JPS6131913A - Multidimensional measuring machine - Google Patents

Multidimensional measuring machine

Info

Publication number
JPS6131913A
JPS6131913A JP15478484A JP15478484A JPS6131913A JP S6131913 A JPS6131913 A JP S6131913A JP 15478484 A JP15478484 A JP 15478484A JP 15478484 A JP15478484 A JP 15478484A JP S6131913 A JPS6131913 A JP S6131913A
Authority
JP
Japan
Prior art keywords
slider
guide rail
slider guide
columns
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15478484A
Other languages
Japanese (ja)
Other versions
JPH0260242B2 (en
Inventor
Hideo Sakata
坂田 秀夫
Eiichi Tsunoda
栄一 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsutoyo Manufacturing Co Ltd
Original Assignee
Mitsutoyo Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsutoyo Manufacturing Co Ltd filed Critical Mitsutoyo Manufacturing Co Ltd
Priority to JP15478484A priority Critical patent/JPS6131913A/en
Priority to US06/753,305 priority patent/US4630381A/en
Priority to GB08517518A priority patent/GB2162318B/en
Priority to DE19853526317 priority patent/DE3526317A1/en
Publication of JPS6131913A publication Critical patent/JPS6131913A/en
Publication of JPH0260242B2 publication Critical patent/JPH0260242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines

Abstract

PURPOSE:To prevent the occurrence of an error in precision and to reduce the cost by fixing slider guide rails whose attitdes are adjusted by an attitude adjusting means to columns so that the abutting surface contacts a pressure receiving surface and the rail is not displaced in the moving direction of a slider. CONSTITUTION:The columns 41 and 42 are supported on both guide rails 46 of a base 21 at right angles to the top surfaces of the base 21 and at a specific interval in parallel to each other, and the attitude of slider guide rail 46 laid between both columns 41 and 42 is adjusted by the attitude adjusting meand 51. Then, a bolt 68 coupling the 1st and the 2nd adjusting members 63 and 64 is inserted and the slider guide rail 46 is fixed between the 1st and the 2nd adjusting members 63 and 64 through a bolt 65. Consequently, the slider guide rail 46 is fixed to the columns 41 and 42 so that its abutting surface contacts the pressure receiving surfaces 52 of the columns and the rail is not displaced in the moving direction of the slider. Therefore, no error in precision is generated and the cost is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二次元測定機、三次元測定機のように直交2
軸以上に測定子が変位可能で、この測定子の移動変位か
ら被測定物の形状等を計測する多次元測定機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to orthogonal two-dimensional measuring machines such as two-dimensional measuring machines and three-dimensional measuring machines.
The present invention relates to a multidimensional measuring machine whose measuring element can be displaced beyond the axis and which measures the shape of a workpiece based on the displacement of the measuring element.

[背景技術とその問題点] 二次元或いは三次元方向へ移動可能な測定子を被測定物
の表面に当接させ、その測定子の移動変位から被測定物
の形状等を測定する二次元或いは三次元測定機は、高い
精度で測定できることからあらゆる産業分野で利用され
ている。
[Background art and problems thereof] A two-dimensional or three-dimensional method in which a measuring element movable in two-dimensional or three-dimensional directions is brought into contact with the surface of the object to be measured, and the shape of the object to be measured is measured from the displacement of the measuring element. Coordinate measuring machines are used in all industrial fields because they can measure with high precision.

かかる、三次元測定機では、測定子が相互に直交するX
軸、Y軸およびZ軸方向へ移動できる機構が備えられて
いる。
In such a three-dimensional measuring machine, the measuring stylus is orthogonal to each other
A mechanism that can move in the axial, Y-axis, and Z-axis directions is provided.

従来、3軸方向へ測定子を移動させるための機構として
は、例えば基台の上面に複数の支柱を立設し、この支柱
にY軸方向に延びるレールを2本平行に設け、このレー
ル間にX軸方向に延びる横架をY軸方向へ移動可能に渡
設し、この横架に設けたレールにスライダをX軸方向へ
移動自在に載装置し、更にこのスライダにスピンドルを
Z軸方向へ摺動自在に設け、このスピンドルの一端に測
定子を固定して構成していた。つまり、積上方式により
全体を構成し、その位置的基準を基台または他の基礎に
求めていたのである。
Conventionally, as a mechanism for moving a measuring head in three-axis directions, for example, a plurality of columns are erected on the top surface of a base, two rails extending in the Y-axis direction are provided on these columns in parallel, and there is a gap between the rails. A horizontal rack extending in the X-axis direction is provided so as to be movable in the Y-axis direction, a slider is mounted on a rail provided on the horizontal rack so as to be movable in the X-axis direction, and a spindle is mounted on this slider in the Z-axis direction. The spindle was provided so as to be slidable thereon, and a measuring element was fixed to one end of the spindle. In other words, the whole was constructed using a stacking method, and its positional reference was determined from the base or other foundation.

従って、支柱は基台等に対して垂直かつ両側に平行に配
置しなければならない上、高さを正確に仕上げかつ組立
てなければならず、続いてこの支柱に支持されるべき構
造体を順次X、YおよびZ軸に対し平行かつ垂直に組立
てなければならず、更にこの組立構造体の調整後、その
スライダ等と平行かつ一定のクリアランスにスケールを
固定する等、極めて複雑な手順と熟練を必要とするもの
であった。
Therefore, the pillars must be placed perpendicular to the base and parallel to both sides, and must be finished and assembled to an accurate height, and then the structures to be supported by these pillars are sequentially , must be assembled parallel and perpendicular to the Y and Z axes, and after adjusting the assembled structure, extremely complex procedures and skill are required, such as fixing the scale parallel to the slider etc. and with a certain clearance. It was intended to be.

こ′のことは、1つの部品の加工精度が総合精度に及ぼ
す影響が大であり、初めの段階において狂いがあると、
修正、改良がなせないこととなり結局初めから全て調整
や組立をやり直さねばならなかった。また、組立の熟練
度によって総合精度が大きくかわるものであった。
This means that the machining accuracy of one part has a large influence on the overall accuracy, and if there is a deviation at the initial stage,
No modifications or improvements could be made, and in the end all adjustments and assembly had to be done from the beginning. Furthermore, the overall accuracy greatly varied depending on the skill level of the assembler.

[発明の目的] ここに、本発明の目的は、組立て、調整が容易な上、調
整完了後使用時に精度誤差が生じることがなく、かつ安
価な多次元測定機を提供するにある。
[Object of the Invention] An object of the present invention is to provide a multidimensional measuring machine that is easy to assemble and adjust, does not cause accuracy errors during use after adjustment, and is inexpensive.

[問題点を解決するための手段および作用3本発明は、
究極的な目的である測定子がX。
[Means and effects for solving the problems 3] The present invention has the following features:
The measuring tip which is the ultimate purpose is X.

Y、Z軸方向に正確に移動できればよいことから、構造
体を組立てた後、測定子を用いてその判断をできるよう
にするとともに、誤差のあるときは全体構造に手を加え
るこ°となく、−個所でX。
Since it is sufficient to be able to move accurately in the Y and Z axis directions, it is possible to make judgments using a probe after assembling the structure, and if there is an error, it is possible to do so without modifying the entire structure. , -X in place.

Y、Z軸方向の少なくとも2軸方向の調整ができる構成
を確立したものである。また、この調整手段がスライダ
の移動、衝突等により精度に影響を与えないものとする
等、運用上、経済上の要求も満足させる構造としたもの
である。
A configuration has been established that allows adjustment in at least two axes, the Y and Z axes. Furthermore, the structure is such that this adjustment means does not affect accuracy due to slider movement, collision, etc., and satisfies operational and economic requirements.

具体的には、基台に一対の支柱を立設し、これらの支柱
間にスライダ案内レールを掛は渡すとともに、測定子を
有するスライダを前記スライダ案内レールに沿って移動
自在に設け、前記測定子の移動変位から被測定物の形状
等を計測する多次元測定機において、前記スライダ案内
レールと前記支柱との連結部に前記支柱に対して前記ス
ライダ案内レールの姿勢を変えて前記測定子のX、Yお
よびZ軸方向の少なくとも2軸方向の位置を調整するた
めの姿勢調整手段を設け、前記両支柱のそれぞれに互い
に対向する受圧面を設ける一方、前記スライダ案内レー
ルに前記受圧面と対応する当接面を有する調整部材を位
置調整可能かつ固定可能に取付け、前記姿勢調整手段で
姿勢調整されたスライダ案内レールを、前記当接面と受
圧面とが互いに密着した状態で前記支柱にスライダの移
動方向へ変位不能に固定した、ことを特徴としている。
Specifically, a pair of columns are erected on a base, a slider guide rail is hung between these columns, and a slider having a measuring head is provided so as to be movable along the slider guide rail. In a multidimensional measuring machine that measures the shape of an object to be measured based on the moving displacement of a probe, the position of the slider guide rail with respect to the column is changed at the connecting portion between the slider guide rail and the column to prevent the measurement sample from moving. A posture adjustment means is provided for adjusting the position in at least two axes of the X, Y, and Z axes, and each of the pillars is provided with a pressure receiving surface that faces each other, and the slider guide rail is provided with a pressure receiving surface that corresponds to the pressure receiving surface. An adjustment member having a contact surface that is adjustable and fixed is mounted, and the slider guide rail whose attitude has been adjusted by the attitude adjustment means is mounted on the support column with the abutment surface and the pressure receiving surface in close contact with each other. It is characterized by being fixed so that it cannot be displaced in the direction of movement.

2 や [実施例] 以下、本発明を三次元測定機に適用した一実施例につい
て説明する。
2 and [Example] Hereinafter, an example in which the present invention is applied to a three-dimensional measuring machine will be described.

第1図は同三次元測定機の正面を、第2図はその側面を
、それぞれ示している。これらの図において、略偏平直
方体状に形成された基台21には、その前後面に断面り
字状の把手23がそれぞれ設けられているとともに、両
側面にその各側面より直角に突設された数本の支持軸2
5を介し〒案内レール26.27が互いに平行にかつ基
台21の前後方向(Y軸方向)に沿って取付けられてい
る。
FIG. 1 shows the front of the three-dimensional measuring machine, and FIG. 2 shows its side. In these figures, a base 21 formed in the shape of a substantially flat rectangular parallelepiped is provided with handles 23 each having a cross-section in the shape of a cross-section on its front and rear surfaces, and handles 23 are provided on both sides thereof to protrude at right angles from each side. Several support shafts 2
5, guide rails 26 and 27 are attached parallel to each other and along the front-rear direction (Y-axis direction) of the base 21.

両案内レール26.27には、それぞれ略角柱状の支柱
41.42の下端部が移動自在に支持されている。両支
柱41.42の上部間には、丸棒からなるスライダ微動
レール48、断面が略縦長長方形状のスライダ案内レー
ル46および横部材47がそれぞれ前記基台21の上面
と平行でかつ前記案内レール31.32に対して直交す
る方向(X軸方向)へ渡設されている。前記スライダ微
動レール48は、他方の支柱42の上部に設けられた微
動つまみ49を回動させることにより、X軸方向へ微動
されるようになっている。
The lower ends of substantially prismatic columns 41 and 42 are movably supported by both guide rails 26 and 27, respectively. Between the upper parts of both supports 41 and 42, there are a slider fine movement rail 48 made of a round bar, a slider guide rail 46 with a substantially vertically rectangular cross section, and a horizontal member 47, which are parallel to the upper surface of the base 21 and are connected to the guide rail. 31 and 32 (X-axis direction). The slider fine movement rail 48 can be finely moved in the X-axis direction by rotating a fine movement knob 49 provided on the top of the other support column 42.

前記スライダ案内レール46の端部をそれぞれ支持する
前記支柱41.42には、スライダ案内レール46の姿
勢を変化させるための姿勢調整手段51が設けられてい
るとともに、内側面に互いに対向する受圧面52が形成
されている。前記姿勢調整手段51は、第3図に示す如
く、前記支柱41.42の前記スライダ案内レール46
の前後面上下部と対向する位置に設けられた4つの姿勢
調整具53,54,55.56と、前記支柱41.42
の前記スライダ案内レール46の下面と対向する位置に
設けられ前記スライダ案内レール46の下面を支持する
ボルト57とから構成されている。前記各姿勢調整具5
3〜56は、前記支柱41.42に固定された補強ナツ
ト58と、この補強ナツト58にねじ込まれ先端が前記
スライダ案内レール46の前面または後面に当接された
位置決めブツシュ59と、この位置決めブツシュ59を
貫通して前記スライダ案内レール46にねじ込まれたボ
ルト60とから構成されている。
The pillars 41 and 42, which respectively support the ends of the slider guide rails 46, are provided with attitude adjustment means 51 for changing the attitude of the slider guide rails 46, and have pressure receiving surfaces facing each other on their inner surfaces. 52 is formed. As shown in FIG.
four posture adjusters 53, 54, 55, 56 provided at positions facing the upper and lower portions of the front and rear surfaces, and the pillars 41, 42.
A bolt 57 is provided at a position facing the lower surface of the slider guide rail 46 and supports the lower surface of the slider guide rail 46. Each of the posture adjustment tools 5
Reference numerals 3 to 56 refer to a reinforcing nut 58 fixed to the support column 41.42, a positioning bush 59 screwed into the reinforcing nut 58 and having its tip abutted against the front or rear surface of the slider guide rail 46, and the positioning bush 59. 59 and screwed into the slider guide rail 46.

一方、前記スライダ案内レール46には、第4図に示す
如く、その両端側にU字状の調整部材61.62が位置
調整可能かつ固定可能に設けられているとともに、その
間にスライダ71が移動自在に設けられている。前記各
調整部材61.62は、第5図に示す如く、前記スライ
ダ案内レール46の前面から下面に亘って当接されたL
字状の第1の調整部材63と、前記スライダ案内レール
46の後面に当接された工学状の第2の調整部材64と
、この第2の調整部材64の上部から前記スライダ案内
レール46を通って前記第1の調整部材63の上部にね
じ込まれたボルト65とから構成されている。これによ
り、第1、第2の調整部材63.64は、スライダ案内
レール46に対して位置調整可能になっている。また、
前記第1、第2の調整部材63.64には、前記支柱4
1.42に形成された受圧面52と対応する当接面66
が形成されているとともに、上下部に前記第1、第2の
調整部材63.64を前記支柱41.42の受圧面52
に密着固定するためのボルト68が挿入されるボルト挿
通孔67が形成されている。なお1.ボルト挿通孔67
は、スライダ案内レール46が姿勢調整された状態でも
、第1、第2の調整部材63.64を支柱41.42に
密着固定できるように、ボルト68に対して多少大きく
形成されている。
On the other hand, as shown in FIG. 4, the slider guide rail 46 is provided with U-shaped adjustment members 61 and 62 on both ends thereof so that the position can be adjusted and fixed, and the slider 71 can be moved between them. It is set freely. As shown in FIG.
A first adjustment member 63 in the shape of a letter, a second adjustment member 64 in an engineering shape that is in contact with the rear surface of the slider guide rail 46, and the slider guide rail 46 is adjusted from the top of the second adjustment member 64. A bolt 65 is screwed into the upper part of the first adjustment member 63 through the adjustment member 63. Thereby, the positions of the first and second adjustment members 63 and 64 can be adjusted with respect to the slider guide rail 46. Also,
The first and second adjustment members 63 and 64 include the support column 4.
1. A contact surface 66 corresponding to the pressure receiving surface 52 formed at 42
are formed, and the first and second adjustment members 63, 64 are arranged at the upper and lower portions of the pressure receiving surface 52 of the support column 41, 42.
A bolt insertion hole 67 is formed into which a bolt 68 for tightly fixing is inserted. Note 1. Bolt insertion hole 67
are formed somewhat larger than the bolts 68 so that the first and second adjustment members 63, 64 can be tightly fixed to the columns 41, 42 even when the slider guide rail 46 has been adjusted in attitude.

また、前記スライダ71には、第4図および第6図に示
す如く、前記スライダ案内レール46の前後面上下縁に
沿って転動する4つのローラ72.73,74.75と
、前記スライダ案内レール46の上下面を転動する2つ
のローラ76.77とがスライダ71の両側にそれぞれ
設けられているとともに、内部に前記スライダ案内レー
ル46の後面長手方向に沿って設けられたスケール78
とともにスライダ71の位置を検出する位置検出器79
が設けられている。また、スライダ71の上部には前記
スライダ微動レール48の移動によってスライダ71を
X軸方向へ微動させる微動機構′80が設けられている
とともに、前面にスピンドル支持ブロック91が取付け
られている。前記微動機構80は、前記スライダ71に
固定されたホルダ81と、このホルダ81内に移動自在
に収納されかつ前記スライダ微動レール48に摺動自在
に嵌合された保合子82と、この保合子82をスライダ
微動レール48に対して直交する方向へ変位させ係合子
82を介してスライダ微動レール48とスライダ71と
を選択的に一体化させるロックつまみ83とから構成さ
れている。
Further, as shown in FIGS. 4 and 6, the slider 71 includes four rollers 72, 73, 74, 75 that roll along the upper and lower edges of the front and rear surfaces of the slider guide rail 46, and the slider guide Two rollers 76 and 77 rolling on the upper and lower surfaces of the rail 46 are provided on both sides of the slider 71, and a scale 78 is provided inside along the longitudinal direction of the rear surface of the slider guide rail 46.
and a position detector 79 that detects the position of the slider 71.
is provided. Furthermore, a fine movement mechanism '80 is provided at the top of the slider 71 to finely move the slider 71 in the X-axis direction by movement of the slider fine movement rail 48, and a spindle support block 91 is attached to the front surface. The fine movement mechanism 80 includes a holder 81 fixed to the slider 71, a retainer 82 movably housed in the holder 81 and slidably fitted to the slider fine movement rail 48, and this retainer. 82 in a direction orthogonal to the slider fine movement rail 48 to selectively integrate the slider fine movement rail 48 and the slider 71 via the engagement element 82.

前記スピンドル支持ブロック91には、スピンドル92
が前記案内レール26.27およびスライダ案内レール
46に対してそれぞれ直交する方向(X軸方向)へ昇降
自在に設けられているとともに、−側面下部に前記スピ
ンドル92を任意の位置にロックjるためのロックつま
み93が螺合されている。前記スピンドル92の下端に
は、測定子としてのタッチ信号プローブ94が取付けら
れている。
The spindle support block 91 has a spindle 92
are provided so as to be movable up and down in the direction (X-axis direction) perpendicular to the guide rails 26, 27 and the slider guide rail 46, respectively, and to lock the spindle 92 at an arbitrary position at the lower side of the side. A lock knob 93 is screwed together. A touch signal probe 94 as a measuring element is attached to the lower end of the spindle 92.

次に、本実施例の組立ておよび調整方法を説明する。ま
ず、基台21の両案内レール26 、27に対して支柱
41.42を基台21の上面に対して直角にかつ所定間
隔おいて互いに平行に支持させ、ついで両支柱41.4
2間に渡設されたスライダ案内レール46の姿勢を姿勢
調整手段51によって調整する。
Next, the assembly and adjustment method of this embodiment will be explained. First, support columns 41.42 are supported on both guide rails 26 and 27 of base 21 at right angles to the upper surface of base 21 and parallel to each other at a predetermined interval, and then both support columns 41.4
The attitude of the slider guide rail 46 provided between the two is adjusted by an attitude adjustment means 51.

この調整に当っては、まず基台21上に基準寸法品をセ
ットした後、姿勢調整具53〜56のポルト60を適宜
ゆるめ、各位置決めブツシュ59を進退させるとともに
、ポルト57を進退させ、基準寸法品に接触させたタッ
チ信号プローブ94をそれぞれXおよびZ軸方向へ正確
に動くように調整を行う。
For this adjustment, first set the standard dimension product on the base 21, then loosen the ports 60 of the posture adjusters 53 to 56 as appropriate, move each positioning bushing 59 forward and backward, move the port 57 back and forth, and set the standard. Adjustments are made so that the touch signal probes 94 that are brought into contact with the dimensional products are moved accurately in the X and Z axis directions.

この調整完了後、調整部材61.62の第1、第2の調
整部材61.62の当接面66を支柱41.42の受圧
面52へ密着させた後、ポルト挿通孔67よりポルト6
8を挿入し、第1、第2の調整部材63.84を支柱4
1.42に固定する。
After this adjustment is completed, the contact surfaces 66 of the first and second adjustment members 61.62 of the adjustment members 61.62 are brought into close contact with the pressure receiving surfaces 52 of the support columns 41.42, and then the port 6 is inserted through the port insertion hole 67.
8 and insert the first and second adjustment members 63 and 84 into the support column 4.
Fixed at 1.42.

この後、第1、第2の調整部材63.64を連結す′る
ポルト65を締め付け、第1、第2の調整部材63.6
4間にポルト65を介してスライダ案内レール46を固
定する。その結果、スライダ案内レール46は、支柱4
1.42の受圧面52に当接面66が密着固定された調
整部材61.62を介して支柱41.42に固定される
After this, the port 65 connecting the first and second adjustment members 63.64 is tightened, and the first and second adjustment members 63.6 are tightened.
A slider guide rail 46 is fixed between the holes 65 and 4 through a port 65. As a result, the slider guide rail 46
A contact surface 66 is fixed to the support column 41.42 via an adjustment member 61.62 which is tightly fixed to the pressure receiving surface 52 of 1.42.

このようにして調整を完了したら、従来の三次元測定機
と同様にしてタッチ信号プローブ94を三次元方向へ移
動させ、被測定物の測定部位へ順次当接させることによ
り、被測定物の各部の寸法や形状等を測定できる。
After completing the adjustment in this way, the touch signal probe 94 is moved in the three-dimensional direction in the same manner as a conventional coordinate measuring machine, and is brought into contact with the measuring parts of the workpiece one by one. The dimensions and shape of objects can be measured.

この際、スライダ71のX軸方向への移動により、スラ
イダ71が調整部材61.62に衝突しても、調整部材
61.62の当接面66が支柱41.42の受圧面52
に密着されているため、その間に寸法誤差が生じること
がなく、その結果精度に影響を与えることがない。
At this time, even if the slider 71 collides with the adjustment member 61.62 due to the movement of the slider 71 in the
Since the parts are in close contact with each other, dimensional errors do not occur between them, and as a result, accuracy is not affected.

従って、本実施例によれば、精度調整は、全体構造を組
立てた後タッチ信号プローブ94そのものを用いて行い
、その調整は姿勢調整手段51のみで行うようにしたか
ら、組立てに熟練を要することがなく、かつ短時間で組
立てることができる。また、組立て後調整できることか
ら、高級加工部品の減少、調整の容易化等に伴い、精度
を確保したまま著しく原価低減を図ることができ、かつ
運搬に伴う調整も容易であるから運搬性を良好にできる
Therefore, according to this embodiment, the accuracy adjustment is performed using the touch signal probe 94 itself after the entire structure is assembled, and the adjustment is performed only by the attitude adjustment means 51, so that the assembly requires no skill. There are no problems and it can be assembled in a short time. In addition, since adjustments can be made after assembly, it is possible to significantly reduce costs while maintaining accuracy by reducing the need for high-grade machined parts and making adjustments easier.Also, it is easy to make adjustments during transportation, which improves transportability. Can be done.

また、スライダ案内レール46は、姿勢調整手段51を
介さずに、調整部材61.62を介して支柱41.42
にスライダ71の移動方向に対して変位不能に固定され
ているので、スライダ71の移動等によりスライダ71
が調整部材61,62に衝突しても、調整部材61.6
2の当接面66が支柱41.42の受圧面52に密着さ
れているため、その間に寸法誤差が生じることがなく、
その結果精度に影響を与えること4がない。
In addition, the slider guide rail 46 is connected to the pillars 41 and 42 via adjustment members 61 and 62, without using the attitude adjustment means 51.
Since the slider 71 is fixed so as not to be displaceable with respect to the moving direction of the slider 71, the slider 71 is fixed by moving the slider 71.
Even if the adjustment members 61, 62 collide with each other, the adjustment members 61, 6
Since the abutting surfaces 66 of 2 are in close contact with the pressure receiving surfaces 52 of the columns 41 and 42, there is no dimensional error between them.
As a result, there is no influence on accuracy4.

また、支柱41.42は基台21の側面で支持されてい
るから、基台21の上面全てを測定有効面積にでき、高
価な石定盤等からなる基台21を小型にでき、この点か
らも装置のコスト低減を図れるばかりでなく、装置全体
をも小型化できて設置スペースを少なくできる。また、
基台21の上面に何ら邪魔物がないから被測定物の出入
が制約されず、かつ基台21の上面より大きな被測定物
をも設置でき、その設置姿勢も限定されない、更に、基
台21の全面が開放されているから、使用者の位置を限
定されず、使い勝手がよい。また、全体が小型化される
ことから、持運びに極めて便利である。
In addition, since the columns 41 and 42 are supported by the side surfaces of the base 21, the entire upper surface of the base 21 can be used as the effective measurement area, and the base 21, which is made of an expensive stone surface plate, can be made smaller. Not only can the cost of the device be reduced, but the entire device can also be made smaller and require less installation space. Also,
Since there are no obstructions on the top surface of the base 21, the object to be measured is not restricted from coming in and out, and even objects to be measured that are larger than the top surface of the base 21 can be installed, and the installation posture is not limited.Furthermore, the base 21 Since the entire surface of the machine is open, the user's position is not limited, making it easy to use. Furthermore, since the entire device is miniaturized, it is extremely convenient to carry.

なお、前記上記実施例では、測定子を接触式の構造つま
りタッチ信号プローブ94のものを図示したが、本発明
でいう測定子はこれに限定されず、静電容量を用いたも
の、或いはレーザ測長器等のいわゆる非接触式の構造の
ものも含む。
In the above-mentioned embodiment, the measuring element has a contact type structure, that is, the touch signal probe 94, but the measuring element in the present invention is not limited to this, and may be one using capacitance or a laser beam. It also includes so-called non-contact structures such as length measuring devices.

また、本発明は、三次元測定機に限らず、直交二軸のう
ちいずれか一軸方向には移動不可能とした二次元測定機
或いは形状測定機等信の形式の測定機にも適用できる。
Furthermore, the present invention is not limited to three-dimensional measuring machines, but can also be applied to measuring machines of the type such as two-dimensional measuring machines or shape measuring machines that cannot be moved in one of two orthogonal axes.

しかし、装置そのものが大型で、かつ高価な三次元測定
機に適用すれば、より有効である。
However, it is more effective if applied to a three-dimensional measuring machine, which is large and expensive.

[発明の効果コ 以上の通り、本発明によれば1組立て、調整が容易な上
、使用時に精度誤差が生じることがなく、かつ安価な多
次元測定機を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a multidimensional measuring machine that is easy to assemble and adjust, does not cause accuracy errors during use, and is inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示すもので、第1図は全体の正
面図、第2図はそ2の側面図、第3図は姿勢調整手段を
示す図、第4図はスライド案内レールの要部を示す正面
図、第5図は第4図のV−V“線断面図、第6図はスラ
イダの断面図である。 21・・・基台、41.42・・・支柱、46・・・ス
ライダ案内レール、51・・・姿勢調整手段、52・・
・受圧面、61.62・・・調整部材、66・・・当接
面、94・・・測定子としてのタッチ信号プローブ。
The figures show one embodiment of the present invention, in which Fig. 1 is an overall front view, Fig. 2 is a side view of the second embodiment, Fig. 3 is a view showing the attitude adjustment means, and Fig. 4 is a slide guide rail. 5 is a sectional view taken along the line V-V" in FIG. 4, and FIG. 6 is a sectional view of the slider. 21... Base, 41. 42... Support column, 46...Slider guide rail, 51...Attitude adjustment means, 52...
- Pressure receiving surface, 61. 62... Adjustment member, 66... Contact surface, 94... Touch signal probe as a measuring point.

Claims (1)

【特許請求の範囲】[Claims] (1)基台に一対の支柱を立設し、これらの支柱間にス
ライダ案内レールを掛け渡すとともに、測定子を有する
スライダを前記スライダ案内レールに沿って移動自在に
設け、前記測定子の移動変位から被測定物の形状等を計
測する多次元測定機において、前記スライダ案内レール
と前記支柱との連結部に前記支柱に対して前記スライダ
案内レールの姿勢を変えて前記測定子のX、YおよびZ
軸方向の少なくとも2軸方向の位置を調整するための姿
勢調整手段を設け、前記両支柱のそれぞれに互いに対向
する受圧面を設ける一方、前記スライダ案内レールに前
記受圧面と対応する当接面を有する調整部材を位置調整
可能かつ固定可能に取付け、前記姿勢調整手段で姿勢調
整されたスライダ案内レールを、前記当接面と受圧面と
が互いに密着した状態で前記支柱にスライダの移動方向
へ変位不能に固定したことを特徴とする多次元測定機。
(1) A pair of columns are erected on a base, a slider guide rail is spanned between these columns, and a slider having a measuring point is provided so as to be movable along the slider guide rail, and the movement of the measuring point is In a multidimensional measuring machine that measures the shape of an object to be measured based on displacement, the position of the slider guide rail with respect to the support is changed at the connecting part between the slider guide rail and the support, and the X, Y of the measuring element is adjusted. and Z
Attitude adjusting means for adjusting the position in at least two axial directions is provided, and each of the two pillars is provided with a pressure receiving surface facing each other, and the slider guide rail is provided with an abutment surface corresponding to the pressure receiving surface. the slider guide rail whose position has been adjusted by the position adjustment means is displaced in the direction of movement of the slider on the column with the contact surface and the pressure receiving surface in close contact with each other; A multidimensional measuring machine characterized by being fixed in place.
JP15478484A 1984-07-24 1984-07-24 Multidimensional measuring machine Granted JPS6131913A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15478484A JPS6131913A (en) 1984-07-24 1984-07-24 Multidimensional measuring machine
US06/753,305 US4630381A (en) 1984-07-24 1985-07-10 Coordinate measuring instrument
GB08517518A GB2162318B (en) 1984-07-24 1985-07-11 Coordinate measuring instrument
DE19853526317 DE3526317A1 (en) 1984-07-24 1985-07-23 COORDINATE MEASURING INSTRUMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15478484A JPS6131913A (en) 1984-07-24 1984-07-24 Multidimensional measuring machine

Publications (2)

Publication Number Publication Date
JPS6131913A true JPS6131913A (en) 1986-02-14
JPH0260242B2 JPH0260242B2 (en) 1990-12-14

Family

ID=15591820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15478484A Granted JPS6131913A (en) 1984-07-24 1984-07-24 Multidimensional measuring machine

Country Status (1)

Country Link
JP (1) JPS6131913A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890101A (en) * 1981-11-25 1983-05-28 Mitsutoyo Mfg Co Ltd Three-dimensional measurement apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890101A (en) * 1981-11-25 1983-05-28 Mitsutoyo Mfg Co Ltd Three-dimensional measurement apparatus

Also Published As

Publication number Publication date
JPH0260242B2 (en) 1990-12-14

Similar Documents

Publication Publication Date Title
EP1462760B1 (en) Apparatus for measuring the position of a probe in a coordinate measuring machine
EP0289983B1 (en) Flexible cnc-multipoint measuring device
EP0275428B2 (en) Method for calibrating a coordinate measuring machine and the like
US5024002A (en) Apparatus with a supporting frame and process for manufacturing such a frame
US6677691B2 (en) Stage apparatus and method of using the same
US4630381A (en) Coordinate measuring instrument
DE4238139A1 (en) Coordinate measuring device
JPH0439011B2 (en)
US5173613A (en) Coordinate measuring machine with improved table support
DE10313036B3 (en) Position detection device for linearly displaced machine tool or measuring instrument carriage using read heads for line rasters in combination with distance sensors for providing coordinate position of carriage
US6463667B1 (en) Machine tool precision-measuring apparatus
EP0703430A2 (en) Procedure to calibrate a coordinate-measuring machine with two rotational axes
EP0951967B1 (en) Test gauge for measuring the positional and track precisionof a moving machine part
EP3448140A1 (en) Positioning device in portal design
DE4345095C1 (en) Precision spatial point determination device for measuring machine
DE102010056039B4 (en) Coordinate measuring machine and method for operating a coordinate measuring machine
JPS6131913A (en) Multidimensional measuring machine
JP2858926B2 (en) Master measuring device for measuring machine static accuracy
JP2599496B2 (en) Reference positioning method and apparatus for industrial traveling robot
Nikam Coordinate Measuring Machine (CMM)
JPS6314882B2 (en)
DE3201007A1 (en) Three-dimensional interferometric length measuring device
JP4105475B2 (en) How to assemble machine tools
CN115255981B (en) Alignment tool for special-shaped workpiece
US20230384076A1 (en) Calibration master installing jig and measuring method for calibration master in machine tool