JPS6131994A - Fuel aggregate - Google Patents

Fuel aggregate

Info

Publication number
JPS6131994A
JPS6131994A JP15301684A JP15301684A JPS6131994A JP S6131994 A JPS6131994 A JP S6131994A JP 15301684 A JP15301684 A JP 15301684A JP 15301684 A JP15301684 A JP 15301684A JP S6131994 A JPS6131994 A JP S6131994A
Authority
JP
Japan
Prior art keywords
flow
spacer
fuel
fuel assembly
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15301684A
Other languages
Japanese (ja)
Inventor
別所 泰典
貞夫 内川
練三 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15301684A priority Critical patent/JPS6131994A/en
Publication of JPS6131994A publication Critical patent/JPS6131994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inert Electrodes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子炉に装荷される燃料集合体に係シ、特に冷
却材の沸騰を伴なう伝熱現象にょ9除熱される原子炉の
熱的余裕を増大し、核熱水力安定性を改善するのに好適
な燃料集合体に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel assembly loaded into a nuclear reactor, and in particular, the present invention relates to a fuel assembly loaded in a nuclear reactor. The present invention relates to a fuel assembly suitable for increasing thermal margin and improving nuclear thermal-hydraulic stability.

〔発明の背景〕[Background of the invention]

原子炉の運転には、線出力密度や限界出力比、限界熱流
束比の制限が課せられる。前者は燃料ベレットが溶融し
ないよう課せられたものであシ、後二者は燃料被覆管が
焼損しないように課せられたものである。原子炉の設計
においては、一般に総出力があたえられたとき、線出力
密度が制限値を満足するよう炉心の大きさが決められ、
しかる後、限界出力比や限界熱流束比が制限値以上とな
るよう冷却材流量や冷却材の炉心人口エンタルピが決め
られる。原子炉では一般的に前記総出力で運転されるの
で線出力密度の制限値は比較的容易に遵守できる。しか
し、近年、前記設計の範囲を拡張して冷却材流量を減ら
したシ、冷却材の炉心人口エンタルピを変えたシして原
子炉の運転に融通性を増したいという要求が強くなって
いるが、この要求に対しては限界出力比や限界熱流束比
が制限値に対して余裕が小さくなっている。
Nuclear reactor operation is subject to restrictions on linear power density, critical power ratio, and critical heat flux ratio. The former is imposed to prevent the fuel pellet from melting, and the latter two are imposed to prevent the fuel cladding from burning out. In nuclear reactor design, the core size is generally determined so that the linear power density satisfies a limit value when the total power is given.
Thereafter, the coolant flow rate and the core population enthalpy of the coolant are determined so that the critical power ratio and critical heat flux ratio are greater than or equal to the limiting values. Since nuclear reactors are generally operated at the above-mentioned total power, the linear power density limit can be complied with relatively easily. However, in recent years, there has been a growing demand for greater flexibility in reactor operation by extending the range of the design to reduce the coolant flow rate and change the core population enthalpy of the coolant. In response to this request, the limit output ratio and the limit heat flux ratio have small margins with respect to the limit values.

また、原子炉の運転は核現象と熱水力現象とが組み合わ
さって行なわれるのであるが、前記核熱水力安定性とは
、核現象と熱水力現象とが組み合わさって現在の原子炉
の運転が保ちやすいか否かの一つの目安となるもので、
原子炉は常に核熱水力的により安定な状態で運転される
のが好ましい原子炉の運転中、外乱等により周期的な変
動を余儀なくされる場合、出力変動の振幅比をもって減
幅比(D、R−、Decay Ratio)と称するが
、原子炉運転における核熱水力的な安定度は、この減幅
比で表わされる。つまシ減幅比が1.0よシ小さいとき
は出力変動は次第に小さくなり、一定出力に収斂するの
で、核熱水力的に安定する側へ向うことを意味し、減幅
比が0.0に近くなるほど、よシ安定となることを意味
する。
In addition, the operation of a nuclear reactor is carried out by a combination of nuclear phenomena and thermo-hydraulic phenomena, and the above-mentioned nuclear thermo-hydraulic stability refers to the current nuclear This is one indicator of whether or not the furnace is easy to maintain.
It is preferable for a nuclear reactor to always be operated in a nuclear-thermal-hydraulic stable state.During the operation of a nuclear reactor, if periodic fluctuations are forced due to disturbances, etc., the amplitude ratio of the output fluctuations is calculated as the reduction ratio (D). , R-, Decay Ratio), and the nuclear thermal-hydraulic stability in nuclear reactor operation is expressed by this decay ratio. When the width reduction ratio is smaller than 1.0, the output fluctuation gradually decreases and converges to a constant output, which means that the output is becoming nuclear-thermal-hydraulic stable. The closer it is to 0, the more stable it is.

原子炉に装荷される燃料集合体は7×7の合計49本、
または8×8の合計64本(中性子の減束を促進する水
ロッド1〜2本を含む。)の燃料棒とその燃料棒の長手
方向軸線を平行にして支持し、そして離間するスペーサ
とそれらを取シ囲むチャンネルボックスなどから構成さ
れる。冷却材は単相流として燃料集合体の下部から流人
して上方に流れ、燃料棒の発熱部から熱を奪い沸騰を起
し、二相流となってその流動様式が燃料棒軸方向に沿っ
て気泡流、スラグ流、環状流と順次変化し、燃料集合体
上部から流出する。スペーサは燃料棒の発熱部に等間隔
に合計4〜8個取りつけられている。
A total of 49 fuel assemblies (7 x 7) are loaded into the reactor.
Or a total of 64 8 x 8 fuel rods (including one or two water rods that promote neutron debundling) and spacers that support the fuel rods with their longitudinal axes parallel to each other and space them apart. It consists of a channel box, etc. that surrounds the The coolant flows upward from the bottom of the fuel assembly as a single-phase flow, absorbs heat from the heat-generating parts of the fuel rods, causes boiling, and becomes a two-phase flow whose flow pattern is directed in the axial direction of the fuel rods. The flow changes sequentially into a bubble flow, a slag flow, and an annular flow, and flows out from the upper part of the fuel assembly. A total of 4 to 8 spacers are attached to the heat generating portion of the fuel rod at equal intervals.

スペーサの圧力損失を小さくする先行技術例としては特
開昭55−107993号記載のものが知られている。
As a prior art example of reducing the pressure loss of a spacer, the one described in Japanese Patent Application Laid-Open No. 55-107993 is known.

しかしながら、この技術は燃料集合体におけるスペーサ
の装荷位置によって、冷却材の流動特性、原子炉の熱的
余裕や核熱水力安定性に及ぼす影響が異なることには気
づいていない。
However, this technique does not recognize that the influence on the flow characteristics of the coolant, the thermal margin of the reactor, and the nuclear thermal hydraulic stability differs depending on the loading position of the spacer in the fuel assembly.

そのため、従来の燃料集合体では同一のスペーサを冷却
材の流動方向にと9つけていた。このような燃料集合体
では、冷却材の流動状態つまシ単相流や気泡流、スラグ
流、環状流などにより、流路断面での流量やボイド率な
どの分布が異なることが考慮されていなかった。このた
め、冷却材流量の分布、沸騰開始点の分布、およびそれ
らに起因した気相や液相の複雑な流動により熱的余裕が
小さ−〈なっていた。また、前記従来の燃料集合体を原
子炉に装荷した場合、たとえば圧力などの外乱により出
力が変ると各集合体内で沸騰開始点の位置がスペーサを
横切シ、圧力損失が変る。この圧力損失の変化により、
各燃料集合体の冷却材流量が変シ、それに伴なうボイド
量の変化が炉心特性に影響するというように外乱の影響
が減衰しにくくなる。つまシ原子炉の核熱水力安定性の
余裕が小さくなっていた。
Therefore, in conventional fuel assemblies, nine identical spacers are attached in the direction of coolant flow. In such fuel assemblies, it is not taken into account that the distribution of flow rate and void fraction in the flow path cross section varies depending on the flow state of the coolant, such as single-phase flow, bubble flow, slug flow, and annular flow. Ta. Therefore, the thermal margin is small due to the distribution of the coolant flow rate, the distribution of the boiling start point, and the complicated flow of the gas phase and liquid phase caused by these. Furthermore, when the conventional fuel assemblies are loaded into a nuclear reactor, if the output changes due to a disturbance such as pressure, the position of the boiling start point in each assembly crosses the spacer, and the pressure loss changes. Due to this change in pressure loss,
The influence of disturbance becomes difficult to attenuate, as the coolant flow rate of each fuel assembly changes, and the accompanying change in the amount of voids affects core characteristics. The nuclear thermal-hydraulic stability margin of the Tamashi reactor was shrinking.

前記従来の燃料集合体で、熱的余裕を増大させたシ核熱
水力安定性を改善するためには、燃料棒の配列間隔や濃
縮度分布を変えたシして、冷却材流量やボイド量の分布
を変え、また外乱が加わったときでも各燃料集合体内の
冷却材流量の変化を小さくしたり、炉心の核特性変化を
小さくする必要がある。しかし、このような燃料集合体
の設計を大幅に変えることは経済上好ましくない。
In order to improve nuclear thermal-hydraulic stability with increased thermal margin in the conventional fuel assembly described above, the arrangement spacing and enrichment distribution of fuel rods must be changed to reduce the coolant flow rate and voids. It is necessary to change the distribution of the amount of coolant, to reduce changes in the flow rate of coolant in each fuel assembly even when disturbances are applied, and to reduce changes in the nuclear characteristics of the reactor core. However, it is economically undesirable to drastically change the design of such a fuel assembly.

〔発明の目的〕[Purpose of the invention]

本発明は、前記事情に鑑み、燃料集合体の設計を大幅に
変えることなく原子炉の熱的余裕を増大し、核熱水力−
安定性を向上させるのに好適な燃料集合体を提供するこ
とを目的とする。
In view of the above-mentioned circumstances, the present invention increases the thermal margin of a nuclear reactor without significantly changing the design of the fuel assembly.
The object is to provide a fuel assembly suitable for improving stability.

〔発明の概要〕[Summary of the invention]

前記目的を達成するため、冷却材の沸騰伝熱現象により
除熱される原子炉に装荷される本発明の燃料集合体では
、 (1)  燃料棒の下端から全長の3/4から4/4の
間の二相流の流動様式が環状流となる領域に設置するス
ペーサが冷却材流路断面の中心部で圧力損失が大きくな
シ、周辺部で圧力損失が小さくなるように構成し、 (2)  燃料棒の下端から全長の0/6からl/6の
間の非沸騰の領域に設置するスペーサが冷却材流路断面
の中心部で圧力損失が大きくなり、周辺部で圧力損失が
小さくなるよう構成し。
In order to achieve the above object, in the fuel assembly of the present invention loaded in a nuclear reactor where heat is removed by the boiling heat transfer phenomenon of the coolant, (1) 3/4 to 4/4 of the total length from the lower end of the fuel rod is The spacer installed in the region where the two-phase flow between the two-phase flow becomes an annular flow is configured so that the pressure loss is large at the center of the coolant flow path cross section, and the pressure loss is small at the periphery. ) The spacer installed in the non-boiling region between 0/6 and 1/6 of the total length from the bottom end of the fuel rod causes a large pressure loss in the center of the coolant flow path cross section, and a small pressure loss in the periphery. Configure it like this.

(3)燃料棒の下端から全長の1/6から3/4の間の
二相流の流動様式が気泡流またはスラグ流となる領域に
設置するスペーサがその他の領域に設置するスペーサよ
シも圧力損失が小さくなるよう構成する。
(3) The spacer installed in the region where the flow pattern of the two-phase flow is bubble flow or slug flow between 1/6 and 3/4 of the total length from the bottom end of the fuel rod is different from the spacer installed in other regions. Constructed to reduce pressure loss.

また、 (1)、 (2)で述べたスペーサにおいて冷
却材流路断面の周辺部での圧力損失を小さくするために
は構造材の下端または上端を刃状にしたり、冷却材の流
路断面への構造材の投影面積を中心部にくらべ周辺部で
小さくすればよい。
In addition, in order to reduce the pressure loss around the cross section of the coolant flow path in the spacer described in (1) and (2), it is necessary to make the lower or upper end of the structural material blade-shaped, or to It is sufficient to make the projected area of the structural material on the periphery smaller than that at the center.

このように燃料集合体を構成する理由は次のとおシであ
る。
The reason for configuring the fuel assembly in this way is as follows.

まず、前記(1)は二相流の流動様式が環状流のときに
は気相と液相が分離して存在するので、気相と液相とが
混合して存在する気泡流やスラグ流にくらべ、気相が流
れを乱す効果が約1/4以下と小さく、冷却材の横方向
流れが小さくなる。その結果流路断面の周辺部で冷却材
流量は減少し熱的余裕が小さくなるので、この周辺部分
の圧力損失を小さくすることにより、冷却材流量を増し
熱的余裕を大きくすることを意図したものである。
First, in (1) above, when the flow mode of a two-phase flow is an annular flow, the gas phase and liquid phase exist separately, so compared to bubble flow or slug flow, where the gas phase and liquid phase exist as a mixture. , the effect of the gas phase disrupting the flow is as small as about 1/4 or less, and the lateral flow of the coolant is reduced. As a result, the coolant flow rate decreases in the periphery of the flow path cross section, and the thermal margin becomes smaller. Therefore, by reducing the pressure loss in this peripheral area, we intended to increase the coolant flow rate and increase the thermal margin. It is something.

次に、燃料集合体人口の近くの単相流領域では気相が存
在しないため気泡流やスラグ流などの二相流にくらべ、
横方向流れが小さく流路断面内の冷却材流量分布は圧力
損失の分布に強く依存する。
Next, in the single-phase flow region near the fuel assembly population, there is no gas phase, so compared to two-phase flows such as bubble flow and slug flow,
Since the lateral flow is small, the coolant flow rate distribution within the channel cross section strongly depends on the pressure drop distribution.

流路断面の周辺部ではチャンネルボックスが存在するの
で圧力損失が大きくなり冷却材流量は小さくなる。この
ため、前記(2)の構成とすることにより、周辺部分で
の圧力損失を小さくし冷却材流量を増し、下流の沸騰領
域での気相と液相の複雑な動きを少なくして熱的余裕を
大きくする。
Since a channel box exists at the periphery of the flow path cross section, pressure loss increases and the coolant flow rate decreases. Therefore, by adopting the configuration (2) above, the pressure loss in the peripheral area is reduced, the coolant flow rate is increased, and the complicated movement of the gas phase and liquid phase in the downstream boiling region is reduced, thereby improving thermal efficiency. Increase your margin.

また、前記(3)のように構成するのは炉心の核熱水力
安定向を向上させるためである。つ′19冷却材の沸騰
開始点を含む領域では、圧損係数を他の領域よりも小さ
くすることにより、外乱により沸騰開始位置がかわりス
ペーサを横切っても当該スペーサによる圧力損失の変化
は残シの領域の圧力損失にくらべて小さくなるので燃料
集合体の人口から出口までの圧力損失をめまシ変化させ
ないようにできる。したがって各燃料集合体の冷却材流
量の変化も少なくなり、ボイド量や炉心核特性変化も小
さくなるというように外乱の影響はすみやかに減衰し、
炉心の核熱水力安定性を向上させることができる。前記
(3)でのべた燃料棒の下端から全長の176から3/
4の間の二相流の流動様式が気泡流またはスラグ流とな
る領域では気相が流  −れを乱す効果が大きく冷却材
流量は流路断面内で均一に分布しようとする傾向が強い
ので、スペーサにより冷却材流路断面での圧力損失の分
布を変えても熱的余裕はあまり大きくならない。
Furthermore, the reason for the configuration as described in (3) above is to improve the nuclear thermal hydraulic stability of the reactor core. '19 By making the pressure drop coefficient smaller in the area including the boiling start point of the coolant than in other areas, even if the boiling start position changes due to disturbance and crosses the spacer, the change in pressure loss due to the spacer will remain unchanged. Since it is smaller than the pressure loss in the area, the pressure loss from the fuel assembly to the outlet can be prevented from changing drastically. Therefore, changes in the coolant flow rate of each fuel assembly are reduced, and changes in the amount of voids and core characteristics are also reduced, and the effects of disturbances are quickly attenuated.
The nuclear thermal hydraulic stability of the reactor core can be improved. From 176 to 3/3 of the total length from the bottom end of the fuel rod shown in (3) above
In the region where the flow pattern of the two-phase flow between 4 and 4 is bubble flow or slug flow, the gas phase has a large effect of disrupting the flow, and the coolant flow rate tends to be uniformly distributed within the cross section of the flow path. Even if the pressure loss distribution in the cross section of the coolant flow path is changed using a spacer, the thermal margin does not become much larger.

原子炉の核熱水力安定性を良くするためには。To improve nuclear thermal and hydraulic stability of nuclear reactors.

燃料集合体内の圧力損失を小さくして、冷却材の流れを
駆動するポンプが停止した場合でも十分な流量を確保す
るのが1つの方法である。これにはスペーサの圧力損失
をできるだけ小さくするのが効果的であシ、前記(3)
の燃料集合体の構成がこの方法と一致する。したがって
前記(2)のように燃料集合体の人口で圧力損失が大き
くするのは良くないとも考えられる。しかし、前記(2
)のように構成した場合、単相流の領域で圧力損失が若
干大きくなる結果、外乱が加わった場合でも単相流領域
と二相流領域の熱水力応答は小さくナシ原子炉の核熱水
力安定性は改善される。
One method is to reduce the pressure drop within the fuel assembly to ensure sufficient flow even if the pump driving the flow of coolant stops. For this purpose, it is effective to reduce the pressure loss of the spacer as much as possible, and see (3) above.
The configuration of the fuel assembly is consistent with this method. Therefore, it is considered that it is not good to increase the pressure loss due to the population of the fuel assembly as described in (2) above. However, the above (2
), the pressure loss is slightly larger in the single-phase flow region, and even when a disturbance is applied, the thermal-hydraulic response in the single-phase flow region and the two-phase flow region is small, and the nuclear heat of the reactor is reduced. Hydraulic stability is improved.

冷却材は単相流として燃料集合体に流人したのち、流動
方向に沿い沸騰をおこし、その流動様式は気泡流、スラ
グ流、環状流と変化する。この流動様式は冷却材流量や
ボイド率によって決まるものでろるが、沸騰水型原子炉
の通常の運転においては、燃料集合体の人口から全長の
1/6から374の間で、気泡流またはスラグ流となり
、3/4から474の間で環状流となると考えてよい。
After the coolant flows into the fuel assembly as a single-phase flow, it boils along the flow direction, and the flow style changes to bubble flow, slug flow, and annular flow. This flow pattern is determined by the coolant flow rate and void ratio, but in normal operation of a boiling water reactor, a bubble flow or slug flow occurs between 1/6 and 374 of the total length of the fuel assembly. It can be considered that the flow becomes a circular flow between 3/4 and 474.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の第1の実施例を第1図を用いて詳細に説
明する。この実施例は電気出力1100MWe級のBW
R,に約800体装荷される燃料集合体1に本発明を適
用したものである。燃料棒2はスペーサ3により長手方
向軸線を平行にして支持され、そして離間されており、
チャンネルボックス4により囲まれている。冷却材は人
口オリフィス5から流人し、燃料棒発熱部6から熱を奮
い、沸騰を起し二相流として上部から流出する。この燃
料集合体lには、燃料棒発熱部6の全長約3.7mに約
0.4mの間隔をおいてスペーサが8個設置されている
が、下端から全長の0/6から1/6の間の非沸騰の領
域には、スペーサ301を1個設置す、る。このスペー
サ301では、一点鎖線7により、チャンネルボックス
4から離れた中心部8とチャンネルボックス近傍の周辺
部9の2つの領域に分け、中心部8ではスペーサ構造材
の上下端を刃状にせずA−A′断面を矩形lOにし、周
辺部9の構造材は上下端を刃状にしてB−B’断面が流
線形11となるよう構成する(前記(2)の構成の一例
)。このように構成したスペーサ301では構造材の上
下端が刃状であるか否かのちがいで圧力損失は中心部8
と周辺部9とでl:0.66と周辺部で34%小さくな
る。このスペーサ301を設置した燃料集合体ではチャ
ンネルボックス4による周辺部の圧力損失の増加が構造
材の上下端を刃状にすることで相殺されるので流路断面
の中心部と周辺部で圧力損失はほぼ等しくなシ、冷却材
流量は非沸騰部でほぼ均一となる。この結果、燃料集合
体内の多くの燃料棒で沸騰開始点の位置がほぼ等しくな
シ、沸騰部分での気相と液相の動きは小さくなる。これ
に関連して燃料被覆管上の冷却材液膜がはく離しにくく
なシ、液膜により除熱が十分に行なわれ、熱的余裕は増
大する。燃料棒の下端から全長のl/6から374の間
の二相流の流動様式が気泡流またはスラグ流となる領域
にはスペーサ302を5個設置する。このスペーサ30
2では構造制の上下端を刃状にしてc−c’断面が流線
型となるよう構成する(前記(3)の構成の一例)。こ
のように構成したスペーサ302では構造材が流線型で
るるため、圧力損失係数が小さくなる。このスペーサ3
02を設置した燃料集合点 体では外乱により出力が変り、沸騰開鳴装置がスペーサ
302を横切るようになっても圧力損失の変化を小さく
することができる。したがって燃料集合体の人口から出
口までの圧力損失の変化も小さくなシ、炉心内の各燃料
集合体の流量変化も小さく、前記外乱の影響はすみやか
に減衰し、炉心の核熱水力安定性を向上きせることがで
きる。燃料棒の下端から全長の374から4/4の間の
二相流の流動様式が環状流となる領域には、スペーサ3
03を2個設置する。このスペーサ303では一点鎖線
15によりチャンネルボックスかう離れた中心部16と
チャンネルボックス近傍の周辺部17の2つの領域に分
け、中心部16ではスペーサ構造材の上下端を刃状にせ
ずD−D’断面を矩形18にし、周辺部17の構造材は
上下端を刃状にしてB−E’断面のように構成する。ス
ペーサ303は、非沸騰領域に設置する前記スペーサ3
01と類似してお9、ともにスペーサ構造材の中心部断
面が矩形であり1周辺部で上下端を刃状にしている。し
かしスペーサ303にくらべ、スペーサ301では周辺
部断面11がより流線形に近く圧力損失が小さい構成に
なっている。これはスペーサ303が設置される環状流
領域では気相が流れを乱す効果があり、冷却材流量が非
沸騰領域よシも均一となる傾向かめるのに対し、スペー
サ301が設置される非沸騰領域では気相が存在せず冷
却材流量が周辺部に小さくなる傾向が強いので、断面を
流線形とし圧力損失をよシ小さくして冷却材流量を均一
にする必要がある。二相流の流動様式が環状流である前
記スペーサ303では中心部16と周辺部17とで圧力
損失は1:0.89と周辺部で11%小さくなる。この
スペーサ303を設置した燃料集合体では、チャンネル
ボックスの存在による周辺部での冷却材流量が小なくな
る傾向が、周辺部で圧力損失が少ないスペーサを設置し
た効果と気相が流れを乱す効果とにより相殺され、冷却
材流量はほぼ均一になる。この結果。
A first embodiment of the present invention will be described in detail below with reference to FIG. This example is a BW with an electrical output of 1100 MWe class.
The present invention is applied to a fuel assembly 1 in which approximately 800 fuel assemblies are loaded into a fuel assembly R. The fuel rods 2 are supported with their longitudinal axes parallel and spaced apart by spacers 3;
It is surrounded by a channel box 4. The coolant flows from the artificial orifice 5, generates heat from the fuel rod heat generating part 6, causes boiling, and flows out from the upper part as a two-phase flow. In this fuel assembly l, eight spacers are installed at intervals of about 0.4 m over the total length of the fuel rod heat generating part 6 of about 3.7 m, and from the lower end 0/6 to 1/6 of the total length. One spacer 301 is installed in the non-boiling region between the two. This spacer 301 is divided into two areas, a center part 8 away from the channel box 4 and a peripheral part 9 near the channel box, by a dashed line 7, and in the center part 8, the upper and lower ends of the spacer structural material are not blade-shaped. The -A' cross section is rectangular lO, and the structural members of the peripheral portion 9 have blade-like upper and lower ends so that the B-B' cross section has a streamlined shape 11 (an example of the configuration of (2) above). In the spacer 301 configured in this way, the pressure loss is greater at the center 8 depending on whether the upper and lower ends of the structural material are blade-shaped or not.
and peripheral part 9: l: 0.66, which is 34% smaller in the peripheral part. In a fuel assembly in which this spacer 301 is installed, the increase in pressure loss at the periphery due to the channel box 4 is offset by making the upper and lower ends of the structural material blade-shaped, so the pressure loss at the center and periphery of the flow path cross section is offset. are approximately equal, and the coolant flow rate is approximately uniform in the non-boiling part. As a result, the boiling start points of many fuel rods in the fuel assembly are approximately the same, and the movement of the gas phase and liquid phase in the boiling portion is reduced. In connection with this, the coolant liquid film on the fuel cladding tube is difficult to peel off, and the liquid film sufficiently removes heat, increasing the thermal margin. Five spacers 302 are installed in a region where the flow pattern of the two-phase flow is bubble flow or slug flow between 1/6 and 374 of the total length from the lower end of the fuel rod. This spacer 30
In No. 2, the upper and lower ends of the structure are shaped like blades so that the c-c' cross section is streamlined (an example of the construction in (3) above). In the spacer 302 configured in this manner, the structural material has a streamlined shape, so that the pressure loss coefficient is reduced. This spacer 3
In the fuel gathering point body in which 02 is installed, the output changes due to disturbance, and even if the boiling noise device crosses the spacer 302, the change in pressure loss can be reduced. Therefore, the change in pressure loss from the population of the fuel assembly to the outlet is small, and the change in the flow rate of each fuel assembly in the core is also small, and the influence of the disturbance quickly attenuates, improving the nuclear thermal hydraulic stability of the core. can be improved. Spacers 3
Install two 03. This spacer 303 is divided into two areas by a dashed line 15: a center part 16 far away from the channel box, and a peripheral part 17 near the channel box. The cross section is rectangular 18, and the structural members of the peripheral portion 17 have blade-like upper and lower ends, and are configured as shown in the BE' cross section. The spacer 303 is the spacer 3 installed in the non-boiling region.
Similar to No. 01, both of No. 9 and No. 9 have a rectangular cross section at the center of the spacer structural material, and the upper and lower ends at the periphery of No. 1 are shaped like blades. However, compared to the spacer 303, the spacer 301 has a structure in which the peripheral section 11 is more streamlined and has a smaller pressure loss. This is because in the annular flow region where the spacer 303 is installed, the gas phase has the effect of disturbing the flow, and the coolant flow rate tends to be uniform even in the non-boiling region, whereas in the non-boiling region where the spacer 301 is installed. In this case, there is no gas phase and the coolant flow rate tends to be small in the peripheral area, so it is necessary to make the cross section streamlined to further reduce pressure loss and make the coolant flow rate uniform. In the spacer 303 in which the flow mode of the two-phase flow is an annular flow, the pressure loss between the center portion 16 and the peripheral portion 17 is 1:0.89, which is 11% smaller at the peripheral portion. In the fuel assembly in which this spacer 303 is installed, the flow rate of coolant in the peripheral area tends to decrease due to the presence of the channel box, but this is due to the effect of installing the spacer with less pressure loss in the peripheral area and the effect of the gas phase disrupting the flow. The flow rate of the coolant becomes almost uniform. As a result.

燃料被覆管上の冷却材液膜がはく離しにくくなシ、液膜
により除熱が十分に行なわれ、熱的余裕は増大する。
Since the coolant liquid film on the fuel cladding tube is difficult to peel off, heat is removed sufficiently by the liquid film, and the thermal margin increases.

この燃料集合体において冷却材が非沸騰である領域に設
置するスペーサ301と、二相流の流動様式が気泡流ま
たはスラグ流となる領域に設置するスペーサ302と環
状流の領域に設置するスペーサ303の3個の圧力損失
係数の比は0.90:0.69 : 1.00でおる。
In this fuel assembly, a spacer 301 is installed in an area where the coolant is non-boiling, a spacer 302 is installed in an area where the flow pattern of the two-phase flow is a bubble flow or a slug flow, and a spacer 303 is installed in an annular flow area. The ratio of the three pressure loss coefficients is 0.90:0.69:1.00.

このように気泡流またはスラグ流の領域に低圧力損失の
スペーサ302を設置することにより、外乱により出力
が変化したときでも、各燃料集合体の冷却材流量の変化
を小さくでき、外乱の影響はすみやかに減衰して、炉心
の核熱水力安定性を向上させることができる。
By installing the spacer 302 with low pressure loss in the region of bubble flow or slug flow in this way, even when the output changes due to disturbance, the change in the coolant flow rate of each fuel assembly can be reduced, and the influence of the disturbance is reduced. It can dampen quickly and improve the nuclear thermal-hydraulic stability of the reactor core.

本発明の第1の実施例になる燃料集合体での減幅比は0
.58で69、従来の燃料集合体、つま9燃料棒の全長
にわたり、構造材の断面が矩形であるスペーサを設置し
た燃料集合体では減幅比が0.68でめるので、15%
の減幅比の改善がみられる。また熱的余裕も9%増加す
る。
The width reduction ratio in the fuel assembly according to the first embodiment of the present invention is 0.
.. 58 and 69. In a conventional fuel assembly, a fuel assembly in which a spacer whose structural material has a rectangular cross section is installed over the entire length of the fuel rod, the width reduction ratio can be calculated as 0.68, so it is 15%.
An improvement in the attenuation ratio can be seen. Thermal margin also increases by 9%.

次に本発明の第2の実施例を、第2図を用い詳細に説明
する。この実施例は、第1の実施例と同じく電気出力1
100MWei(7)BWRに約800体装荷される燃
料集合体lを対象にしている。
Next, a second embodiment of the present invention will be explained in detail using FIG. This embodiment, like the first embodiment, has an electrical output of 1
The target is approximately 800 fuel assemblies l loaded into a 100MWei (7) BWR.

この燃料集合体では、燃料棒の下端から全長の0/6か
ら1/6の間の非沸騰の領域および燃料棒の下端から全
長の3/4から4/4の間の二相流の流動様式が環状流
となる領域には、第1の実施例と同じく、それぞれスペ
ーサ301を1個。
In this fuel assembly, there is a non-boiling region between 0/6 and 1/6 of the total length from the lower end of the fuel rod, and a two-phase flow between 3/4 and 4/4 of the total length from the lower end of the fuel rod. As in the first embodiment, one spacer 301 is provided in each region where the flow pattern is annular.

スペーサ30:12個設置する。第1の実施例と異なる
点は燃料棒の下端から1/4と3/4の間の二相流の流
動様式が気泡流またはスラグ流となる領域に、中心部2
0および周辺部21で構造材の断面が矩形22で比較点
圧力損失の大きいスペーサ304t5個設置している点
で本る(前記(1)(2)の構成を併用した一例)。こ
のように構成した燃料集合体では前記(1)(2)の構
成としたことによる効果が期待できる。つまり前記従来
の燃料集合体に対し、減幅比および熱的余裕はともに7
%改善される。
Spacer 30: Install 12 pieces. The difference from the first embodiment is that the central part 2
0 and the peripheral portion 21, the cross section of the structural material is rectangular 22, and five spacers 304t with a large comparison point pressure loss are installed (an example of using the configurations (1) and (2) above). In the fuel assembly constructed in this way, the effects of the configurations (1) and (2) above can be expected. In other words, compared to the conventional fuel assembly, both the width reduction ratio and the thermal margin are 7.
% improved.

本発明の第3の実施例を第3図を用゛い、詳細に説明す
る。この実施例では第1,2の実施例と同じ燃料集合体
を対象としている。
A third embodiment of the present invention will be described in detail with reference to FIG. This embodiment targets the same fuel assembly as the first and second embodiments.

第3の実施例になる燃料集合体では、燃料棒の下端から
全長の3/4と474の間の環状流の領域には第1の実
施例と同じスペーサ303を2個設置する。第1の実施
例と異なる点は、燃料棒の下端から全長の0/6から1
/6の非沸騰の領域に中心部23および周辺部24で構
造材の断面形状がともに矩形25となるスペーサ305
を1個設置し、かつ燃料棒の下端から全長のl/4と3
/4の間の気泡流またはスラグ流となる領域に圧力損失
を小さくするため、構造材の肉厚を約1/2としたスペ
ーサ306を5個設置している点である(前記(1)(
3)の構成を併用した一例)。このように構成した燃料
集合体では前記(1)(a)の構成としたことによる効
果が期待できる。つまり前記従来の燃料集合体に対し、
減幅比は8%、熱的余裕は6%改善される。
In the fuel assembly of the third embodiment, two spacers 303 similar to those of the first embodiment are installed in the annular flow region between 3/4 and 474 of the total length from the lower end of the fuel rod. The difference from the first embodiment is that from 0/6 to 1/2 of the total length from the lower end of the fuel rod.
A spacer 305 in which the cross-sectional shape of the structural material is rectangular 25 in both the center part 23 and the peripheral part 24 in the non-boiling region of /6
1/4 and 3 of the total length from the bottom end of the fuel rod.
In order to reduce pressure loss in the region where the bubble flow or slug flow occurs between (
An example of using configuration 3) in combination). In a fuel assembly constructed in this way, the effects of having the construction (1) (a) described above can be expected. In other words, compared to the conventional fuel assembly,
The width reduction ratio is improved by 8% and the thermal margin is improved by 6%.

第1.2.3の実施例で述べたのと同じ電気出力110
0MWe級のBWRに約800体装荷される燃料集合体
を対象とした本発明の第4の実施例を第4図を用い詳細
に説明する。
The same electrical power 110 as mentioned in the embodiment 1.2.3
A fourth embodiment of the present invention, which targets approximately 800 fuel assemblies loaded in a 0MWe class BWR, will be described in detail with reference to FIG.

この実施例になる燃料集合体では、燃料棒の下端から全
長の374から4/4の間に第1の実施例と同じくスペ
ーサ303を2個設置する。その他の領域には冷却材流
路断面の中心部23および周辺部24で構造材の断面が
矩形25となるスペーサ305を6個設置する(前記(
1)の構成の一例)。
In the fuel assembly of this embodiment, two spacers 303 are installed between 374 and 4/4 of the total length from the lower ends of the fuel rods, as in the first embodiment. In other areas, six spacers 305 are installed in which the structural material has a rectangular cross section 25 at the center 23 and peripheral portion 24 of the cross section of the coolant flow path (as described above).
An example of the configuration of 1).

このように構成した燃料集合体では前記(1)の構成と
したことによる効果が期待でき、熱的余裕が前期従来の
燃料集合体よシも4%改善される。
In the fuel assembly constructed in this way, the effect of the configuration (1) can be expected, and the thermal margin is improved by 4% compared to the previous conventional fuel assembly.

燃料集合体の冷却材流路断面の中心部と周辺部の圧力損
失を変える方法として、第1.2,3゜4の実施例では
スペーサ構造材の上下端を刃状にするか否かによった。
As a method of changing the pressure loss between the center and peripheral parts of the cross section of the coolant flow path of the fuel assembly, in the embodiments 1, 2, 3 and 4, the upper and lower ends of the spacer structural material are made into blade shapes or not. Yes.

また第3の実施例ではスペーサ構造材の流路への投影面
積を変える方法も使った。前者の方法では第5図に示す
ようにスペーサ構造材の形状により圧力損失の比ヲ1.
0から0.66の範囲で任意に変えることができる。ま
た後者の方法では、圧力損失はスペーサ構造材の投影面
積にほぼ比例することがわかっている。燃料棒の下端か
ら全長の1/6から3/4の間の二相流の流動様式が気
泡流またはスラグ流となる領域に設置するスペーサがそ
の他の領域に設置するスペーサよシも圧力損失が小さく
なるようにするにはまた、流路断面内でスペーサの圧力
損失を変えるには、前記三方法のどちらを用いてもよい
In the third embodiment, a method of changing the projected area of the spacer structural material onto the flow path was also used. In the former method, as shown in Fig. 5, the pressure loss ratio can be reduced to 1.0 depending on the shape of the spacer structural material.
It can be changed arbitrarily within the range of 0 to 0.66. Furthermore, in the latter method, it is known that the pressure loss is approximately proportional to the projected area of the spacer structural material. Spacers installed in the region where the flow pattern of the two-phase flow is bubble flow or slug flow between 1/6 and 3/4 of the total length from the bottom end of the fuel rod have a lower pressure loss than spacers installed in other regions. In order to reduce the pressure loss or to change the pressure loss of the spacer within the cross section of the flow path, any of the above three methods may be used.

本発明の詳細な説明では、第1図の一点鎖線7により燃
料集合体の冷却材流路を中心部と週辺部との2つの領域
に分け、その2つの領域で圧力損失を変えた。一般に圧
力損失はチャンネルボックスのような流動抵抗により大
きく変るのであるから、領域分けはチャンネルボックス
に隣接した燃料棒を含む領域とそれ以外の領域に分けれ
は良い。
In the detailed description of the present invention, the coolant flow path of the fuel assembly was divided into two regions, a center portion and a week edge portion, by the dashed dotted line 7 in FIG. 1, and the pressure loss was varied in the two regions. Generally, pressure loss varies greatly depending on flow resistance such as in a channel box, so it is good to divide the area into an area including the fuel rods adjacent to the channel box and an area other than the area.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば燃料集合体のスペ
ーサを取シ替えるだけで、熱的余裕を増太し、核熱水力
安定性を改善することができる。
As explained above, according to the present invention, thermal margin can be increased and nuclear thermal hydraulic stability can be improved simply by replacing the spacer of the fuel assembly.

そのため、燃料集合体の大幅な設計変更は不要となシ、
現在運転中の原子炉に適用できるとともに、原子炉の小
型化、または高出力密度化に役立てることができる。し
たがって本発明の実施による安全上、経済上の効果は大
きい。
Therefore, there is no need for major design changes to the fuel assembly.
It can be applied to nuclear reactors currently in operation, and can be useful for downsizing nuclear reactors or increasing their power density. Therefore, the safety and economic effects of implementing the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例になる燃料集合体の構成
図、第2図は本発明の第2の実施例になる燃料集合体の
構成図、第3図は本発明の第3の実施例になる燃料集合
体の構成図、第4図は本発明の第4の実施例になる燃料
集合体の構成図、第5図は同じくスペーサ構造材と圧力
損失の関係の説明図でるる。 l\・・・燃料集合体、2・・・燃料棒、301〜30
6・・・ス・サーt0 茅 1 目 (泰) 第 2 固 茅3 口
FIG. 1 is a block diagram of a fuel assembly according to a first embodiment of the present invention, FIG. 2 is a block diagram of a fuel assembly according to a second embodiment of the present invention, and FIG. 3 is a block diagram of a fuel assembly according to a second embodiment of the present invention. FIG. 4 is a configuration diagram of a fuel assembly according to the fourth embodiment of the present invention, and FIG. 5 is an explanatory diagram of the relationship between the spacer structural material and pressure loss. Out. l\...Fuel assembly, 2...Fuel rod, 301-30
6...S.S.T0 Mochi 1st (Tai) 2nd Kogyo3 mouth

Claims (1)

【特許請求の範囲】[Claims] 1、多数本の燃料棒とそれらの長手方向軸線を平行にし
て支持し、そして離間するスペーサからなり、冷却材が
下部から流人、上部から流出し、前記冷却材の沸騰伝熱
現象により除熱される原子炉用の燃料集合体において、
燃料棒の下端から全長の3/4と4/4の間の二相流の
流動様式が環状流となる領域に設置する前記スペーサが
、冷却材流路断面の中心部で圧力損失が大きくなり、周
辺部で圧力損失が小さくなるように構成されていること
を特徴とする燃料集合体。
1. Consists of a large number of fuel rods and spacers that support their longitudinal axes in parallel and are spaced apart. Coolant flows from the bottom and flows out from the top, and is removed by the boiling heat transfer phenomenon of the coolant. In heated nuclear reactor fuel assemblies,
The spacer is installed in a region where the flow pattern of the two-phase flow becomes an annular flow between 3/4 and 4/4 of the total length from the lower end of the fuel rod. , a fuel assembly characterized in that it is configured to reduce pressure loss in the peripheral area.
JP15301684A 1984-07-25 1984-07-25 Fuel aggregate Pending JPS6131994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15301684A JPS6131994A (en) 1984-07-25 1984-07-25 Fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15301684A JPS6131994A (en) 1984-07-25 1984-07-25 Fuel aggregate

Publications (1)

Publication Number Publication Date
JPS6131994A true JPS6131994A (en) 1986-02-14

Family

ID=15553117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15301684A Pending JPS6131994A (en) 1984-07-25 1984-07-25 Fuel aggregate

Country Status (1)

Country Link
JP (1) JPS6131994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252593U (en) * 1988-10-07 1990-04-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252593U (en) * 1988-10-07 1990-04-16

Similar Documents

Publication Publication Date Title
EP0336203B2 (en) Two-phase pressure drop reduction BWR assembly design
JPH0232293A (en) Boiling water nuclear reactor
JPS6131994A (en) Fuel aggregate
JPS61284696A (en) Fuel support metal and nuclear reactor
JP3434790B2 (en) Heterogeneous fuel assemblies for fast reactors
JP3676615B2 (en) Fuel assemblies and reactor cores
JPS6318152B2 (en)
JPH10288688A (en) Control rod for reactor
JP2002533689A (en) Fuel assemblies for boiling water reactors.
JPS60222792A (en) Fuel aggregate for nuclear reactor
JPH0511086A (en) Fuel assembly of reactor and core of reactor
JP3485999B2 (en) Fuel assemblies for boiling water reactors
JP2510559B2 (en) Reactor core
US5186890A (en) Reactor core of fast breeder reactor, components of same, and regulating method of coolant distribution of same
JP3402142B2 (en) Fuel assembly
JPH0453275B2 (en)
JP2000180575A (en) Fuel assembly for boiling-water reactor and reactor core using it
JPS63217291A (en) Fuel aggregate
JP2625404B2 (en) Fuel assembly
JPS598797B2 (en) nuclear fuel assembly
JPS6398591A (en) Fuel aggregate
JPS6247115Y2 (en)
JP2001091682A (en) Fuel assembly and core for fast reactor
JPH0436354B2 (en)
JPS58196487A (en) Burnable poison rod