JPS6131912A - Ultrasonic thickness meter - Google Patents

Ultrasonic thickness meter

Info

Publication number
JPS6131912A
JPS6131912A JP15311684A JP15311684A JPS6131912A JP S6131912 A JPS6131912 A JP S6131912A JP 15311684 A JP15311684 A JP 15311684A JP 15311684 A JP15311684 A JP 15311684A JP S6131912 A JPS6131912 A JP S6131912A
Authority
JP
Japan
Prior art keywords
counter
measurement
display
ultrasonic
decimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15311684A
Other languages
Japanese (ja)
Inventor
Kenji Tsuchiya
賢治 土屋
Takashi Kadowaki
門脇 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15311684A priority Critical patent/JPS6131912A/en
Publication of JPS6131912A publication Critical patent/JPS6131912A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To perform high-precision thickness detection by providing an M-scale counter in front of a display counter, radiating an ultrasonic wave to the same inspection point N times, and counting a clock corresponding to a reflected wave at every time and displaying the grand total result. CONSTITUTION:A transmitting and receiving probe 2 is arranged on the surface of a material 1 to be inspected. A pulser 3 is excited to generate an ultrasonic wave, which propagates in the material 1 to be inspected and is reflected by the bottom surface, so that the reflected wave is received by the probe 2. The received signal is supplied to a receiving amplifier 4 and a comparing circuit 5b the set number N of times of measurement with the actual number of times of measurement. The number N of times indicates the frequency of the measurement of the ultrasonic thickness meter which is performed while the measurement position of the object material 1 is fixed. A gate circuit 5a receives the output of the amplifier 4 and outputs a pulse signal setting a clock counting section to the M-scale counter 8a when the number of times of measurement at the same measurement position is less than N. Decimal counters 8b-8d count the output of a counter 8a to make a decimal 3-digit display on display circuits 10a-10c. Thus, the high-precision thickness detection is performed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波を用いて被検材肉厚を計測する超音波
厚み計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic thickness meter that measures the thickness of a material to be inspected using ultrasonic waves.

〔発明の背景〕[Background of the invention]

従来の超音波厚み針の構成を第1図、そのタイムチャー
トを第2図に示す。被検材lの表面に送受信プローブ2
を配置する。バルサ3は、超音波発振用のパルス電源で
あるらこのバルサ3の励起によシ超音波が発生′シ、被
検材lの内部を通シ、底面で反射し、この反射波は、送
受信プローブ2で受波される。この受波信号は、受信増
巾器4、ゲート回路5を通りゲート70入力となる。
The configuration of a conventional ultrasonic thickness needle is shown in FIG. 1, and its time chart is shown in FIG. 2. Transmitting/receiving probe 2 on the surface of the material to be tested
Place. Since the balsa 3 is a pulse power source for ultrasonic oscillation, the excitation of the balsa 3 generates ultrasonic waves, which pass through the inside of the material to be examined and are reflected at the bottom surface, and this reflected wave is used for transmission and reception. The wave is received by probe 2. This received signal passes through a reception amplifier 4 and a gate circuit 5 and becomes an input to a gate 70.

第2図では、送信パルス21を与えた場合の送信波と底
面エコーとより成る信号22を示す。ゲート回路5の出
力を信号23として示す。この信号23は、送信波の立
上りから底面エコー受信時までの期間の間、Hレベルと
なり、ゲート7を開く。
FIG. 2 shows a signal 22 consisting of a transmitted wave and a bottom echo when a transmitted pulse 21 is applied. The output of gate circuit 5 is shown as signal 23. This signal 23 is at H level during the period from the rise of the transmitted wave until the bottom echo is received, and the gate 7 is opened.

クロック回路6は、クロック信号24を発生し、ゲート
7は、信号23のHレベルの間の当該クロツクを通過さ
せる。カラン、り8は、ゲート7の出力クロックの計数
を行う。演算回路9は、カウンタ8の計数値を取込み、
被検材lの肉厚を計算する。表示回路lOはこの計算結
果を表示する。
Clock circuit 6 generates clock signal 24, and gate 7 allows the clock to pass while signal 23 is at H level. The counter 8 counts the output clocks of the gate 7. The arithmetic circuit 9 takes in the count value of the counter 8,
Calculate the wall thickness of the test material l. The display circuit IO displays this calculation result.

超音波の発振周波数は、通常、数MHzと高い。The oscillation frequency of ultrasonic waves is usually as high as several MHz.

一方、クロックパルス24の周波数は、クロック回路6
(クロック発振器)Kより微小なばらつきがある。
On the other hand, the frequency of the clock pulse 24 is
(Clock oscillator) There is a smaller variation than K.

例えば、水晶発振器では、その発振誤差は1O−6×(
±100)程度である。然るに、超音波の発振周波数が
前述の如く、数MHzである故、この周波数の信号を選
択するためには結局、±100Hz前後の誤差を生む。
For example, in a crystal oscillator, its oscillation error is 1O-6×(
±100). However, as mentioned above, since the oscillation frequency of ultrasonic waves is several MHz, selecting a signal of this frequency results in an error of about ±100 Hz.

この誤差は厚みの検出には無視できない値であり、正確
な厚み検出の障害となる。
This error is a value that cannot be ignored in thickness detection, and becomes an obstacle to accurate thickness detection.

更に、音速は、被検材材質、温度によシ異なる。Furthermore, the speed of sound varies depending on the material and temperature of the material being tested.

このため、演算回路9内で行う掛算の定数は可変としな
ければならず、これを実施するには複雑な回路構成を必
要とし、小型軽量化の要求される超音波厚み計では、実
施することが困難である。
For this reason, the constant of the multiplication performed in the arithmetic circuit 9 must be made variable, and implementing this requires a complex circuit configuration, which is difficult to implement in ultrasonic thickness gauges that require smaller size and lighter weight. is difficult.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、簡単な回路構成により、高い検出精度
を可能とした超薔波厚み針を提供するものである。
An object of the present invention is to provide a super thick needle with a simple circuit configuration that enables high detection accuracy.

〔発明の概要〕[Summary of the invention]

本発明の観点は以下となる。 The aspects of the present invention are as follows.

■ クロック発生源の誤差対策 ■ 処理回路の簡単化 ■ 音速の温度変化への対策 そのために、力、ウンタの前段にM進のカウンタを設け
た。更に、同一検査個所に対してN回超音波を放射し、
各回について反射波対応のクロック計数を行う。このN
回の総合的な計数結果よシ正確な板厚表示を可能とした
。ここで、MとNとは、最適な組合せの関係を持つ。
■ Measures against errors in the clock generation source ■ Simplification of the processing circuit ■ Measures against temperature changes in the speed of sound For this purpose, an M-adic counter was provided in the front stage of the force counter. Furthermore, ultrasonic waves are emitted N times to the same inspection location,
Clock counting corresponding to the reflected wave is performed each time. This N
This makes it possible to accurately display plate thickness based on the comprehensive counting results. Here, M and N have an optimal combination relationship.

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の超音波厚み計の実施例図を示す。第4
図はそのタイムチャートである。超音波厚み計は、超音
波プローブ2、バルサ3、前置増巾器4、ゲート回路5
a、比較回路5b、クロック源6、アンドゲート7、カ
ウンタ8a、8b、8c、8d、表示器10a、10b
、10cより成る。
FIG. 3 shows an embodiment of the ultrasonic thickness gauge of the present invention. Fourth
The figure is the time chart. The ultrasonic thickness gauge includes an ultrasonic probe 2, a balsa 3, a preamplifier 4, and a gate circuit 5.
a, comparison circuit 5b, clock source 6, AND gate 7, counters 8a, 8b, 8c, 8d, indicators 10a, 10b
, 10c.

第1図の従来例と異なる点は、ゲート回路5a。The difference from the conventional example shown in FIG. 1 is the gate circuit 5a.

比較回路5b、カウンタ8a〜8d1表示器10a〜1
0cを設けた点にある。
Comparison circuit 5b, counters 8a-8d1 indicators 10a-1
It is at the point where 0c is set.

比較回路5bは、設定計測回数Nと実際の計数回数との
比較を行う。ここで、設定計測回数Nとは、被検材1の
計測個所を固定し、この固定した計測個所に対してN回
超音波厚み計測を行うとの指示値である。この比較回路
5bは、同一計測個所での計測回数がN回以下の時のみ
ゲート回路5aを起動する。第4図では、1回の送受信
サイクルの区間をt、とじている。
The comparison circuit 5b compares the set number of measurements N and the actual number of counts. Here, the set number of measurements N is an instruction value to fix the measurement location of the material 1 to be inspected and perform the ultrasonic thickness measurement N times on the fixed measurement location. This comparison circuit 5b activates the gate circuit 5a only when the number of measurements at the same measurement point is N times or less. In FIG. 4, the interval of one transmission/reception cycle is defined as t.

ゲート回路5aは、比較回路5bが同一計測個所でのN
回以下の計測回数下であれば、増巾器4の出力からクロ
ック計数区間を設定するパルス信号23を発生する。N
回を越える時には、このゲート回路5aはロックとなり
、出力は出さない。
In the gate circuit 5a, the comparator circuit 5b has N at the same measurement point.
If the number of measurements is less than or equal to 1, a pulse signal 23 for setting a clock counting period is generated from the output of the amplifier 4. N
When the number of times is exceeded, this gate circuit 5a becomes locked and does not output any output.

カウンタ8aは、M進カウンタである。カウンタ8b〜
8dはlO進カウンタであり、特にカウンタ8bは最下
位桁、カウンタ8Cは1桁上の桁、カウンタ8dは最上
位桁のカウンタとなる。
The counter 8a is an M-ary counter. Counter 8b~
8d is a IO counter, and in particular, the counter 8b is a counter for the least significant digit, the counter 8C is a digit one digit higher, and the counter 8d is a counter for the most significant digit.

表示回路10 a * l Ob * 10 cは各カ
ウンタ8b、8c、sciの計数値の表示を行う。カウ
ンタ8b〜8dは、第1図のカウンタ8に対応する。
The display circuit 10a*lOb*10c displays the counted values of each of the counters 8b, 8c, and sci. Counters 8b-8d correspond to counter 8 in FIG.

以下、詳細に説明する。This will be explained in detail below.

クロック源6のクロック信号24の周波数F(MHz)
、被検材lの肉厚T(+a+)、被検材1り8b〜8d
の値をそのま′ま肉厚として0.1 mの位までで10
進3桁表示するものとする。
Frequency F (MHz) of clock signal 24 of clock source 6
, wall thickness T (+a+) of test material 1, test material 1 8b to 8d
10 up to the order of 0.1 m with the value of wall thickness as it is.
It shall be displayed in three decimal digits.

超音波を放射してから底面反射波が送受信プローブに到
達するまでの時間をt、とすると、となる。更に、N回
繰返しにより、Nサイクル終了後の総計数結果P、は、 P * = (t。・F)・N   ・・・・・・・・
・(2)となる。(1)式を(2)に代入すると、とな
る。一方、Nサイクル終了後の総計数結果Ptは P番=10MT        ・・・・・・・・・(
4)となればよい。従って、(3)、 (4)式から、
 T −・F−N=lOMT    曲・曲(5)となり、7 NF=5MV           ・・川]・・・(
6)となる。
Letting t be the time from when the ultrasonic wave is emitted until the bottom reflected wave reaches the transmitting/receiving probe. Furthermore, by repeating N times, the total counting result P after N cycles is P * = (t.・F)・N ・・・・・・・・・・・・
・(2) becomes. Substituting equation (1) into (2) yields. On the other hand, the total counting result Pt after the completion of N cycles is P number = 10MT ・・・・・・・・・(
4). Therefore, from equations (3) and (4),
T-・F-N=lOMT song/song (5), 7 NF=5MV...river]...(
6).

F、M、Vを設定して(6)式よ、ONを求め、求まっ
た値の小数点以下第1位を四捨五入してNを整数化(こ
の値をN、とする)したとき生ずる計測誤差A(m)を
求める。N、でのPtrは、2TN、F Ptr=□      ・曲間(7ン となシ、且つクロックパルス当り1/l OM (m+
)に相当するので、 となる。
Measurement error that occurs when F, M, and V are set, ON is determined using equation (6), and N is rounded off to the first decimal place to make N an integer (this value is referred to as N). Find A(m). Ptr at N is 2TN, F Ptr=□ ・Between songs (7 and N, and 1/l per clock pulse OM (m+
), so it becomes .

計測板厚の最大値をT。、!とすると、誤差入の最大値
’A+m a z  は、(8)式より、T = TI
IIIgのときであるから となる。測定誤差を±0.1(w)以内とすると、とす
る必要がある。
The maximum value of the measured plate thickness is T. ,! Then, the maximum error value 'A+m a z is T = TI from equation (8).
This is because it is at the time of IIIg. Assuming that the measurement error is within ±0.1 (w), it is necessary to set the measurement error to within ±0.1 (w).

発明者の実験によると、鋼板中での横波音速は材質、温
度によって第5図の如く変化することが確認できた。常
温領域の音速として第5図よシ、V= 3.176〜3
.279 (m/ tt s )とし、まタフロック周
波数F=15MHzで最大±0.15 %ばらついたと
し、更にMが1≦M≦16の間の整数とし、Tmax=
 50 (1111)としたとき、(6)式、(10)
式を満足する整数M、N、は、第6図の如くなる。
According to the inventor's experiments, it was confirmed that the sound velocity of transverse waves in a steel plate changes depending on the material and temperature as shown in Fig. 5. Figure 5 shows the speed of sound in the room temperature range, V = 3.176~3
.. 279 (m/ tt s ), the maximum variation is ±0.15% at the block frequency F = 15 MHz, M is an integer between 1≦M≦16, and Tmax =
50 (1111), equation (6), (10)
Integers M and N that satisfy the formula are as shown in FIG.

この第6図を利用してM、N、を設定すれば、正確な計
測が可能となる。例えば、V=3.23p m / s
の時、F=15MHzでM=13.N。
If M and N are set using this FIG. 6, accurate measurement becomes possible. For example, V=3.23p m/s
When F=15MHz and M=13. N.

=14と設定した時には、音速から3.22μm/s〜
3.237 μm / sの変動(即ち、±0.2%の
変動)しても、クロック周波数が±0.015%の範囲
までは正確な計測が可能となる′ことがわかる。゛以上
の様に、クロック周波数がばらついたり、音速Vが変化
した場合でも、M、N、を適当に組合せることによシ、
簡単で正確な肉厚計測が可能となる。
= 14, the speed of sound is 3.22 μm/s ~
It can be seen that even with a variation of 3.237 μm/s (that is, a variation of ±0.2%), accurate measurement is possible up to a clock frequency range of ±0.015%.゛As described above, even if the clock frequency varies or the sound speed V changes, by appropriately combining M and N,
Easy and accurate wall thickness measurement is possible.

以上の実施例では、10進3桁表示としたが、一般的に
lO進に桁表示であれば、(6)式は、となる。更に、
横波以外にも縦波の超音波にも利用できる。
In the above embodiment, 3-digit decimal display is used, but if the digits are generally displayed in 1O decimal, equation (6) becomes as follows. Furthermore,
In addition to transverse waves, it can also be used for longitudinal wave ultrasound.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、M、N、を適当に組合せることによっ
て、正確な厚み測定が可能となった。
According to the present invention, accurate thickness measurement has become possible by appropriately combining M and N.

【図面の簡単な説明】 第1図は従来例図、第2図はタイムチャート、第3図は
本発明の実施例図、第4図はタイムチャート、第5図は
温度による音速変化の具体例図、第6図はM、N、とク
ロック周波数の変動及び音速変動との一例を示す図であ
る。 l・・・被検材、2・・・送受信プローブ、3・・・パ
ルサ、4・・・増巾器、5a・・・ゲート回路、5b・
・・比較回路、6・・・クロック源、7・・・アンドゲ
ート、8a〜8d・・・カウンタ、l Oa−10c・
・・表示回路。
[Brief Description of the Drawings] Figure 1 is a diagram of a conventional example, Figure 2 is a time chart, Figure 3 is a diagram of an embodiment of the present invention, Figure 4 is a time chart, and Figure 5 is a concrete example of changes in sound speed due to temperature. An example diagram, FIG. 6, is a diagram showing an example of M, N, clock frequency fluctuations, and sound speed fluctuations. l... Test material, 2... Transmission/reception probe, 3... Pulser, 4... Amplifier, 5a... Gate circuit, 5b...
... Comparison circuit, 6... Clock source, 7... AND gate, 8a to 8d... Counter, l Oa-10c.
...Display circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、被検材の同一計測個所に対してNr個超音波パルス
を次々に送波すると共に被検材底面にて反射してくる超
音波を受信する送受信プローブと、上記各回について送
波から受信までの区間をその区間内のクロック源のクロ
ックを計数することによつて計測するM進カウンタと、
該M進カウンタの出力値を計数し10進表示桁に応じた
計数を行う表示用カウンタと、該表示用カウンタの計数
値を表示する表示回路とを備え(但し、MとMrとは、
上記クロック源の周波数をF、10進表示を行う場合の
最小表示桁の最小単位をK、超音波音速をVとした時、
関係式NF=(1/2K)MVのもとで、計測誤差が所
定許容範囲内になるべくFとKとVを与えて予じめ求め
られた整数となるMとN、但し整数にならないMとNで
はその返傍の整数値MとNrとする)てなる超音波厚み
計。
1. A transmitting/receiving probe that sequentially transmits Nr ultrasonic pulses to the same measurement point on the test material and receives the ultrasonic waves reflected from the bottom surface of the test material, and a transmitting and receiving probe for each of the above times. an M-adic counter that measures the interval up to by counting the clocks of the clock source within the interval;
A display counter that counts the output value of the M-ary counter and performs counting according to the decimal display digit, and a display circuit that displays the count value of the display counter (However, M and Mr are
When the frequency of the above clock source is F, the minimum unit of the minimum display digit when displaying in decimal notation is K, and the ultrasonic sound speed is V,
Under the relational expression NF = (1/2K) MV, M and N are integers determined in advance by giving F, K, and V so that the measurement error is within a predetermined tolerance, but M is not an integer. and N are integer values M and Nr).
JP15311684A 1984-07-25 1984-07-25 Ultrasonic thickness meter Pending JPS6131912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15311684A JPS6131912A (en) 1984-07-25 1984-07-25 Ultrasonic thickness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15311684A JPS6131912A (en) 1984-07-25 1984-07-25 Ultrasonic thickness meter

Publications (1)

Publication Number Publication Date
JPS6131912A true JPS6131912A (en) 1986-02-14

Family

ID=15555316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15311684A Pending JPS6131912A (en) 1984-07-25 1984-07-25 Ultrasonic thickness meter

Country Status (1)

Country Link
JP (1) JPS6131912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117294A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Method and device for measuring ultrasonic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117294A (en) * 2008-11-14 2010-05-27 Mitsubishi Heavy Ind Ltd Method and device for measuring ultrasonic wave

Similar Documents

Publication Publication Date Title
US4483202A (en) Ultrasonic flowmeter
JPS6249921B2 (en)
Tsai et al. High accuracy ultrasonic air temperature measurement using multi-frequency continuous wave
US4307611A (en) Pulse-echo ultrasonic apparatus
JPS5824729B2 (en) Ultrasonic thickness measurement method and device
Huang et al. A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection
JP3196254B2 (en) Micro time measurement method and micro time measurement device
US3354700A (en) Apparatus for measuring thickness of materials by sound-wave reflection
US4114455A (en) Ultrasonic velocity measuring method and apparatus
JPS6156450B2 (en)
Pantea et al. Digital ultrasonic pulse-echo overlap system and algorithm for unambiguous determination of pulse transit time
Tsai et al. New implementation of high-precision and instant-response air thermometer by ultrasonic sensors
JPS6131912A (en) Ultrasonic thickness meter
Ho/gseth et al. Rubidium clock sound velocity meter
SU1004757A1 (en) Ultrasonic device for measuring mechanical stresses
JPH03167418A (en) Clad-thickness measuring apparatus
SU597925A1 (en) Ultrasonic pulsed thickness meter
JPH04160309A (en) Ultrasonic thickness gauge
RU2062998C1 (en) Level gauge
SU847032A1 (en) Ultrasonic thickness gauge
SU849065A1 (en) Method of systematic error detection in ultrasonic oscillation propagation time counters
JPS6395353A (en) Measuring range setter for ultrasonic flaw detector
RU2069841C1 (en) Device measuring ultrasound velocity
UA150325U (en) Method for measuring the speed of ultrasonic waves in polymer nanocomposites by using the calibration labels
SU1268147A1 (en) Ultrasonic doppler meter of circulation rate