JPS6132743A - Multilayer structure pipe - Google Patents

Multilayer structure pipe

Info

Publication number
JPS6132743A
JPS6132743A JP15403384A JP15403384A JPS6132743A JP S6132743 A JPS6132743 A JP S6132743A JP 15403384 A JP15403384 A JP 15403384A JP 15403384 A JP15403384 A JP 15403384A JP S6132743 A JPS6132743 A JP S6132743A
Authority
JP
Japan
Prior art keywords
weight
layer
glass fiber
inorganic filler
polypropylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15403384A
Other languages
Japanese (ja)
Inventor
春日 直温
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15403384A priority Critical patent/JPS6132743A/en
Publication of JPS6132743A publication Critical patent/JPS6132743A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 九更立欽豊勿I 本発明はガラス繊維及び無機充填剤を配合したポリプロ
ピレン系樹脂層(以下、FRPPと呼ぶ)を中間層とし
、外側及び内側をプロピレン−エチレン共重合体又はポ
リエチレン樹脂でサンドイッチした多層構造の高強度、
高剛性で溶接可能なガラス繊維強化複合管に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of a polypropylene resin layer containing glass fiber and an inorganic filler (hereinafter referred to as FRPP) as an intermediate layer, and a propylene-ethylene resin layer on the outside and inside. High strength multilayer structure sandwiched with polymer or polyethylene resin.
Concerning highly rigid and weldable glass fiber reinforced composite pipes.

更末韮遺 ポリオレフィン系樹脂のパイプは流体輸送用の配管材料
として一般に使用されているが、耐腐食性に優れている
ことよりしばしば構造材料としての用途に使うことが試
みられている。この場合。
Pipe made of polyolefin resin is generally used as a piping material for fluid transportation, but due to its excellent corrosion resistance, attempts are often made to use it as a structural material. in this case.

構造材料として要求される強度、剛性を得る為にガラス
繊維を初めとする各種の強化材料を配合したポリプロピ
レン樹脂、プロピレン−エチレン共重合体、ポリエチレ
ン樹脂等のパイプの開発が試みられた。しかしながら、
従来開発が試みられた繊維強化ポリオレフィン系樹脂の
パイプは構造材料として用いることを考えるとまだ十分
な剛性、強度を有しておらず、また管同志を溶接する事
が困難か、強度が不十分であった。
In order to obtain the strength and rigidity required for structural materials, attempts have been made to develop pipes made of polypropylene resin, propylene-ethylene copolymer, polyethylene resin, etc., which are blended with various reinforcing materials such as glass fiber. however,
The fiber-reinforced polyolefin resin pipes that have been developed in the past do not yet have sufficient rigidity and strength when used as structural materials, and it is difficult to weld the pipes together or the strength is insufficient. Met.

L艶Ω1カ 農業、水産関係で用いられる構造物は海水、日光等によ
る激しい腐食を受ける為、鋼材等は損耗が著しく、塗料
やポリエチレン樹脂、塩化ビニル樹脂等で被覆を行なっ
ているがその効果は1・分とは言えない。特に、水産関
係においては海水による腐食が想像以上に激しく、鋼材
の被覆はよぼど慎重且つ十分なものでないと長期的な寿
命は保障できない。又、FRPによるものも一部使用さ
れているが、材料が比較的高価である上に生産性が悪い
為、形状が不定形なものには良いが、連続生産する様な
形状のものについては必ずしも安価な材料とは言えない
L Gloss Ω 1 Structures used in agriculture and fisheries are subject to severe corrosion from seawater, sunlight, etc., so steel materials are subject to significant wear and tear.They are coated with paint, polyethylene resin, vinyl chloride resin, etc., but the effect is cannot be said to be 1 minute. Particularly in the marine industry, corrosion caused by seawater is more severe than expected, and long-term lifespan cannot be guaranteed unless the steel is coated very carefully and sufficiently. FRP is also used in some parts, but the material is relatively expensive and the productivity is poor, so although it is good for items with irregular shapes, it is not suitable for items that need to be continuously produced. It is not necessarily a cheap material.

本発明者は安価なポリオレフィン系樹脂を母材とした高
剛性、高強度の材料を開発すべく鋭意研究を重ねた結果
、ポリプロピレン樹脂と不飽和カルボン酸変成ポリプロ
ピレン樹脂と無機充填剤より成る高剛性のマトリックス
を形成せしめ、これにガラス繊維を強化剤として加える
と極めて剛性が高く、且つ高強度の熱可塑性材料が得ら
れること及び、これを利用して多層構造を有する積層管
を作る場合、パイプの外層にガラス#1lIaを高濃度
に含む層を設け、内側に無機充填剤を高濃度に含む層を
設けることにより安価で高剛性、高強度な積層管が得ら
れることを見出し、本発明を完成するに至った。
As a result of intensive research to develop a material with high rigidity and high strength using an inexpensive polyolefin resin as a base material, the inventor of the present invention has developed a highly rigid material made of polypropylene resin, unsaturated carboxylic acid-modified polypropylene resin, and inorganic filler. If glass fiber is added to this matrix as a reinforcing agent, a thermoplastic material with extremely high rigidity and high strength can be obtained. It was discovered that an inexpensive, high-rigidity, and high-strength laminated tube could be obtained by providing a layer containing a high concentration of glass #1lIa on the outer layer and a layer containing a high concentration of an inorganic filler on the inside, and developed the present invention. It was completed.

−の ゛よび −の  ・な= 本発明における積層管は少なくとも3層より成り、外側
より数えて第一層は耐候性、美麗外観を賦与する機能を
有する。第二層はガラス繊維、無機充填剤及び不飽和カ
ルボン酸変成ポリオレフィンを含有するポリプロピレン
樹脂からなる高剛性を有する層であり、更に好ましくは
高濃度のガラス#JIitaによって、高い引張および
曲げ強度を有する外層と高濃度の無機フィラーによって
高い剛性を有する内層からなる複層である。最内層は分
子量の大きいエチレン−プロピレン共重合体より成り、
積層管の耐衝撃性を維持する機能を有するものが好まし
い。
-'s and -'s ・na= The laminated pipe of the present invention is composed of at least three layers, and the first layer counting from the outside has the function of imparting weather resistance and a beautiful appearance. The second layer is a highly rigid layer made of a polypropylene resin containing glass fiber, an inorganic filler, and an unsaturated carboxylic acid-modified polyolefin, and more preferably has high tensile and bending strength due to a high concentration of glass #JIita. It is a multilayer structure consisting of an outer layer and an inner layer that has high rigidity due to a high concentration of inorganic filler. The innermost layer is made of a high molecular weight ethylene-propylene copolymer,
Preferably, the material has the function of maintaining the impact resistance of the laminated pipe.

本発明を更に詳しく説明すると、外側より数えて第一層
は耐候性を保持する為に好ましくはカーボンブラックを
0.5〜2.5重量%含む。使用される樹脂はNFRが
0.05〜2g710層inのポリエチレン樹脂又はエ
チレン含量が5〜20重量%のプロピレン−エチレン共
重合体あるいは両者の任意の混合物が用いられる。
To explain the present invention in more detail, the first layer counting from the outside preferably contains 0.5 to 2.5% by weight of carbon black in order to maintain weather resistance. The resin used is a polyethylene resin having an NFR of 0.05 to 2 g and 710 layers, a propylene-ethylene copolymer having an ethylene content of 5 to 20% by weight, or an arbitrary mixture of the two.

NFI?は0.05g/10m1n未満では成形が難し
くなり、十分な外観も得られにくい。又、  MFRが
2g/1hinを越えるものでは特にポリエチレン樹脂
の場合、耐環境応力亀裂特性等が劣り、使用上好ましく
ない。成形性、外観、物性等を総合的に考慮するとMF
Rは0.2〜1.0g/10m1nが好ましい。
NFI? If it is less than 0.05 g/10 m1n, it becomes difficult to mold and it is difficult to obtain a sufficient appearance. Furthermore, if the MFR exceeds 2 g/1 h, especially in the case of polyethylene resin, the environmental stress cracking resistance etc. will be poor, making it undesirable for use. Considering moldability, appearance, physical properties, etc., MF
R is preferably 0.2 to 1.0 g/10 m1n.

外より数えて第二層が該積層管において強度、剛性を発
揮する部分であり、両層共ポリプロピレン樹脂をマトリ
ックスとし、無機フィラー、ガラス繊維を補強材として
含んだ1つの層として構成してもよいが、好ましくは2
つの層に分け、外側にあたる第二層にはガラス繊維の濃
度を高くし、無機フィラーの濃度を低くし、内側の第三
層はガラス繊維の濃度を低くシ、無機フィラーの濃度を
高くした組成にすると、単に同一組成のフンパウンドで
第二層、第三層を形成するよりも約20〜50%曲げ強
度が向上する。
Counting from the outside, the second layer is the part that exhibits strength and rigidity in the laminated pipe, and both layers may be constructed as one layer with a polypropylene resin matrix and an inorganic filler and glass fiber as a reinforcing material. Good, but preferably 2
The second layer on the outside has a high concentration of glass fiber and a low concentration of inorganic filler, and the third layer on the inside has a low concentration of glass fiber and a high concentration of inorganic filler. By doing so, the bending strength is improved by about 20 to 50% compared to simply forming the second and third layers with a powder having the same composition.

これは積層管に曲げ応力が働いた場合、外側の層により
強く引張応力がかかる為、外側の層を強化すれば曲げ強
度も向上するという原理に基づいている。
This is based on the principle that when bending stress is applied to a laminated pipe, stronger tensile stress is applied to the outer layers, so if the outer layers are strengthened, the bending strength will also be improved.

第二層を構成するコンパウンドの組成について述べると
マトリックスであるポリプロピレン樹脂はMFRが4〜
80g/ to+win(7)ものが良く、好ましくは
8〜20g/10m1n(7)ものが良い、  MFR
が4g/10m1n未満のポリプロピレン樹脂では、高
濃度のガラス繊維や無機充填剤を充填した場合、流動性
が著しく低下する為成形が難しくなったり、外観が不良
になる。又、 NFRが80g/10m1nを越えるも
のでは溶融粘度が低過ぎて成形が逆に難しくなったり、
強度上も好ましくない。
Regarding the composition of the compound constituting the second layer, the polypropylene resin that is the matrix has an MFR of 4 to 4.
80g/to+win(7) is good, preferably 8-20g/10m1n(7), MFR
When a polypropylene resin with a weight ratio of less than 4 g/10 m1n is filled with a high concentration of glass fiber or inorganic filler, the fluidity is significantly reduced, making molding difficult and causing poor appearance. Also, if the NFR exceeds 80 g/10 m1n, the melt viscosity is too low, making molding difficult.
It is also unfavorable in terms of strength.

無機充填剤としてはマイカ、タルク等7スペクト比の大
きいものが剛性を上げる上で好ましく、タルクはポリプ
ロピレン樹脂の結晶核剤としての役割も果たし、マイカ
よりも安価であるので充填量が多い場合はタルクの方が
使いやすい。
As inorganic fillers, mica, talc, and other materials with a large spectral ratio of 7 are preferable in order to increase rigidity. Talc also serves as a crystal nucleating agent for polypropylene resin, and is cheaper than mica, so if the amount of filling is large, Talc is easier to use.

無機充填剤の平均粒径は1.5〜10w程度迄あるが粒
径の小さいものの方が剛性upに有効であリ、平均粒径
1.5〜5JLのものが好ましく、充填mは1層とする
場合は0.1〜30重量%、複層とする場合、外層では
0.1〜20重量%であり、好ましくは2〜lO重量%
である。無機充填剤は実質的にはポリプロピレン樹脂と
一体になり、ガラス繊維に対するマトリックスを形成す
る。
The average particle size of the inorganic filler ranges from about 1.5 to 10W, but smaller particle sizes are more effective in increasing rigidity, and an average particle size of 1.5 to 5JL is preferable. 0.1 to 30% by weight in the case of a multi-layer structure, 0.1 to 20% by weight in the outer layer, preferably 2 to 10% by weight.
It is. The inorganic filler is substantially integrated with the polypropylene resin and forms a matrix for the glass fibers.

ポリプロピレン樹脂に無機充填剤を充填していった場合
と充填量と共に剛性はupしてゆくが20重量%以上に
なると引張強度が低下する為、好ましくない。又0.1
重量%未満では剛性upへの寄与が少ない。
When a polypropylene resin is filled with an inorganic filler, the rigidity increases with the amount of filling, but if the amount exceeds 20% by weight, the tensile strength decreases, which is not preferable. Also 0.1
If it is less than % by weight, there is little contribution to increasing rigidity.

ポリプロピレン樹脂にガラス繊維及び無機充填剤を充填
する場合、充填量の合計が60重量%以上ではむしろ材
料そのものが脆くなるため好ましくなく、剛性、強度へ
の効果は無機充填剤よりガラス繊維の方がはるかに優れ
ているので両者の合計充填量を60毛量%とした場合、
無機充填剤の充填量はlO重量%迄におさえた方が良い
When filling polypropylene resin with glass fiber and inorganic filler, if the total amount of filling exceeds 60% by weight, the material itself becomes brittle, which is undesirable, and glass fiber has a better effect on rigidity and strength than inorganic filler. It is much better, so if the total filling amount of both is 60%,
It is better to keep the amount of the inorganic filler within 10% by weight.

ガラス繊維は直径が9〜12JLで長さが3B〜25I
afilのものが用いられる。ガラス繊維の表面はマト
リックスであるポリプロピレン樹脂との接着性を増す為
にシラン系化合物で表面処理しであるものが好ましい。
Glass fiber has a diameter of 9~12JL and a length of 3B~25I.
afil is used. The surface of the glass fiber is preferably treated with a silane compound to increase adhesion to the polypropylene resin matrix.

ガラス繊維の充填量は1層とする場合は30〜50重量
%であり、複層とする場合の外層においては35〜60
重量%が好ましい、60重量%以上では剛性、曲げ強度
、引張強度の向上が望めないばかりでなく、押出成形そ
のものが困難になる。
The filling amount of glass fiber is 30 to 50% by weight in a single layer, and 35 to 60% in the outer layer in a multilayer structure.
If the weight percentage is preferably 60 weight percent or more, not only can no improvement in rigidity, bending strength, or tensile strength be expected, but also extrusion molding itself becomes difficult.

また、35重量%未満ではガラス繊維の多い層と少ない
層の2層に分ける意味がない。
Moreover, if it is less than 35% by weight, there is no point in dividing the glass fiber into two layers, one containing a large amount of glass fiber and the other containing a glass fiber containing a small amount.

不飽和カルボン酸変成ポリプロピレン樹脂は゛ ガラス
繊維とポリプロピレン樹脂の接着性を向上させるばかり
でなく、無機充填剤とポリプロピレン樹脂の親和性を増
大させて耐衝撃性等を改良させる効果がある。″ 添加量は15重量%以上ではその効果はもはや飽和状態
に達し、3重量%未満では不十分と言える。好ましくは
、 5〜10重量%である。不飽和カルボン酸としては
無水マレイン酸が好ましい。
Unsaturated carboxylic acid-modified polypropylene resin has the effect of not only improving the adhesion between glass fiber and polypropylene resin, but also increasing the affinity between the inorganic filler and polypropylene resin and improving impact resistance. ``If the amount added is 15% by weight or more, the effect will already reach a saturated state, and if it is less than 3% by weight, it can be said to be insufficient.Preferably, it is 5 to 10% by weight.Maleic anhydride is preferable as the unsaturated carboxylic acid. .

又、不飽和カルボン酸含有量は0.3〜1.0重量%の
範囲にあるのがよい。
Further, the unsaturated carboxylic acid content is preferably in the range of 0.3 to 1.0% by weight.

L記複層とする場合の内層は、ガラス繊維より安価な無
機充填剤によって剛性を出来るだけ増大させ、補助的に
ガラスm維を加えるという考え方である。ここで用いら
れる無機充填剤は平均粒径が4〜IO井のものであり、
充填量は20〜50重量%である。充@酸が20重頃%
未満では剛性が十分得られず、50重晴%を越えると成
形性が悪くなる。好ましくは30〜40重量%が良い。
The idea is to increase the rigidity of the inner layer as much as possible using an inorganic filler, which is cheaper than glass fiber, and to add glass fiber as an supplement. The inorganic filler used here has an average particle size of 4 to IO well,
The filling amount is 20-50% by weight. Full @ acid content is around 20%
If it is less than 50% by weight, sufficient rigidity cannot be obtained, and if it exceeds 50% by weight, moldability becomes poor. Preferably it is 30 to 40% by weight.

ガラス繊維は繊維長3〜25mmのものが用いられるが
、好ましくは3〜6mmのものが良い。
The glass fiber used has a fiber length of 3 to 25 mm, preferably 3 to 6 mm.

ガラス繊維の充填量は10〜30重量%であり、好まし
くは15〜20重量%が良い。
The amount of glass fiber filled is 10 to 30% by weight, preferably 15 to 20% by weight.

不飽和カルボン酸変成ポリプロピレン樹脂は3〜15重
量%加えられるが、好ましくは5〜lO重量%が良い。
The unsaturated carboxylic acid-modified polypropylene resin is added in an amount of 3 to 15% by weight, preferably 5 to 10% by weight.

ポリプロピレン樹脂は複層の外層の場合と同様にMFR
が4〜80g710minのものが用いられるが、好ま
しくはMFRが8〜20g/10m1nノものが良い。
Polypropylene resin has MFR as well as the outer layer of multiple layers.
A material with an MFR of 4 to 80 g/710 min is used, but a material with an MFR of 8 to 20 g/10 ml is preferable.

最内層は主として複合管に耐衝撃強度と溶接特性をもた
せるためのものであり、耐衝撃性の優れているエチレン
含量5〜20重量%のプロピレン−エチレンブロック共
重合体が好ましい。エチレン含量が15〜20重量%の
プロピレン−エチレンブロック共重合体を用いる場合は
通常のポリプロピレン樹脂を最大50重量%迄混合使用
してもさしつかえない。
The innermost layer is mainly for imparting impact strength and welding properties to the composite pipe, and is preferably a propylene-ethylene block copolymer having an ethylene content of 5 to 20% by weight, which has excellent impact resistance. When using a propylene-ethylene block copolymer having an ethylene content of 15 to 20% by weight, it is acceptable to mix and use ordinary polypropylene resin up to a maximum of 50% by weight.

プロピレン−エチレンブロック共重合体のMFRは0.
05〜2g/10m1nであり、好ましくは0.1〜0
.83/iominである。
The MFR of the propylene-ethylene block copolymer is 0.
05-2g/10mln, preferably 0.1-0
.. 83/iomin.

積層管全体の剛性を補なう為、最内層においても平均粒
径2.5〜10μの無機充填剤が0.1〜30重量%使
用される。無機充填剤の充填量が30重量%を越えると
溶接特性、耐衝撃性が不足してくる。又0.1重量%未
満では剛性への寄与が不十分である。
In order to supplement the rigidity of the entire laminated tube, 0.1 to 30% by weight of an inorganic filler with an average particle size of 2.5 to 10 μm is used in the innermost layer as well. If the filling amount of the inorganic filler exceeds 30% by weight, the welding properties and impact resistance will be insufficient. Moreover, if it is less than 0.1% by weight, its contribution to rigidity is insufficient.

プロピレン−エチレンブロック共重合体に無機充填剤を
加えた場合、同時に不飽和カルボン酸変成ポリプロピレ
ン樹脂を3〜10重量%加えると無機充填剤とプロピレ
ン−エチレンブロック共重合体の親和性が増し、+ll
i !lii fl性を改良させる。
When an inorganic filler is added to a propylene-ethylene block copolymer, adding 3 to 10% by weight of an unsaturated carboxylic acid-modified polypropylene resin at the same time increases the affinity between the inorganic filler and the propylene-ethylene block copolymer.
i! lii improves fl properties.

即ち、高分子量のプロピレン−エチレンブロック共重合
体に無機充填剤、不飽和カルボン酸変成ポリプロピレン
樹脂を加えることにより、比較的剛性が高くて耐#撃性
のあるパイプが得られる。
That is, by adding an inorganic filler and an unsaturated carboxylic acid modified polypropylene resin to a high molecular weight propylene-ethylene block copolymer, a pipe with relatively high rigidity and impact resistance can be obtained.

本発明のガラス繊維強化積層管の特長を更にあげると、
先ず管の曲げ弾性率がポリプロピレン樹脂単体の管に比
べて5〜7倍高く、曲げ強度は3〜4倍強く、ポリプロ
ピレン樹脂牛体では強度、剛性が不足して構造物として
は使用できなかった分野への展開が可能になったことで
ある。
Further features of the glass fiber reinforced laminated pipe of the present invention include:
First of all, the bending elastic modulus of the tube is 5 to 7 times higher than that of a tube made of polypropylene resin alone, and the bending strength is 3 to 4 times higher.The polypropylene resin body lacks strength and rigidity and cannot be used as a structure. This makes it possible to expand into other fields.

又、耐候性、耐腐食性が極めて優れているため長期間の
使用に耐え得る。
In addition, it has extremely excellent weather resistance and corrosion resistance, so it can withstand long-term use.

熱可塑性樹脂を主体とした押出成形によって製品を製造
できるので極めて生産性が良く、安価な材料を供給でき
る。最外層と最内層が耐衝撃性の樹脂で構成されている
為、耐衝撃に強く、高剛性でありながら耐衝撃性も兼ね
備えている。更に溶接により自由に管同志を接合できる
という特長をイラしている。
Since the product can be manufactured by extrusion molding mainly using thermoplastic resin, productivity is extremely high and inexpensive materials can be supplied. Since the outermost and innermost layers are made of impact-resistant resin, it is strong against impact, and has both high rigidity and impact resistance. Furthermore, they are annoyed by the ability to freely join tubes together by welding.

該多層構造管の製造法について述べると、例えば4層積
層管の場合、4台の押出機を用いて4種類の樹脂組成物
を回部に押出し、4層のパイプダイにより成形する方法
が一般的であるが、先ず芯管となる最内層のパイプを成
形し、その上にコーティングダイにより順次積層してい
く方法もある。
Regarding the manufacturing method of the multilayer structure pipe, for example, in the case of a 4-layer laminated pipe, the general method is to use 4 extruders to extrude 4 types of resin compositions into a rotating part and mold it with a 4-layer pipe die. However, there is also a method of first forming the innermost pipe that will become the core pipe, and then sequentially laminating layers on top of it using a coating die.

ガラス繊維の配合量が多くなると、溶融した樹脂組成物
が冷却固化する過程で表面にシフ、凹凸が発生するので
後者の方法の方が良い結果が得られる。
If the amount of glass fiber added is large, sifting and unevenness will occur on the surface during the cooling and solidification process of the molten resin composition, so the latter method yields better results.

樹脂組成物は先ず樹脂と無機充填剤をヘンシェルミキサ
ーで十分混合した後、タンブラ−又はリボンミキサーに
移してガラス繊維を加え、撹拌混合して得られる。
The resin composition is obtained by first thoroughly mixing the resin and the inorganic filler in a Henschel mixer, then transferring the mixture to a tumbler or ribbon mixer, adding glass fibers, and stirring and mixing.

支息遣 以下実施例にて本発明を更に具体的に説明するが、本発
明の範囲をこれらの実施例に限定するものではないこと
はいうまでもない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but it goes without saying that the scope of the present invention is not limited to these Examples.

実」自殊」 第一層(最外層)用コンパウンドとしてカーボンブラッ
ク2.5重量部、MFRが0.7g/10m1nでエチ
レン含有が15ii%のプロピレン−エチレンブロック
共重合体87.5重量部より成る組成物を第二層用コン
パウンドとして繊維長3IIII+のチョツプドストラ
ンドガラス繊維(旭グラスファイバー(特)製C503
−MA48BA)50重量部、平均粒径2.5ILのタ
ルク10重量部、無水マレイン酸含量0.5重量%の無
水マレイン酸変成ポリプロピレン樹脂(MI=10g/
10m1n )10重量部、 MFRが8g/10m1
nであるポリプロピレン樹脂30重量部よりなる組成物
を、第三層用コンパウンドとして、繊維長3mmのチョ
ツプドストランドガラス繊維(C9O3−M^488A
)20重量部、平均粒径8ルのタルク40重量部、無水
マレイン酸変成ポリプロピレン樹脂5重量部、MFRが
83/ IOm inのポリプロピレン樹脂35重量部
よりなる組成物を、第四層(最内層)として、 MFR
カ0.7g/10m1nのプロピレン−エチレンブロッ
ク共重合体80重量部、平均粒径2.5にのタルク 5
重量部、前記の無水マレイン酸変成ポリプロピレン樹脂
5重量部よりなる組成物を、先ず最内層は50amの押
出機より温度230°Cで樹脂組成物を押出し外径35
mm肉厚2II11のパイプを成形した。ついでクロス
へラドダイにより35I1mlのパイプ上に第三層を肉
厚2mmでコーティングし、ついで第二層を肉厚2+e
mでコーティングし、最後に第一層を 0.81の肉厚
でコーティングし、4層構造の積層管を製造した。
The compound for the first layer (outermost layer) of "Jijutsu" is made from 2.5 parts by weight of carbon black and 87.5 parts by weight of a propylene-ethylene block copolymer with an MFR of 0.7 g/10 m1n and an ethylene content of 15ii%. Chopped strand glass fiber (C503 manufactured by Asahi Glass Fiber (special)) with a fiber length of 3III+ was used as a compound for the second layer.
- MA48BA) 50 parts by weight, 10 parts by weight of talc with an average particle size of 2.5 IL, maleic anhydride-modified polypropylene resin with a maleic anhydride content of 0.5% by weight (MI = 10 g/
10m1n) 10 parts by weight, MFR 8g/10m1
A composition consisting of 30 parts by weight of a polypropylene resin of n is used as a compound for the third layer, and chopped strand glass fibers (C9O3-M^488A
), 40 parts by weight of talc with an average particle size of 8 l, 5 parts by weight of a maleic anhydride-modified polypropylene resin, and 35 parts by weight of a polypropylene resin with an MFR of 83/IO min. ), as MFR
80 parts by weight of propylene-ethylene block copolymer of 0.7 g/10 m1n, talc with an average particle size of 2.5 5
A composition consisting of 5 parts by weight of the maleic anhydride-modified polypropylene resin described above was first extruded at a temperature of 230°C from an extruder with an innermost layer of 50 am to form a resin composition with an outer diameter of 35 mm.
A pipe with a wall thickness of 2II11 mm was molded. Next, the third layer was coated with a wall thickness of 2 mm on the 35I 1 ml pipe using a cross rad die, and then the second layer was coated with a wall thickness of 2+e.
Finally, the first layer was coated with a wall thickness of 0.81 mm to produce a 4-layer laminated tube.

この複合管をスパン間隔2mで中間点に荷重をかけ、曲
げ強度を測定したところ、破壊荷重は180kgであっ
た。
When a load was applied to this composite pipe at a midpoint with a span interval of 2 m and the bending strength was measured, the breaking load was 180 kg.

該複合管のその他の物性を測定した結果は、曲げ弾性率
10(j、 000kgf/crn’、引張強度1,5
00kgf/crn’であった・ 又、この積層管に対して常温で100kgrn’ /5
ec2の1711エネルギーを加えたが、破壊しなかっ
た。
The results of measuring other physical properties of the composite pipe were as follows: bending elastic modulus: 10 (j, 000 kgf/crn'), tensile strength: 1.5
00 kgf/crn'・Also, for this laminated pipe at room temperature 100 kgrn'/5
I added ec2's 1711 energy, but it did not destroy it.

2〜4  び     l〜4 実施例1と同様にして第−表に示す配合の樹脂組成物に
よる4層の積層管を製造し、その物性を測定した。
2-4 and 1-4 Four-layer laminated pipes were manufactured using resin compositions having the formulations shown in Table 1 in the same manner as in Example 1, and their physical properties were measured.

結果は第−表に示す通りであった。The results were as shown in Table 1.

なお、外側より数えて最外層と最内層の組成は実施例1
と同じである。
The composition of the outermost layer and the innermost layer counting from the outside is as in Example 1.
is the same as

Claims (1)

【特許請求の範囲】 1、中間層として、ガラス繊維、無機充填剤及び不飽和
カルボン酸変成ポリオレフィンを含有するポリプロピレ
ン系樹脂層を有することを特徴とする少なくとも3層か
らなるポリオレフィン系多層構造管。 2、ポリプロピレン系樹脂層が、ガラス繊維35〜60
重量%、無機充填剤0.1〜20重量%を有する外層と
、ガラス繊維10〜30重量%、無機充填剤20〜50
重量%を有する内層とからなる特許請求の範囲第1項記
載の多層構造管。
[Scope of Claims] 1. A polyolefin multilayer structure tube consisting of at least three layers, characterized in that it has a polypropylene resin layer containing glass fiber, an inorganic filler, and an unsaturated carboxylic acid-modified polyolefin as an intermediate layer. 2. The polypropylene resin layer is made of glass fiber 35-60
% by weight, outer layer with 0.1-20% by weight of inorganic filler and 10-30% by weight of glass fiber, 20-50% by weight of inorganic filler.
% by weight of the inner layer.
JP15403384A 1984-07-26 1984-07-26 Multilayer structure pipe Pending JPS6132743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15403384A JPS6132743A (en) 1984-07-26 1984-07-26 Multilayer structure pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15403384A JPS6132743A (en) 1984-07-26 1984-07-26 Multilayer structure pipe

Publications (1)

Publication Number Publication Date
JPS6132743A true JPS6132743A (en) 1986-02-15

Family

ID=15575437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15403384A Pending JPS6132743A (en) 1984-07-26 1984-07-26 Multilayer structure pipe

Country Status (1)

Country Link
JP (1) JPS6132743A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1145844A3 (en) * 2000-04-13 2002-07-24 Gerhard Rosenberg Pipe, fitting or piece from extruded, injection-moulded or blow-moulded plastic
JP2003535718A (en) * 2000-06-08 2003-12-02 ワーフィン ベスローテン フェンノートシャップ Multi-layer tube
US6846533B2 (en) 2001-05-08 2005-01-25 Pactiv Corporation Sheets made of filled polymer compositions
JP2015101508A (en) * 2013-11-25 2015-06-04 積水化学工業株式会社 Convergence glass fiber, polyethylene-based resin composition and molded body
WO2016133167A1 (en) * 2015-02-20 2016-08-25 積水化学工業株式会社 Fiber-reinforced composite pipe and cold/warm water piping system
JP2016155363A (en) * 2015-02-20 2016-09-01 積水化学工業株式会社 Multi-layered pipe material
JP2016194360A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
JP2016194359A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
JP2016196914A (en) * 2015-04-03 2016-11-24 積水化学工業株式会社 Multilayer pipe
JP2016196122A (en) * 2015-04-03 2016-11-24 積水化学工業株式会社 Multi-layer pipeline
JP2016217426A (en) * 2015-05-19 2016-12-22 積水化学工業株式会社 Cold/hot water conduit piping system
JP2016223525A (en) * 2015-05-29 2016-12-28 積水化学工業株式会社 Polyolefin resin multilayer pipe
KR20170105579A (en) * 2015-02-20 2017-09-19 세키스이가가쿠 고교가부시키가이샤 Fiber reinforced composite pipe and hot / cold water piping system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1145844A3 (en) * 2000-04-13 2002-07-24 Gerhard Rosenberg Pipe, fitting or piece from extruded, injection-moulded or blow-moulded plastic
JP2003535718A (en) * 2000-06-08 2003-12-02 ワーフィン ベスローテン フェンノートシャップ Multi-layer tube
US6846533B2 (en) 2001-05-08 2005-01-25 Pactiv Corporation Sheets made of filled polymer compositions
US6893694B2 (en) * 2001-05-08 2005-05-17 Pactiv Corporation Containers and sheets made of filled polymer compositions
WO2002090102A3 (en) * 2001-05-08 2007-10-25 Pactiv Corp Reinforced polymer containers and sheets
JP2015101508A (en) * 2013-11-25 2015-06-04 積水化学工業株式会社 Convergence glass fiber, polyethylene-based resin composition and molded body
KR20170105579A (en) * 2015-02-20 2017-09-19 세키스이가가쿠 고교가부시키가이샤 Fiber reinforced composite pipe and hot / cold water piping system
WO2016133167A1 (en) * 2015-02-20 2016-08-25 積水化学工業株式会社 Fiber-reinforced composite pipe and cold/warm water piping system
JP2016155363A (en) * 2015-02-20 2016-09-01 積水化学工業株式会社 Multi-layered pipe material
US10544886B2 (en) 2015-02-20 2020-01-28 Sekisui Chemical Co., Ltd. Fiber-reinforced composite pipe and cold/warm water piping system
CN107250640A (en) * 2015-02-20 2017-10-13 积水化学工业株式会社 Fiber reinforced composite pipe and cold and hot water piping system system
JP2016194360A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
JP2016194359A (en) * 2015-04-02 2016-11-17 積水化学工業株式会社 Heat insulation piping system
JP2016196122A (en) * 2015-04-03 2016-11-24 積水化学工業株式会社 Multi-layer pipeline
JP2016196914A (en) * 2015-04-03 2016-11-24 積水化学工業株式会社 Multilayer pipe
JP2016217426A (en) * 2015-05-19 2016-12-22 積水化学工業株式会社 Cold/hot water conduit piping system
JP2016223525A (en) * 2015-05-29 2016-12-28 積水化学工業株式会社 Polyolefin resin multilayer pipe

Similar Documents

Publication Publication Date Title
JPS6132743A (en) Multilayer structure pipe
US4440911A (en) Modified polyethylene and laminate thereof
DE60027479T2 (en) RESIN STRUCTURE AND ITS USE
US5106564A (en) Method of and apparatus for making fiber-reinforced polymer compositions
JP4961204B2 (en) Pressure vessel and method for manufacturing the same
KR101283391B1 (en) Manufacturing method for aramid fiber reinforced polyvinylchloride pipe
CN104802482A (en) Three-layer co-extruded PP (polypropylene)/PE (polyethylene)/PP upward-blown film and preparation method thereof
US4460646A (en) Adhesive resin composition and laminate thereof
CN106893524A (en) A kind of plastic-aluminum pipe adhering resin
JP4961202B2 (en) Pressure vessel and method for manufacturing the same
JP4961203B2 (en) Pressure vessel and method for manufacturing the same
JP4609743B2 (en) Resin structure and its use
CN115551787A (en) Extrusion molded article for tube container, and tube container
AU632962B2 (en) Polyethylene resin composition
JP6707225B2 (en) Method for producing carbon fiber reinforced/modified polypropylene resin
JP2002241546A (en) Member for fuel treatment
CN106704734B (en) A kind of hot winding structure pipe production technology of novel PO/PET plastic alloy
CN103062520B (en) Novel high pressure-resistant HDPE water pipes
JP2865353B2 (en) Polyolefin resin composition and use thereof
JP3017960B2 (en) Thermoplastic polymer composite panel for plywood replacement
US4087401A (en) Silica flour containing reinforced resin compositions and articles formed thereof
CN111152532B (en) PE shrink film
JPH01167370A (en) Thermoplastic resin composition
JPS6178644A (en) Multilayer film
JPH0885174A (en) Multilayer hollow molded form