JPS6132363A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPS6132363A
JPS6132363A JP59151245A JP15124584A JPS6132363A JP S6132363 A JPS6132363 A JP S6132363A JP 59151245 A JP59151245 A JP 59151245A JP 15124584 A JP15124584 A JP 15124584A JP S6132363 A JPS6132363 A JP S6132363A
Authority
JP
Japan
Prior art keywords
fuel
supply pipe
gas
oxidizer
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59151245A
Other languages
Japanese (ja)
Inventor
Kenzo Ishii
石井 謙藏
Kiyoshi Ishibashi
石橋 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59151245A priority Critical patent/JPS6132363A/en
Publication of JPS6132363A publication Critical patent/JPS6132363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To suppress the pressure difference between the fuel system and the oxidant system by connecting a fuel supply pipe, an oxidant supply pipe and an inactive gas supply pipe together by breaking valves and gradually closing the breaking valves at the end of purging. CONSTITUTION:A fuel cell 1 where a fuel gas and an oxidant gas are supplied and discharged through pipes 9a and 9b and pipes 10a and 10b, is installed in a pressure case 8 where an inactive gas is supplied and discharged through pipes 11a and 11b. The fuel supply pipe 9a, the oxidant supply pipe 10a and the inactive gas supply pipe 11a are connected together by purge pipes 12 and 13 which have breaking valves 14 and 15 controlled by valve-closure-controlling element 19 and 20. Because of the above structure, it is possible to prevent gas crossing by suppressing the pressure difference between the fuel system and the oxidant system by purging the inactive gas by opening the breaking valves 14 and 15 and then gradually decreasing the amount of the inactive gas fed into the fuel cell 1 by controlling the breaking valves 14 and 15.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池発電ンステム、特に単電池を多数積層
した積層電池を容器内に収納して使用する場合に好適な
燃料電池発電システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell power generation system, and particularly to a fuel cell power generation system suitable for use when a stacked battery in which a large number of single cells are stacked is housed in a container.

〔発明の背景〕[Background of the invention]

燃料および酸化剤から電気エネルギーを生成する燃料電
池は古くから知られている。
Fuel cells, which produce electrical energy from a fuel and an oxidant, have been known for a long time.

この燃料電池は、燃料極、燃料極よシ装置された酸化剤
極、これら両極間に両極に接触して配置した電解質、集
電板を兼用するセパレータ、燃料極および酸化剤極とセ
パレータとの間に充填した燃料ガス、そして酸化剤用の
通路とを単電池の基本構成とし、この単電池を複数個積
層して積層電池本体を構成している。
This fuel cell consists of a fuel electrode, an oxidizer electrode attached to the fuel electrode, an electrolyte disposed between these two electrodes in contact with both electrodes, a separator that also serves as a current collector, and a combination of the fuel electrode, oxidizer electrode, and separator. A fuel gas filled in between and a passage for an oxidizing agent are the basic structure of a single cell, and a plurality of these single cells are stacked to form a stacked battery body.

このような−4tlI滅において、積層電池本体の温度
を制御するために液冷却式あるいはガス冷却式の冷却板
が積層電池本体に挿入されることがある。
In such a case, a liquid-cooled or gas-cooled cooling plate may be inserted into the stacked battery body to control the temperature of the stacked battery body.

この場合、積層電池本体に対して燃料ガスおよび酸化剤
ガスを供給するために、積層電池本体の外部周囲にマニ
ホールドが取シ付けられるか、あるいは積層電池本体の
内部周縁部にマニホールドが取シ付けられる。
In this case, in order to supply fuel gas and oxidant gas to the stacked battery main body, a manifold is installed around the outside of the stacked battery main body, or a manifold is installed around the internal periphery of the stacked battery main body. It will be done.

このような構成の燃料電池発電システムでは、燃料電池
としての運転前に不活性ガスで電池内およびガス供給系
をパージすることが行なわれる。
In a fuel cell power generation system having such a configuration, the inside of the cell and the gas supply system are purged with an inert gas before operation as a fuel cell.

これは、電池およびガス供給系の残留ガスと運転に伴っ
て流入する燃料ガスあるいは酸化剤ガスとの混合によシ
、燃焼、爆発を避けるためである。
This is to avoid oxidation, combustion, or explosion due to mixing of residual gas in the battery and gas supply system with fuel gas or oxidizing gas that flows in during operation.

従来は、この不活性ガスのパージ終了後、燃料ガスおよ
び酸化剤ガスを供給する運転方式が採られていたが、こ
の方式では不活性ガスから燃料ガスおよび酸化剤ガスへ
の切換時に圧力変化亦生じ、積層電池本体におけるガス
クロスの原因となっていた。
Conventionally, an operation method was adopted in which fuel gas and oxidant gas were supplied after the inert gas purge was completed, but in this method, there was no pressure change or change when switching from inert gas to fuel gas and oxidant gas. This caused gas cross in the stacked battery body.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、不活性ガスバー・ジ後の燃料ガスおよ
び酸化剤ガスの流入時に生ずる圧力変化を抑制すること
ができる燃料電池発電システムを提供するにある。
An object of the present invention is to provide a fuel cell power generation system that can suppress pressure changes that occur when fuel gas and oxidant gas flow in after an inert gas barge.

〔発明の概要〕[Summary of the invention]

本発明は、不活性、ガス供給配管と、燃料ガス供給配管
および酸化剤ガス供給配管の少なズともいずれか一方と
の間を、遮断弁を介して連通し、遮流入量を徐々に減少
するようにしたことを特徴とする。
The present invention communicates between an inert gas supply pipe and at least one of a fuel gas supply pipe and an oxidant gas supply pipe via a shutoff valve, and gradually reduces the amount of blocked inflow. It is characterized by the following.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面によって説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図および第2図は燃料電池発電システムの要部横断
面図および要部縦断面図である。
FIGS. 1 and 2 are a cross-sectional view and a vertical cross-sectional view of a main part of a fuel cell power generation system.

複数の単電池および冷却用セルから成る積層電池本体2
は、ペース3上に設置され、その周囲にマニホールド4
a、4b、5a、5bが取シ付けられている。ペース3
に対向する締付金具6とペース3間はボルト7で橋絡さ
れ、積層電池本体2に適轟な締付は圧力を与えている。
Laminated battery body 2 consisting of multiple cells and cooling cells
is installed on pace 3, and manifold 4 is installed around it.
a, 4b, 5a, and 5b are attached. pace 3
A bolt 7 bridges between the fastening fitting 6 and the pace 3 which face each other, and proper tightening applies pressure to the stacked battery body 2.

このような構成ユニットは圧力容器8内に収納され、図
示しない負荷に接続されている。マニホールド4a、 
4bには燃料供給配管9aと排出配管9bが接続され、
マニホールド5f、5bには酸化剤供給配管10aと排
出配管10bが接続され、更に圧力容器8には不活性ガ
ス供給配管11aと排出配管11bが接続されている。
Such a structural unit is housed in a pressure vessel 8 and connected to a load (not shown). manifold 4a,
A fuel supply pipe 9a and a discharge pipe 9b are connected to 4b,
An oxidizing agent supply pipe 10a and a discharge pipe 10b are connected to the manifolds 5f and 5b, and an inert gas supply pipe 11a and a discharge pipe 11b are further connected to the pressure vessel 8.

燃料供給配管9aと不活性ガス供給配管112間、また
不活性ガス供給配管11aと酸化剤供給配管108間は
、それぞれ遮断弁14.15を有するパージ用配管12
.13で接続されている。遮断弁14.15にはそれぞ
れ閉弁動作制御要素19.20が付設されている。燃料
供給配管9a、不活性ガス供給配管10aおよび酸化剤
供給配管11gにはそれぞれ遮断弁16゜17および1
8が設けられ、更にパージ用配管12.13には矢印方
向への流入、つまシネ活性ガス供給配管11aから燃料
供給配管9aおよび酸化剤供給配管10aへの流入を許
す逆止弁21゜22が接続されている。
Between the fuel supply pipe 9a and the inert gas supply pipe 112, and between the inert gas supply pipe 11a and the oxidizer supply pipe 108, purge pipes 12 each have a shutoff valve 14, 15.
.. It is connected by 13. Each shut-off valve 14.15 is associated with a valve-closing control element 19.20. Shutoff valves 16, 17 and 1 are installed in the fuel supply pipe 9a, inert gas supply pipe 10a and oxidizer supply pipe 11g, respectively.
8 is provided in the purge pipes 12 and 13, and check valves 21 and 22 are provided in the purge pipes 12 and 13 to allow inflow in the direction of the arrow and from the active gas supply pipe 11a to the fuel supply pipe 9a and the oxidizer supply pipe 10a. It is connected.

このような構成において、燃料供給配管9aから燃料、
つまり改質ガス、化学プラントの副生水素、ボンベ充填
ガス等が、また酸化剤供給配管10aからコンプレッサ
による大気からの空気やボンベ充填空気等が、積層電池
本体に供給されている。一方、圧力容器8へは不活性ガ
ス供給配管11aから液体窒素からの蒸発ガスやボンベ
充填ガス等が供給されている。
In such a configuration, fuel is supplied from the fuel supply pipe 9a,
That is, reformed gas, by-product hydrogen from a chemical plant, cylinder filling gas, etc., as well as air from the atmosphere by a compressor, cylinder filling air, etc., are supplied from the oxidizing agent supply pipe 10a to the main body of the stacked battery. On the other hand, the pressure vessel 8 is supplied with evaporated gas from liquid nitrogen, cylinder filling gas, etc. from an inert gas supply pipe 11a.

次に、これらのガスの供給手順について説明する。Next, the procedure for supplying these gases will be explained.

先ず遮断弁16.17を閉じ、遮断弁18を開き容器8
に不活性ガスを流入すると共に遮断弁14゜15を開き
、燃料系の流路と酸化剤系の流路を不活性ガスでパージ
する。パージ終了時、遮断弁16.17を開いて燃料お
よび酸化剤を供給開始する。
First, close the shutoff valves 16 and 17, open the shutoff valve 18, and open the container 8.
At the same time, the shutoff valves 14 and 15 are opened to purge the fuel system flow path and the oxidizer system flow path with the inert gas. At the end of the purge, shutoff valves 16,17 are opened to begin supplying fuel and oxidizer.

しかしながら、遮−新井16,17を開いた時点では燃
料および酸化剤の流量は安定しないので、−ここで遮断
弁14.15を閉じてしまうと燃料および酸化剤σ渡1
および圧力が不安定となシ、積層電池本体2を流れる燃
料と酸化剤間の差圧が大きくなシ積層電池本体2におけ
るガスクロスの原し、この間に燃料および酸化剤の流量
を安定領域まで増加される。その後、遮断弁14.15
が閉じられた時には、燃料および酸化剤の流量および圧
力が安定しておシ、積層電池本体2の燃料系流路と酸化
剤系流路間に生ずる差圧も小さくできる。
However, since the flow rates of fuel and oxidizer are not stable when the shutoff valves 16 and 17 are opened, if the shutoff valves 14 and 15 are closed at this point, the flow rate of fuel and oxidant σ will be 1.
When the pressure is unstable and the pressure difference between the fuel flowing through the stacked battery body 2 and the oxidant is large, this is the source of gas cross in the stacked battery body 2. During this time, the flow rate of the fuel and oxidizer is reduced to a stable area. will be increased. After that, the shutoff valve 14.15
When closed, the flow rate and pressure of the fuel and oxidizer are stabilized, and the differential pressure generated between the fuel system flow path and the oxidizer system flow path of the stacked battery main body 2 can also be reduced.

上述の説明は、不活性ガスの供給から燃料および酸化剤
への切換え時の手順について説明したが、燃料および酸
化剤から不活性ガスへの供給切換え時は、上述の手順と
は逆に燃料および酸化剤を除徐に減しつつ、不活性ガス
を増加して行けば良い。
The above explanation describes the procedure when switching from the inert gas supply to the fuel and oxidizer, but when switching the supply from the fuel and oxidizer to the inert gas, the fuel and The amount of inert gas may be increased while gradually decreasing the amount of oxidizing agent.

また、燃料系および酸化剤系から不活性ガス系への逆流
は、不活性ガスを他よシ圧力を高くすること、または逆
止弁によシ防止できる。
Further, backflow from the fuel system and oxidizer system to the inert gas system can be prevented by increasing the pressure of the inert gas, or by using a check valve.

上記の実施例は、燃料系および酸化剤系の両者を不活性
ガスでパージしているが、燃料系および酸化剤系の少な
くともいずれか一方をパージする場合にも適用できる。
In the above embodiment, both the fuel system and the oxidizer system are purged with an inert gas, but the present invention can also be applied to the case where at least one of the fuel system and the oxidizer system is purged.

第3図は各遮断弁の動作と圧力変動の関係を示しており
、第4図は従来方式による各遮断弁の動作と圧力変動の
関係を示している。
FIG. 3 shows the relationship between the operation of each shutoff valve and pressure fluctuation, and FIG. 4 shows the relationship between the operation of each shutoff valve and pressure fluctuation according to the conventional system.

両図の比較から解かるように、遮断弁14゜に燃料系と
酸化剤系間の圧力変化は小さく抑制され、一方、第4図
に示すように1パージ用配管12.13、遮断弁14.
15および閉弁動作制御要素19.20を有していない
場合は、極く短い時間Δを秒で閉じられたシ、不揃いが
生ずるため、燃料系と酸化剤系間に圧力変動が生ずる。
As can be seen from the comparison between the two figures, the pressure change between the fuel system and the oxidizer system is suppressed to a small extent by the shutoff valve 14°, while as shown in FIG. ..
15 and the valve closing operation control elements 19 and 20, the valve is closed within an extremely short time Δ of seconds, resulting in misalignment and pressure fluctuations between the fuel system and the oxidizer system.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、遮断弁を有するパージ用
配管を設け、遮断弁に閉弁動作制御要素を付設したため
、燃料系と酸化剤系間の圧力変動を抑制して積層電池本
体でのガスクロスを防止することができる。
As explained above, the present invention provides a purge pipe with a shutoff valve and attaches a valve-closing operation control element to the shutoff valve, thereby suppressing pressure fluctuations between the fuel system and the oxidizer system and reducing the pressure fluctuation in the stacked battery body. Gas cross can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による燃料電池発電システム
の要部を示す横断面図、第2図は第1図の燃料電池発電
システムの要部を示す縦断面図、第3図は第1図の各遮
断弁の動作と圧力変動の関係を示す特性図、第4図は従
来の各遮断弁の動作と圧力変動の関係を示す特性図でち
る。 2・・・積層電池本体、4a、4b、5a、5b・・・
マニホールド、8・・・圧力容器、9a・・・燃料供給
配管、10a・・・酸化剤供給配管、11a・・・不活
性ガス供給配管、12.13・・・パージ用配管、It
、15・・・遮断弁、19.20・・・閉弁動作制御要
素。
FIG. 1 is a cross-sectional view showing the main parts of a fuel cell power generation system according to an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view showing the main parts of the fuel cell power generation system of FIG. 1, and FIG. FIG. 1 is a characteristic diagram showing the relationship between the operation of each shutoff valve and pressure fluctuation, and FIG. 4 is a characteristic diagram showing the relationship between the operation of each conventional shutoff valve and pressure fluctuation. 2...Laminated battery body, 4a, 4b, 5a, 5b...
Manifold, 8... Pressure vessel, 9a... Fuel supply pipe, 10a... Oxidizer supply pipe, 11a... Inert gas supply pipe, 12.13... Purge pipe, It
, 15... Shutoff valve, 19.20... Valve closing operation control element.

Claims (1)

【特許請求の範囲】[Claims] 1、積層電池本体に燃料、不活性ガスおよび酸化剤を供
給するための燃料供給配管、不活性ガス供給配管および
酸化剤供給配管を接続して成る燃料電池発電システムに
おいて、上記燃料供給配管および酸化剤供給配管の少な
くともいずれか一方と、上記不活性ガス供給配管との間
を、遮断弁を有するパージ用配管によって接続し、上記
遮断弁は閉弁動作制御要素を備えたことを特徴とする燃
料電池発電システム。
1. In a fuel cell power generation system comprising a fuel supply pipe, an inert gas supply pipe, and an oxidizer supply pipe for supplying fuel, inert gas, and oxidizer to the stacked battery main body, the fuel supply pipe and the oxidizer supply pipe are connected to each other. At least one of the agent supply pipes and the inert gas supply pipe are connected by a purge pipe having a cutoff valve, and the cutoff valve is provided with a valve closing operation control element. Battery power generation system.
JP59151245A 1984-07-23 1984-07-23 Fuel cell power generation system Pending JPS6132363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59151245A JPS6132363A (en) 1984-07-23 1984-07-23 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59151245A JPS6132363A (en) 1984-07-23 1984-07-23 Fuel cell power generation system

Publications (1)

Publication Number Publication Date
JPS6132363A true JPS6132363A (en) 1986-02-15

Family

ID=15514433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59151245A Pending JPS6132363A (en) 1984-07-23 1984-07-23 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPS6132363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310309C (en) * 2002-06-19 2007-04-11 新光电气工业株式会社 Method of plugging through-holes in silicon substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828891A (en) * 1971-08-19 1973-04-17
JPS4892779A (en) * 1972-03-13 1973-12-01
JPS50106235A (en) * 1973-08-02 1975-08-21
JPS55154075A (en) * 1979-05-21 1980-12-01 Hitachi Ltd Automatic starting method for fuel battery
JPS56114285A (en) * 1980-02-14 1981-09-08 Central Res Inst Of Electric Power Ind Fuel cell
JPS58163182A (en) * 1982-03-23 1983-09-27 Mitsubishi Electric Corp Fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828891A (en) * 1971-08-19 1973-04-17
JPS4892779A (en) * 1972-03-13 1973-12-01
JPS50106235A (en) * 1973-08-02 1975-08-21
JPS55154075A (en) * 1979-05-21 1980-12-01 Hitachi Ltd Automatic starting method for fuel battery
JPS56114285A (en) * 1980-02-14 1981-09-08 Central Res Inst Of Electric Power Ind Fuel cell
JPS58163182A (en) * 1982-03-23 1983-09-27 Mitsubishi Electric Corp Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310309C (en) * 2002-06-19 2007-04-11 新光电气工业株式会社 Method of plugging through-holes in silicon substrate

Similar Documents

Publication Publication Date Title
CA2316380C (en) Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
JPH06251788A (en) Stopping and storing method for solid polymer electrolyte fuel cell
JP2924009B2 (en) How to stop fuel cell power generation
EP1872429B1 (en) A fuel cell and a method for operating said fuel cell
JPH1167254A (en) Fuel cell power generating plant and its start/stop operation method
US20120258375A1 (en) Fuel cell system and method for stopping power generation in fuel cell system
JPH08195210A (en) Fuel-cell system
JPH07272738A (en) Fuel cell system
US6744235B2 (en) Oxygen isolation and collection for anode protection in a solid-oxide fuel cell stack
JPS6132363A (en) Fuel cell power generation system
JPS63116373A (en) Fuel cell operating method
CN101663786A (en) Fuel cell system
US20090263697A1 (en) Fuel cell
JPH05225995A (en) Fuel cell
JP4100169B2 (en) Fuel cell
JPS60208059A (en) Protection device of fuel cell
JP2001351666A (en) Fuel cell system using phosphoric acid and stopping method of the same
JPH08190929A (en) Fuel cell power generating plant
JPS60212966A (en) Fuel cell operating system
JPH0654674B2 (en) Fuel cell power generator
JPH0613095A (en) Method for raising and lowering temperature of internal reformed molten carbonate fuel cell
JPH1154143A (en) Fuel cell
JPS626309B2 (en)
JPH02132767A (en) Stopping method for fuel cell system
JPS61147465A (en) Fuel cell power generation system