JPS6132113B2 - - Google Patents

Info

Publication number
JPS6132113B2
JPS6132113B2 JP52059094A JP5909477A JPS6132113B2 JP S6132113 B2 JPS6132113 B2 JP S6132113B2 JP 52059094 A JP52059094 A JP 52059094A JP 5909477 A JP5909477 A JP 5909477A JP S6132113 B2 JPS6132113 B2 JP S6132113B2
Authority
JP
Japan
Prior art keywords
welding
feed rate
wire
welding current
wire feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52059094A
Other languages
Japanese (ja)
Other versions
JPS53144442A (en
Inventor
Kosaku Futamura
Tooru Iesawa
Kazuhiro Saito
Takanari Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOMOEGUMI IRON WORKS
Original Assignee
TOMOEGUMI IRON WORKS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOMOEGUMI IRON WORKS filed Critical TOMOEGUMI IRON WORKS
Priority to JP5909477A priority Critical patent/JPS53144442A/en
Publication of JPS53144442A publication Critical patent/JPS53144442A/en
Publication of JPS6132113B2 publication Critical patent/JPS6132113B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】 この発明は、複数の鋼管を軸方向に接続する
際、あるいは梁通しパイプ柱の複数の仕口部など
を接続する際、複数の溶接部を有する管体の立向
自動溶接法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention is useful for connecting a plurality of steel pipes in the axial direction, or when connecting a plurality of joint parts of a beam-through pipe column, etc. Concerning automatic welding methods.

従来、複数の鋼管50〜52(以下パイプとい
う)を軸方向に接続する場合(第7図)、または
ブラケツト53が取付けられたユニツト管54と
複数のパイプ55〜57を接続する場合(第8
図)、ターニングローラ58等によりパイプ50
〜52または55〜57を周方向に回転させつつ
下向姿勢で溶接する方法が一般的であつた。
Conventionally, when connecting a plurality of steel pipes 50 to 52 (hereinafter referred to as pipes) in the axial direction (Fig. 7), or when connecting a unit pipe 54 to which a bracket 53 is attached and a plurality of pipes 55 to 57 (Fig.
), the pipe 50 is
52 or 55 to 57 were welded in a downward position while rotating in the circumferential direction.

ところが、第7図を例にとると、各パイプ50
〜52の各開先状態を一致させることは不可能に
近く開先間隔,開先角度,目違い等により各開先
断面積にパラツキが生じる。したがつて、手動,
半自動にかかわらず各溶接継手間の溶接速度に変
化が生じ、パイプの回転速度に対し溶接速度が対
応しえないこととなる。前記両速度が対応しない
場合には、スラグ巻込みや融合不良等の欠陥を招
くこととなる。これを防止するために、従来では
パイプを適宜断続的に所定速度で回転させたり、
停止あるいは逆転して溶接を行なうなどの非能率
的手段の選択を余儀なくされる等の問題があつ
た。
However, taking FIG. 7 as an example, each pipe 50
It is almost impossible to match the groove conditions of grooves 52 to 52, and variations occur in the cross-sectional area of each groove due to groove intervals, groove angles, mismatches, etc. Therefore, manually,
Regardless of whether it is semi-automatic or not, the welding speed between each welded joint will change, and the welding speed will not be able to correspond to the rotational speed of the pipe. If the two speeds do not correspond, defects such as slag entrainment and poor fusion will occur. In order to prevent this, conventional methods have been to rotate the pipe intermittently at a predetermined speed,
There were problems such as being forced to choose inefficient means such as stopping or reversing the welding process.

この発明は前記事情に鑑み創案されたもので、
設定した同一の周速度で複数の管体を回転させ、
複数の溶接継手を同時に並列してエレクトロガス
溶接する自動溶接法であつた、各溶接継手ごとに
ワイヤ送給量を段階的に変更し、これに応じて基
準ワイヤ突出長さに対応して設定された基準溶接
電流の上下限値を変更できるようにし、設定周速
度において溶接電流を検出し、これを基準溶接電
流の上下限と比較することにより検出した溶接電
流が前記上下限値の範囲内にあるときはワイヤ送
給量を変更せず溶接を続行し、検出した溶接電流
が前記上下限値の範囲外になつたときはワイヤ送
給量を一段上または下のワイヤ送給量に変更して
溶接させるようにしたもので、その目的は複数の
溶接部をパイプの回転速度に対し溶接速度を対応
させ、同時に並行して溶接可能とするものであつ
て、一回転で自動溶接するエレクトロガス溶接法
を提案するものである。
This invention was created in view of the above circumstances,
Rotate multiple tubes at the same set circumferential speed,
This was an automatic welding method in which multiple welding joints were electrogas welded in parallel at the same time.The wire feed amount was changed in stages for each welding joint, and the wire feed amount was set accordingly according to the standard wire protrusion length. The upper and lower limits of the standard welding current can be changed, and the welding current is detected at the set circumferential speed and compared with the upper and lower limits of the standard welding current to ensure that the detected welding current is within the range of the upper and lower limits. When the wire feed rate is , welding continues without changing the wire feed rate, and when the detected welding current is outside the range of the upper and lower limit values, the wire feed rate is changed to the next higher or lower wire feed rate. The purpose is to match the welding speed of multiple welded parts to the rotational speed of the pipe, so that they can be welded simultaneously in parallel. This paper proposes a gas welding method.

〔構成の概要説明〕 この発明で使用する自動溶接装置の概要構成を
第1図に示す。この自動溶接装置はエレクトロガ
ス溶接装置であつて、複数のパイプ1,2,3を
周方向に回転させつつ軸方向に溶接する場合等、
複数のパイプに複数の溶接継手たとえば4,5が
存在する場合、これらの溶接継手4,5の溶接を
パイプ1,2,3を原則として一定周速度に同期
して回転させ同時に並行して行なうようになつて
いる。
[Overview of Configuration] FIG. 1 shows a general configuration of an automatic welding device used in the present invention. This automatic welding device is an electrogas welding device, and is used when welding a plurality of pipes 1, 2, 3 in the axial direction while rotating them in the circumferential direction, etc.
When multiple weld joints 4 and 5 exist on multiple pipes, these weld joints 4 and 5 are welded simultaneously and in parallel by rotating pipes 1, 2, and 3 in principle in synchronization with a constant circumferential speed. It's becoming like that.

すなわち、自動溶接装置は、ターニングローラ
6を利用したパイプ回転装置7と、各溶接継手
4,5に対応してそれぞれ個別に溶接トーチ8の
溶接ワイヤ9を送給可能なワイヤ送給装置10
と、溶接状態の制御を行なう溶接制御装置11
と、溶接電源12とから構成される。
That is, the automatic welding device includes a pipe rotating device 7 using a turning roller 6, and a wire feeding device 10 that can feed welding wire 9 of a welding torch 8 individually corresponding to each welding joint 4, 5.
and a welding control device 11 that controls the welding state.
and a welding power source 12.

〔制御動作の原理説明〕 エレクトロガス自動溶接法において適正な溶接
条件で溶接されているワイヤ9の送給量f〔g/
min〕が一定の時の溶接電流I(A)とワイヤ突出長
さl(mm)との関係(負持性)は第4図に示す通
りである。なお、第4図にはワイヤの送給量が異
なるもの三組が平行線で示されている。また前記
適正な溶接条件の組合せの例としては、I=300
〔A〕,V=36〔V〕の組合せ、I=400〔A〕,V
=42〔V〕の組合せがある。
[Explanation of the principle of control operation] The feeding amount f [g/
The relationship (bearing capacity) between welding current I (A) and wire protrusion length l (mm) when [min] is constant is as shown in FIG. In addition, in FIG. 4, three sets of wires having different feeding amounts are shown by parallel lines. Further, as an example of the above-mentioned combination of appropriate welding conditions, I=300
[A], V = 36 [V] combination, I = 400 [A], V
There are =42 [V] combinations.

さらに、ワイヤ突出長さlを一定にした時溶融
速度m〔g/min〕(ワイヤの送給量に等しい。)
と溶接電流I(A)との関係は第5図に示す通りであ
る。
Furthermore, when the wire protrusion length l is constant, the melting rate m [g/min] (equal to the wire feeding amount).
The relationship between I(A) and welding current I(A) is as shown in FIG.

さて、パイプ1,2,3の接続にあたつては、
各溶接継手4,5の溶接を同時にスタートさせて
行うが、その際各溶接継手4,5の開先断面積の
大小により溶融プール33の上昇速度にバラツキ
が生じる。
Now, when connecting pipes 1, 2, and 3,
Welding of the welding joints 4 and 5 is started simultaneously, but at this time, the rising speed of the molten pool 33 varies depending on the size of the groove cross-sectional area of the welding joints 4 and 5.

すなわち、パイプ1,2,3は同一の設定周速
度で回転されるため、開先断面積の大(または
小)なる溶接継手ほど溶融プール33の上昇速度
が遅れる(または早くなる)こととなる。したが
つて、この開先断面積が大(または小)なる溶接
継手においては溶接ワイヤ9の突出長さlが増加
(または減少)する。
That is, since the pipes 1, 2, and 3 are rotated at the same set circumferential speed, the welded joint with a larger (or smaller) groove cross-sectional area will have a slower (or faster) rising speed of the molten pool 33. . Therefore, in a welded joint in which the groove cross-sectional area is large (or small), the protruding length l of the welding wire 9 increases (or decreases).

そこで、この発明においてはあるワイヤ送給量
で溶接を行なうとき、第4図に示すように基準ワ
イヤ突出長さの上下限値はワイヤ送給量に応じた
基準溶接電流の上限値及び下限値と対応するの
で、予め設定した基準溶接電流の上下限値と比較
することにより、溶接ワイヤ9の突出長さlが増
加(または減少)して上限(または下限)になつ
た時、予め段階的に変更できるように設定したワ
イヤ送給量を増加(または減少)に変更すること
により各溶接継手ごとの溶融プール33の面が
略々一定になるように調節してワイヤ突出長さが
常に一定範囲内にあつて、その範囲内のワイヤ送
給量の適正な電流、電圧において溶接できるよう
にしたものである。
Therefore, in this invention, when welding is performed at a certain wire feed rate, the upper and lower limits of the standard wire protrusion length are set to the upper and lower limits of the standard welding current according to the wire feed rate, as shown in FIG. Therefore, by comparing the upper and lower limits of the reference welding current set in advance, when the protruding length l of the welding wire 9 increases (or decreases) and reaches the upper limit (or lower limit), the By increasing (or decreasing) the wire feed rate, which was set to be able to be changed to Welding can be carried out at an appropriate current and voltage within the range and with the wire feed amount within that range.

なお、基準溶接電流値は適正溶接電流の上下限
値の範囲内に設定されている。
Note that the reference welding current value is set within the range of the upper and lower limits of the appropriate welding current.

各溶接継手ごとの適正溶接条件の調整は同一で
あるから、そのひとつの継手の調整を第4図によ
り次に説明する。
Since the adjustment of appropriate welding conditions for each weld joint is the same, the adjustment of one joint will be explained next with reference to FIG.

まず、始動時はワイヤ突出長さを最適長さl0
設定して溶接を開始する。管体が設定周速度で回
転され、最適ワイヤ突出長さl0(ワイヤ突出し長
さの下限l′と上限l″との中間の値とする。)で、か
つ前述の基準溶接電流設定値がI2(上限値I2′と下
限値I2″との中間の点とする。)で、パイプ間の開
先断面積が設定通り変らずに適正ワイヤ送給量で
溶接されているとすると、図面から明らかなよう
に溶接電流とこれに対応するワイヤ突出長さは
P2′,P2″点の略中点にあり、そのままの状態で溶
接される。
First, at startup, the wire protrusion length is set to the optimum length l 0 and welding is started. The tube body is rotated at a set circumferential speed, the optimum wire protrusion length is l 0 (the value is between the lower limit l′ and the upper limit l″ of the wire protrusion length), and the reference welding current setting value mentioned above is I 2 (point between the upper limit I 2 ′ and the lower limit I 2 ″), and assuming that the cross-sectional area of the groove between the pipes does not change as set and welding is performed with the appropriate wire feed rate. As is clear from the drawing, the welding current and the corresponding wire protrusion length are
It is located approximately at the midpoint between points P 2 ′ and P 2 ″, and is welded in that state.

そして前記開先断面積の変動があつて変動が少
なければ溶融プール表面の変動も小さくワイヤ突
出長さはl′とl″間を、また溶接電流もI2′とI2″間を
P2′,P2″線に沿つて変動し、一定のワイヤ送給量
で溶接を続行することができるのである。
If the groove cross-sectional area fluctuates and the fluctuation is small, the fluctuation of the molten pool surface will also be small .
The wire feed rate varies along the P 2 ′, P 2 ″ lines, and welding can be continued with a constant wire feed rate.

しかしながら実際の溶接においてはワイヤ送給
量が一定のままでは開先断面積の変動に対応して
適正に溶接することができない。
However, in actual welding, if the wire feed rate remains constant, it is not possible to properly weld in response to fluctuations in the groove cross-sectional area.

そこで例えば最初ワイヤ突出長さl′,l″の範囲
内でワイヤ突出長さの変化に対応して溶接電流I
がI2′からI2″の範囲で変化する初段階の一定のワ
イヤ送給量(これを第1段階送給量とする)で溶
接をなし、この第1段階の送給量が開先断面積に
対応しては少量の送給量である場合にはワイヤ突
出長さが徐々に長くなる。
Therefore, for example, initially within the range of wire protrusion lengths l' and l'', welding current I
Welding is performed with a constant wire feed rate at the initial stage (this is referred to as the first stage feed rate), where the wire feed rate changes in the range of I 2 ′ to I 2 ″, and this first stage feed rate is Corresponding to the cross-sectional area, the protruding length of the wire gradually increases when the feeding amount is small.

ワイヤ突出長さが長くなりl″を越えて長くなつ
た時検出電流値Iが、基準溶接電流の下限I2″よ
り小になつたことを検出し、ステツピングモータ
ーを駆動させワイヤ送給量を増加させると共に
P2″,P3″線に沿つてワイヤの送給量に対応する溶
接電流及び溶接電圧を順次増加させる。
When the protruding length of the wire becomes longer than l'', it is detected that the detected current value I has become smaller than the lower limit I2 '' of the standard welding current, and the stepping motor is driven to increase the wire feed rate. along with increasing
The welding current and welding voltage corresponding to the wire feed amount are sequentially increased along the P 2 ″ and P 3 ″ lines.

開先断面積に対応するワイヤー送給量を越える
と設定周速度よりも溶融プールの上昇が早くなり
ワイヤー突出長さは、除々に短くなり出す、ワイ
ヤー突出長さが、l″より短かくなつた時、ワイヤ
ー送給量の増加を停止させ、ワイヤ送給量を第1
段階の送給量より多い上の段階の一定送給量(第
2段階)とする。
When the wire feed rate corresponding to the groove cross-sectional area is exceeded, the molten pool rises faster than the set circumferential speed and the wire protrusion length gradually becomes shorter.The wire protrusion length becomes shorter than l''. When the wire feed rate is increased, the increase in the wire feed rate is stopped and the wire feed rate is
The fixed feeding amount of the upper stage (second stage) is greater than the feeding amount of the first stage.

このとき検出電流値Iが基準正溶接電流I3の下
限I3″とすると、第2段階の送給量におけるワイ
ヤ突出長さlと溶接電流Iの関係は、P3′とP3″を
むすぶ直線で表わされ、第2段階の送給量がその
時点における開先断面積と対応している場合に
は、ワイヤ突出長さがl″よりやや短い状態のまま
溶接が続行される。またその後第2段階の送給量
が次の時点における開先断面積に対応しては、少
量の送給量である場合(開先断面積が溶接の進行
に従つて大きくなつているときは、第2段階の送
給量になつた後に、また送給量不足の状態になり
得る)には、ワイヤ突出長さがl″より長くなつた
時、ワイヤ送給量を増加させ、第2段階より更に
上の段階の送給量とする。このときのワイヤ送給
量の調整原理は、前述の第1段階の送給量から第
2段階の送給量に切換える場合と同様である。
At this time, if the detected current value I is the lower limit I 3 '' of the standard normal welding current I 3 , then the relationship between the wire protrusion length l and the welding current I at the second stage feed rate is as follows: P 3 ′ and P 3 ″ If the feeding amount in the second stage corresponds to the cross-sectional area of the groove at that time, welding continues with the wire protruding length slightly shorter than l''. In addition, if the feed rate in the second stage is a small feed rate in relation to the groove cross-sectional area at the next point in time (if the groove cross-sectional area increases as welding progresses), , after reaching the second stage feed rate, the feed rate may become insufficient again), when the wire protrusion length becomes longer than l'', the wire feed rate is increased and the second stage feed rate is increased. The feed rate is set to the level higher than the stage. The principle of adjusting the wire feed rate at this time is the same as that for switching from the first stage feed rate to the second stage feed rate described above.

また、第2段階の送給量がその時点の開先断面
積に対応するワイヤ送給量より多い場合には、溶
融プールの上昇が早くなり、ワイヤ突出長さが
徐々に短かくなり、P3″,P3′線上を移動する。
In addition, if the feed rate in the second stage is larger than the wire feed rate corresponding to the groove cross-sectional area at that point, the molten pool will rise faster, the wire protrusion length will gradually become shorter, and P 3 ″, move on the P 3 ′ line.

ワイヤ突出長さがさらに短かくなりl′より短か
くなると、検出電流値Iが基準溶接電流I3の上限
I3′より大になつたことを検出し、ステツピング
モーターを駆動させ、ワイヤ送給量を減少させる
と共にP3′,P1′線上に沿つて溶接電流電圧を順次
減少させる。
When the wire protrusion length becomes shorter than l', the detected current value I becomes the upper limit of the reference welding current I3 .
It is detected that the welding current has become larger than I 3 ′, and the stepping motor is driven to reduce the wire feed amount and sequentially reduce the welding current voltage along the P 3 ′ and P 1 ′ lines.

開先断面積に対応するワイヤ送給量より減少す
ると、ワイヤ突出長さが徐々に長くなる。
When the wire feeding amount decreases below the amount corresponding to the groove cross-sectional area, the wire protrusion length gradually increases.

ワイヤ突出長さがI′より長くなつた時ワイヤ送
給量の減少を停止させ、ワイヤ送給量を第2段階
の送給量より少ない下の段階の一定送給量(第3
段階の送給量)とする。
When the wire protrusion length becomes longer than I', the decrease in wire feed rate is stopped, and the wire feed rate is set to a constant feed rate in the lower stage (third stage), which is smaller than the feed rate in the second stage.
The feed rate of each step).

このとき検出電流値Iが基準溶接電流I1の上限
I1′とすると、第3段階の送給量におけるワイヤ
突出長さlと溶接電流Iの関係はP1′とP1″を結ぶ
直線で表わされ、第3段階の送給量がその時点に
おける開先断面積と対応している場合には、ワイ
ヤ突出長さがl′よりやや長い状態のまま溶接が続
行される。
At this time, the detected current value I is the upper limit of the reference welding current I1.
I 1 ′, the relationship between wire protrusion length l and welding current I at the feed rate in the third stage is expressed by a straight line connecting P 1 ' and P 1 ' ', and the feed rate in the third stage is If it corresponds to the groove cross-sectional area at the time, welding is continued with the wire protrusion length slightly longer than l'.

また、その後第3段階の送給量が次の時点にお
ける開先断面積に対応しては多量の送給量である
場合(開先断面積が溶接の進行に従つて小さくな
つているときは、第3段階の送給量になつた後、
また送給量過多の状態になり得る。)には、ワイ
ヤ突出長さがl′より短かくなつたとき、ワイヤ送
給量を減少させ第3段階より更に下の段階の送給
量とする。
In addition, if the feed rate in the third stage is a large feed rate in relation to the groove cross-sectional area at the next point in time (if the groove cross-sectional area is decreasing as welding progresses), , after reaching the third stage feed rate,
In addition, the amount of feed may be excessive. ), when the wire protrusion length becomes shorter than l', the wire feed amount is reduced to a feed amount in a stage lower than the third stage.

このときのワイヤ送給量の調整原理は、前述の
第2段階の送給量から第3段階の送給量に切換え
る場合と同様である。
The principle of adjusting the wire feed rate at this time is the same as that for switching from the second stage feed rate to the third stage feed rate described above.

また、第3段階の送給量がその時点の開先断面
積に対応するワイヤ送給量より少ない場合には、
ワイヤ突出長さが徐々に長くなりP1′,P1″線上を
移動する。
In addition, if the feed rate in the third stage is less than the wire feed rate corresponding to the groove cross-sectional area at that time,
The protruding length of the wire gradually increases and moves along the P 1 ′, P 1 ″ lines.

ワイヤ突出長さがさらに長くなり、l″より長く
なると、検出電流値Iが、基準溶接電流I1の下限
I1″より小になつたことを検出し、ステツピング
モーターを駆動させ、ワイヤ送給量を増加させる
と共にワイヤ送給量に対応する溶接電流、溶接電
圧を増加させる。このときのワヤ送給量の調整原
理は前述の第1段階の送給量から第2段階の送給
量への切換え時と同様である。
When the wire protrusion length becomes longer than l'', the detected current value I becomes the lower limit of the reference welding current I1 .
It detects that I is smaller than 1 '', drives the stepping motor, increases the wire feed amount, and increases the welding current and welding voltage corresponding to the wire feed amount.The wire feed at this time The principle of adjusting the amount is the same as that when switching from the first stage feed amount to the second step feed amount described above.

このようにワイヤー送給量を段階的に増減させ
ながら周速度と溶融プールの上昇を対応させなが
ら溶接が行なわれる。
In this way, welding is performed while increasing and decreasing the wire feed rate in stages while adjusting the circumferential speed and the rise in the molten pool.

一般に開先状態はパイプ1,2,3の全周にわ
たつて一定でないから、適宜開先状態に追従して
前述の制御が行われる。
Generally, the groove condition is not constant over the entire circumference of the pipes 1, 2, and 3, so the above-mentioned control is performed appropriately following the groove condition.

なお開先状態が異常で開先断面積がワイヤ送給
量の設定した段階で対応できない場合は必要に応
じ管体の設定周速度を変化させることを制御機構
に付設して行なうこともできる。
Note that if the groove condition is abnormal and the groove cross-sectional area cannot be adjusted to the set stage of the wire feed amount, the control mechanism may be attached to change the set circumferential speed of the tubular body as necessary.

また溶接電流Iと溶接電圧Vの調節は溶接電流
電圧調整器23において行なう。なお、以上の制
御状態を要約して第8図に示した。
Further, the welding current I and the welding voltage V are adjusted by a welding current voltage regulator 23. The above control state is summarized in FIG. 8.

〔制御系統の説明〕 溶接制御系統は、第2図に示すように溶接制御
装置11と、各溶接継手4,5のそれぞれの溶接
電流を検出する溶接電流検出器13とから構成さ
れ、溶接制御装置11には溶接継手4,5の数に
対応した溶接電流制御器14,ワイヤ送給制御器
15、およびパイプ1,2,3の回転速度を設定
するパイプ回転速度設定器16等が含まれる。
[Description of Control System] As shown in FIG. 2, the welding control system is composed of a welding control device 11 and a welding current detector 13 that detects the welding current of each welding joint 4, 5. The device 11 includes a welding current controller 14 corresponding to the number of welding joints 4, 5, a wire feed controller 15, a pipe rotation speed setting device 16 for setting the rotation speed of the pipes 1, 2, 3, etc. .

溶接電流検出器13では、溶接電源12の内部
に設けられたシヤフト17をセンサとして溶接電
流が検出され、その検出信号は増幅器18により
所定レベルに増幅されて出力される。
Welding current detector 13 detects welding current using shaft 17 provided inside welding power source 12 as a sensor, and the detection signal is amplified to a predetermined level by amplifier 18 and output.

増幅器18の出力信号は、溶接電流制御器14
に検出信号として入力される。この制御器14で
はワイヤ突出長さの上限値検出用比較器19、ワ
イヤ突出長さの下限値検出用比較器19′におい
てワイヤ突出長さが上限時の基準電流設定値
In″及びワイヤ突出長さが下限時の基準溶接電流
設定値In′と検出信号との比較が行われる。これ
らIn′,In″は後述する可変抵抗器28,28′の
抵抗値により設定される。
The output signal of the amplifier 18 is transmitted to the welding current controller 14.
is input as a detection signal. In this controller 14, a comparator 19 for detecting the upper limit value of the wire protrusion length and a comparator 19' for detecting the lower limit value of the wire protrusion length have a reference current set value when the wire protrusion length is at the upper limit.
A comparison is made between the detection signal and the reference welding current setting value In' when the wire protrusion length is at the lower limit.These In' and In' are set by the resistance values of variable resistors 28 and 28', which will be described later. Ru.

同時に発振器21において、所定発振数のパル
ス信号が作られ、このパルス信号と比較器19,
19′の出力信号が論理回路59に入力され、比
較器19から入力信号がある場合は、左回転側へ
のパルス、比較器19′から入力信号がある場合
は、右回転側へのパルスが論理回路59からパル
スモーター駆動回路22に入力される。
At the same time, a pulse signal with a predetermined number of oscillations is generated in the oscillator 21, and this pulse signal and the comparator 19,
The output signal of 19' is input to the logic circuit 59, and if there is an input signal from the comparator 19, a pulse to the left rotation side is generated, and if there is an input signal from the comparator 19', a pulse to the right rotation side is generated. The signal is input from the logic circuit 59 to the pulse motor drive circuit 22 .

パルスモーター駆動回路22は、パルスモータ
ー24の界磁極各相に対し、溶接電流検出値に対
応してパルス入力方向の切替えを行なういわゆる
スイツチング回路であり、パルスモーター24を
左・右回転させる。
The pulse motor drive circuit 22 is a so-called switching circuit that switches the pulse input direction for each phase of the field pole of the pulse motor 24 in accordance with the detected welding current value, and rotates the pulse motor 24 left or right.

したがつて、溶接電流制御器14(詳細を図3
aに示す)では、パルスモーター駆動回路22に
よるパルス入力方向によつてパルスモーター24
の回転方向、および入力パルスのパルス数によつ
て回転角が調節される。
Therefore, the welding current controller 14 (details are shown in FIG.
a), the pulse motor 24 is controlled by the pulse input direction by the pulse motor drive circuit 22.
The rotation angle is adjusted by the rotation direction of the input pulse and the number of input pulses.

このパルスモーター24の回転制御により、回
転軸25に固定した接触子29が連動し、可変抵
抗器26,27,28,28′の抵抗値を変化さ
せる。
By controlling the rotation of the pulse motor 24, the contactor 29 fixed to the rotating shaft 25 is interlocked to change the resistance values of the variable resistors 26, 27, 28, and 28'.

溶接電流電圧調整器23において溶接電流用可
変抵抗器26の抵抗値が変るとワイヤ送給量を増
加または減少させると共に、溶接電流を上昇また
は下降させ、溶接電圧用可変抵抗器27の抵抗値
の変化により前記電流に対応する電圧となる。ま
た基準溶接電流上下限値設定用可変抵抗器28,
28′の抵抗値の変化によりワイヤ突出長さの上
下限時の基準溶接電流設定値In′,In″が次の段階
のワイヤ送給量に対応した設定値に切換えられ
る。
When the resistance value of the welding current variable resistor 26 changes in the welding current voltage regulator 23, the wire feeding amount is increased or decreased, the welding current is increased or decreased, and the resistance value of the welding voltage variable resistor 27 is changed. The change results in a voltage corresponding to the current. Also, a variable resistor 28 for setting the upper and lower limits of the reference welding current,
By changing the resistance value of 28', the reference welding current set values In' and In'' at the upper and lower limits of the wire protrusion length are switched to the set values corresponding to the wire feed rate of the next stage.

このようにして一定の周速度V〔cm/min〕で
全体のパイプを回転させながらワイヤー送給量を
段階的に増減させることにより基準のワイヤ突出
長さの上下の一定範囲内で基準の溶接電流I,電
圧Vで溶接できるようにされる。
In this way, while rotating the entire pipe at a constant circumferential speed V [cm/min], the wire feed rate is increased or decreased in stages to perform standard welding within a certain range above and below the standard wire protrusion length. It is possible to weld with current I and voltage V.

なお、可変抵抗器26,27,28,28′が
パルスモーター24の回転軸25の回転によりそ
の抵抗値が変化できない範囲に左または右に回転
し前述のパイプ設定周速度において溶接制御が不
可能となつたときは、回転軸25上に設けたスト
ライカーによりリミツトスイツチ30,31が作
動し、リミツトスイツチをOFFとなしパルスモ
ーター24が停止するようになつている。
Note that the variable resistors 26, 27, 28, and 28' rotate to the left or right within a range in which their resistance values cannot be changed by the rotation of the rotating shaft 25 of the pulse motor 24, making it impossible to control welding at the above-mentioned set pipe circumferential speed. When this occurs, the limit switches 30 and 31 are operated by a striker provided on the rotating shaft 25, and the limit switches are turned OFF and the pulse motor 24 is stopped.

パルスモーター24が停止した場合には、リミ
ツトスイツチ30,31の信号がパイプ回転速度
制御用のパルスモーター駆動用論理回路60にお
いて発振器21の信号と合成され、右又は左回転
信号用パルスがパルスモーター駆動回路22′に
入力され、パルスモーター24′を回転させる。
図3bに示すようにパルスモーター24′の回転
により可変抵抗体16が変化しパイプの回転速度
を速く、又は遅くなるように変化させる。
When the pulse motor 24 stops, the signals from the limit switches 30 and 31 are combined with the signal from the oscillator 21 in the logic circuit 60 for driving the pulse motor for pipe rotation speed control, and the pulse for the right or left rotation signal is used to drive the pulse motor. It is input to the circuit 22' and rotates the pulse motor 24'.
As shown in FIG. 3b, the rotation of the pulse motor 24' causes the variable resistor 16 to change, thereby increasing or decreasing the rotational speed of the pipe.

かくして、この発明は開先断面積が異なる複数
の溶接継手が存在する単一または複数の管体を周
方向に回転させつつ立向溶接により接続等を行な
うに際して、各溶接継手溶融プールの上昇速度と
パイプの回転速度を同期させることができるの
で、同時の溶接を開始し、かつ終了させることが
できる。
In this way, the present invention is capable of controlling the rising speed of the molten pool of each weld joint when connecting a single pipe or a plurality of pipes having a plurality of weld joints with different groove cross-sectional areas by vertical welding while rotating in the circumferential direction. Since the rotational speed of the pipe and the pipe can be synchronized, welding can be started and finished at the same time.

さらに、複数の溶接継手を同時に溶接すること
ができるため、従来のような複数の作業者による
断続的な非能率的作業の省力化を図ることがで
き、能率を向上しうる。
Furthermore, since a plurality of welded joints can be simultaneously welded, it is possible to save the intermittent and inefficient work performed by a plurality of workers as in the past, and improve efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は立向自動溶接装置の構成を示す概要
図、第2図は溶接制御装置の構成を示すブロツク
線図、第3図aは溶接電流制御器、bはパイプ回
転速度制御器の構成を示す部分斜視図、第4図、
はワイヤ突出長さlと溶接電流Iとの相関関係を
示す特性曲線、第5図は、溶接電流Iと溶融速度
mの相関関係を示す特性曲線、第6図は制御動作
の要約を示すフローチヤート、第7図,第8図は
従来技術の説明図。 1,2,3……パイプ、4,5……溶接部、6
……ターニングローラ、7……パイプ回転装置、
8……溶接トーチ、9……溶接ワイヤ、10……
ワイヤ送給装置、11……溶接制御装置、12…
…溶接電源、13……溶接電流検出器、14……
溶接電流制御器、15……ワイヤ送給制御器、1
6……パイプ回転速度設定器、19,19′……
比較器、21……発振器、22,22′……パル
スモーター駆動回路、23……溶接電流電圧調整
器、24,24′……パルスモーター、25,2
5′……回転軸、26……溶接電流用可変抵抗
器、27……溶接電圧用可変抵抗器、28……基
準溶接電流設定用可変抵抗器、28′……基準溶
接電流設定用可変抵抗器、29……接触子、3
0,31……リミツトスイツチ、33……溶融プ
ール。
Figure 1 is a schematic diagram showing the configuration of the vertical automatic welding device, Figure 2 is a block diagram showing the configuration of the welding control device, Figure 3 a is the welding current controller, and b is the configuration of the pipe rotation speed controller. FIG. 4 is a partial perspective view showing the
5 is a characteristic curve showing the correlation between wire protrusion length l and welding current I, FIG. 5 is a characteristic curve showing the correlation between welding current I and melting rate m, and FIG. 6 is a flowchart showing a summary of control operations. 7 and 8 are explanatory diagrams of the prior art. 1, 2, 3...Pipe, 4, 5...Welded part, 6
... Turning roller, 7 ... Pipe rotation device,
8...Welding torch, 9...Welding wire, 10...
Wire feeding device, 11... Welding control device, 12...
...Welding power source, 13...Welding current detector, 14...
Welding current controller, 15...Wire feed controller, 1
6... Pipe rotation speed setting device, 19, 19'...
Comparator, 21... Oscillator, 22, 22'... Pulse motor drive circuit, 23... Welding current voltage regulator, 24, 24'... Pulse motor, 25, 2
5'... Rotating shaft, 26... Variable resistor for welding current, 27... Variable resistor for welding voltage, 28... Variable resistor for setting reference welding current, 28'... Variable resistor for setting reference welding current. Container, 29... Contact, 3
0,31...Limit switch, 33...Melting pool.

Claims (1)

【特許請求の範囲】[Claims] 1 設定した同一の周速度で複数の管体を回転さ
せ、複数の溶接継手を同時に並列してエレクトロ
ガス溶接する自動溶接法であつて、各溶接継手ご
とにワイヤ送給量を段階的に変更し、これに応じ
て基準ワイヤ突出長さに対応して設定された基準
溶接電流の上下限値を変更できるようにし、設定
周速度において溶接電流を検出し、これを基準溶
接電流の上下限と比較することにより検出した溶
接電流が前記上下限値の範囲内にあるときはワイ
ヤ送給量を変更せず溶接を続行し、検出した溶接
電流が前記上下限値の範囲外になつたときはワイ
ヤ送給量を一段上または下のワイヤ送給量に変更
して溶接させるようにしてあることを特徴とする
管体のエレクトロガス自動溶接法。
1 An automatic welding method in which multiple pipes are rotated at the same circumferential speed and multiple welding joints are simultaneously electrogas welded in parallel, and the wire feed amount is changed in stages for each welding joint. The upper and lower limits of the standard welding current, which are set in accordance with the standard wire protrusion length, can be changed accordingly, and the welding current is detected at the set circumferential speed, and this is set as the upper and lower limits of the standard welding current. When the detected welding current is within the range of the upper and lower limits by comparison, welding is continued without changing the wire feed rate, and when the detected welding current is outside the range of the upper and lower limits. An electrogas automatic welding method for a tube body, characterized in that the wire feed rate is changed to a wire feed rate one level higher or lower to perform welding.
JP5909477A 1977-05-21 1977-05-21 Vertical automatic welding method of pipe body Granted JPS53144442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5909477A JPS53144442A (en) 1977-05-21 1977-05-21 Vertical automatic welding method of pipe body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5909477A JPS53144442A (en) 1977-05-21 1977-05-21 Vertical automatic welding method of pipe body

Publications (2)

Publication Number Publication Date
JPS53144442A JPS53144442A (en) 1978-12-15
JPS6132113B2 true JPS6132113B2 (en) 1986-07-24

Family

ID=13103392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5909477A Granted JPS53144442A (en) 1977-05-21 1977-05-21 Vertical automatic welding method of pipe body

Country Status (1)

Country Link
JP (1) JPS53144442A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122789A1 (en) * 2013-02-06 2014-08-14 新日鐵住金株式会社 Multi-electrode electrogas arc welding method for thick steel plates and multi-electrode electrogas arc circumferential welding method for steel pipes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840182A (en) * 1971-09-25 1973-06-13
JPS4946554A (en) * 1972-09-12 1974-05-04
JPS5137051A (en) * 1974-09-24 1976-03-29 Osaka Transformer Co Ltd SHOMODENKYOKUSHIKIAAKUYOSETSUKI

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840182A (en) * 1971-09-25 1973-06-13
JPS4946554A (en) * 1972-09-12 1974-05-04
JPS5137051A (en) * 1974-09-24 1976-03-29 Osaka Transformer Co Ltd SHOMODENKYOKUSHIKIAAKUYOSETSUKI

Also Published As

Publication number Publication date
JPS53144442A (en) 1978-12-15

Similar Documents

Publication Publication Date Title
US6118093A (en) Method and apparatus for controlling a welding robot
JPS6132113B2 (en)
US4476376A (en) Direct-current arc welding machine having current control for preventing arc extinction following short circuits
US8225977B2 (en) Wire feeder with run-in control
JPS589775A (en) Automatic welding device for branch pipe
JPH0426948B2 (en)
JPH0329503B2 (en)
US20220305585A1 (en) Welding apparatus and control method for welding apparatus
JPS6056481A (en) Automatic tig welding device
JP3183038B2 (en) Groove profiling method and groove profiling control device in electrode rotating non-consumable electrode arc welding
JPS6338270B2 (en)
JPS6360079A (en) Arc profile controller for tig welding
JP2510102B2 (en) Arc generation retry method for automatic welding equipment and its equipment
JP2611397B2 (en) Narrow groove welding method
JP2001314977A (en) Method and apparatus for mash seam welding
SU1011348A1 (en) Apparatus for automatic control of fusion welding process /its versions/
JP2002045966A (en) Bevel copying control method in non-attrition electrode arc-welding and its system
JPH05200555A (en) Nonconsumable electrode arc welding method and equipment
JPH0857646A (en) Method for controlling welding torch in seam welding
JPH1034336A (en) Method for profiling bevel in electrode rotary type nonconsumable electrode arc welding and method for controlling bevel-profiling
JPH0531577A (en) Method and device for controlling output of consumable electrode arc welding machine
JPS6345915B2 (en)
JPH0116596B2 (en)
JPS6117360A (en) Plasma arc welding device
JPH0426946B2 (en)