
JPS57208183A (en) 1982-12-21

Similar Documents

Publication Publication Date Title
JP4496579B2 (en) Piezoelectric ceramic composition
JPS6132838B2 (en)
JP2884635B2 (en) Piezoelectric ceramics and method of manufacturing the same
JPH11349380A (en) Piezoelectric ceramic composition and piezoelectric element using the same
US3640866A (en) Piezoelectric ceramic compositions
EP0034342A1 (en) Piezoelectric oxide material
US3546120A (en) Piezoelectric ceramic compositions
JP3616967B2 (en) Piezoelectric porcelain
JPH0745882A (en) Piezoelectric element
JPS6358782B2 (en)
JP3096919B2 (en) Piezoelectric ceramic composition
JPS6141864B2 (en)
JPH0151072B2 (en)
JPS6023515B2 (en) oxide piezoelectric material
KR910007119B1 (en) Oxide piezo-electric materials and its manufacturing method
JPH06116010A (en) Production of bismuth laminar compound
JPH0325954B2 (en)
JP3439226B2 (en) Piezoelectric ceramic composition
JP3342555B2 (en) Piezoelectric ceramic composition
JPS5941312B2 (en) oxide piezoelectric material
JPH03256381A (en) Piezoelectric ceramics
JPS6333311B2 (en)
JPH0517220A (en) Piezoelectric porcelain composition
JPS6023513B2 (en) oxide piezoelectric material
JPS5941310B2 (en) oxide piezoelectric material