JPS6131807B2 - - Google Patents

Info

Publication number
JPS6131807B2
JPS6131807B2 JP11885480A JP11885480A JPS6131807B2 JP S6131807 B2 JPS6131807 B2 JP S6131807B2 JP 11885480 A JP11885480 A JP 11885480A JP 11885480 A JP11885480 A JP 11885480A JP S6131807 B2 JPS6131807 B2 JP S6131807B2
Authority
JP
Japan
Prior art keywords
light
wavelength
optical
measured
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11885480A
Other languages
Japanese (ja)
Other versions
JPS5742824A (en
Inventor
Fujio Shimizu
Noritoshi Konishi
Hiroshi Kato
Keiko Kasuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP11885480A priority Critical patent/JPS5742824A/en
Publication of JPS5742824A publication Critical patent/JPS5742824A/en
Publication of JPS6131807B2 publication Critical patent/JPS6131807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0246Measuring optical wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は光の波長の決定方法に関し、詳しくは
連続又はパルスレーザ光の波長を、少くなくとも
二つの光干渉器〔例えば、フリー・スペクトラ
ル・レンジの異なるフアブリー・ペロー・エタロ
ン(Fabry−Perot Interferometer)〕を用いて高
精度で逐次決定する方法に関する。 近年、色素レーザの分光に関する開発研究が活
発にすすめられるにしたがつて、高い精度でレー
ザ光の波長を測定することが要望されている。従
来知られている光波長測定方式にはマイケルソ
ン型(Michelson type moving carriage
interferometer)、フイゾウ型(Fizeau type
interferometer、波数読出しによる偏光感度検
出型(polarization−sensitive interferometer
with wavenumber readout)、フアブリー・ペ
ロー型(Fabry−perot type interferometer)等
がある。の方式は連続発振レーザの波長を高い
精度で測定できるが、パルスレーザの波長測定は
極めて困難である。との方式はパルスレーザ
の波長測定が可能であるが、広い波長領域にわた
つて干渉器に対する入射光のマツチングが難し
い。の方式は連続発振及びパルスレーザともに
波長測定ができるが、精度上難点がある。このよ
うに従来の波長測定方式には一長一短がある。 本発明は上記に鑑みなされたものであり、上記
の方式を逐次近似の測定方式により、連続発振
レーザ、パルスレーザいずれも高い精度でもつて
波長計測ができる方法及び装置を提供することを
目的とする。 この目的は、干渉長が逐次大きくなる少なくと
も2個の光干渉器を用意し、第1の光干渉器を通
して既知の標準位置に対する被測定光の特異点の
位置を観測し、その特異点の位置と第1の光干渉
器の干渉次数とから被測定光の波長の第一次の近
似値を算出し、次いで、第2の光干渉器に被測定
光を通して第2の既知の標準位置に対する被測定
光の特異点の位置を観測し、この特位点の位置と
前記の第一次近似値を用いて判定した第2の光干
渉器の干渉次数とから被測定光の波長の第二次近
似値を算出する光波長の逐次決定法により達成さ
れる。 更にこの逐次決定法は、被測定光を少なくとも
2つの光路に分割するビームスプリツタ、第1の
光路に配置したエタロンとホト・ダイオード・ア
レーとこのホト・ダイオード・アレーに接続した
デイジタル変換器とを含む特異点位置観測装置、
及び第2の光路に配置した前記のエタロンの干渉
長よりも大きい干渉長のエタロンとホト・ダイオ
ード・アレーとこのホト・ダイオード・アレーに
接続したデジタル変換器とを含む特異点位置観測
装置を備え、前記のデイジタル変換器の出力から
被測定光の波長を逐次決定する装置により達成さ
れる。 ここで、前記の特異点とは光干渉器を通してつ
くり出される干渉光の明点又は暗点を意味する。
更に前記の標準位置とは、光干渉器固有の干渉長
から決定される位置又は既知の波長の参照光を光
干渉器に通して決定した前記特異点の位置を意味
する。 以下、本発明を詳しく説明する。干渉長が逐次
大きくなる少なくとも2個の干渉器、例えばフア
ブリー・ペロー・エタロンを用意し、先ず、干渉
長が小さい方の第1の光干渉器に被測定光を通し
て干渉リングを作り、第1の既知の標準位置D1
に対する被測定光(波長λ)の特異点(干渉リン
グの明点又は暗点)の位置δを観測する。 D1−n1λ=δ (1) ここで標準位置D1は、光干渉器固有の干渉長
から決定される位置又は既知波長の参照光を光干
渉器に通して決定される特異点の位置であり、後
述する方法により前もつて特定される。 特異点の位置δと第1の光干渉器の干渉リン
グの干渉次数n1(小数部四捨五入、整数値として
判定される)とから被測定光の波長の第一次の近
似値λを(2)式より算出する。 λ=D−δ/n (2) 次いで、第2の光干渉器に被測定光を通して第
2の既知の標準位置D2に対する被測定光の特異
点の位置δを観測する。 D2−n2λ=δ (3) この特異点の位置δと(2)式で得られる第一次
の近似値λを用いて決定した第2の光干渉器の
干渉次数n2(小数部四捨五入、整数値として判定
される)とから被測定光の波長の第二次の近似値
λを(4)式より算出する。 λ=D−δ/n (4) したがつて、第3、第4………の光干渉器を用
いて、上述の方法による近似値の改良を逐次くり
返すことにより、より高い精度で被測定光の波長
を決定することができる。 第1図は光干渉器固有の干渉長から標準位置を
決定する場合の光干渉器の構成の一例を示す。光
干渉器Iに圧電素子PZIをとりつけ、この素子へ
の印加電圧に対する既知波長の参照光のフリンジ
を測定することにより標準位置を求めることがで
きる。 第2図は本発明の光波長の逐次決定方法を実施
するための装置の光学系の一例を示す。M0〜M4
は被測定光L0又は参照光Lsを分割するビームス
プリツタである。I1〜I4は干渉長が逐次大きくな
る第1〜第4の光干渉器、例えばフアブリー・ペ
ロー・エタロンであつて、その具体的構成の一例
を第3図に示す。R1〜R4はフオト・ダイオー
ド・アレー(RETICON CCPD)であつて、こ
の上に投影される各光干渉器からの干渉リングを
電気信号に変換する。これらの信号のパターンは
A/DコンバータAD1〜AD4によつてそれぞれデ
イジタル化され、計算機MCに入力され波長計算
が行われる。 実施例 第2図の装置において、各エタロンI1〜I4を第
3図に示す如く鏡面間隔を15μm、0.2mm、2
mm、20mmとし、各エタロンからのフリンジはレン
ズによつて空間的な像として、フオト・ダイオー
ド・アレー(256素子、空間的分解能17μm)R1
〜R4上に干渉リングをつくるようにした。エタ
ロンI2〜I4は鏡面と反対側の面を曲面に研磨して
レンズ効果をもたせ、光学部品数を減らすように
構成した。エタロンI3とI4については空気の分散
効果を避けるため鏡面の内部を真空にした。ま
た、各エタロンの反射面には、4500Å〜6500Åの
広い波長範囲で平坦な高反射特性(反射率80〜90
%)をもつ多層膜コーテイングをほどこした。 参照光としてHe−Neレーザ(633nm)を用い
た。表1に示すように、先ず各エタロンについて
参照光に対するフリンジ次数を求めた。エタロン
I1〜I3については既知の波長のArイオンレーザ
(SP−166型、発振線:514.5nm、501.7nm、
496.5nm、488.0nm、476.5nm、472.7nm、
465.8nm、457.9nm)を用い、エタロンI4につい
ては沃素の吸収線に同調させた色素レーザ(CW
−599−21型)を用い、それらのフリンジを作
り、それらと参照光によるフリンジとの相対位置
から表1を決定した。
The present invention relates to a method for determining the wavelength of light, and more particularly, the wavelength of continuous or pulsed laser light is determined by using at least two optical interferometers [for example, Fabry-Perot Interferometers with different free spectral ranges]. )] for sequential determination with high accuracy. BACKGROUND ART In recent years, as research and development on spectroscopy of dye lasers has been actively conducted, it is desired to measure the wavelength of laser light with high precision. The conventionally known optical wavelength measurement method is the Michelson type (Michelson type moving carriage).
interferometer), Fizeau type
interferometer, polarization-sensitive interferometer with wavenumber readout
with wavenumber readout), Fabry-Perot type interferometer, etc. Although this method can measure the wavelength of continuous wave lasers with high accuracy, it is extremely difficult to measure the wavelength of pulsed lasers. Although the method described above is capable of measuring the wavelength of a pulsed laser, it is difficult to match the incident light to the interferometer over a wide wavelength range. Although this method can measure the wavelength of both continuous wave and pulsed lasers, it has some drawbacks in terms of accuracy. As described above, conventional wavelength measurement methods have advantages and disadvantages. The present invention has been made in view of the above, and it is an object of the present invention to provide a method and apparatus that can measure the wavelength of both continuous wave lasers and pulsed lasers with high accuracy by a measurement method that successively approximates the above method. . The purpose of this is to prepare at least two optical interferometers whose interference lengths increase successively, and to observe the position of the singular point of the light to be measured relative to a known standard position through the first optical interferometer. The first approximation value of the wavelength of the measured light is calculated from the interference order of the first optical interferometer and the first optical interferometer. The position of the singular point of the measurement light is observed, and the second order of the wavelength of the measurement light is determined from the position of this singular point and the interference order of the second optical interferometer determined using the first approximation value. This is achieved by an iterative determination method of optical wavelengths that calculates approximate values. Furthermore, this sequential determination method includes a beam splitter that splits the light to be measured into at least two optical paths, an etalon and a photodiode array placed in the first optical path, and a digital converter connected to the photodiode array. Singularity position observation device including
and a singularity position observation device including an etalon having an interference length larger than the interference length of the etalon disposed in the second optical path, a photodiode array, and a digital converter connected to the photodiode array. , is achieved by a device that sequentially determines the wavelength of the light to be measured from the output of the digital converter. Here, the singular point refers to a bright spot or dark spot of interference light created through an optical interferometer.
Furthermore, the standard position mentioned above means a position determined from the interference length specific to the optical interferometer or a position of the singular point determined by passing a reference light of a known wavelength through the optical interferometer. The present invention will be explained in detail below. Prepare at least two interferometers with successive interference lengths, such as Fabry-Perot etalons, and first create an interference ring by passing the light to be measured through the first optical interferometer with the smaller interference length. Known standard position D 1
Observe the position δ 1 of the singular point (bright point or dark point of the interference ring) of the light to be measured (wavelength λ) with respect to the measured light (wavelength λ). D 1 −n 1 λ=δ 1 (1) Here, the standard position D 1 is the position determined from the interference length specific to the optical interferometer, or the singular point determined by passing a reference light of a known wavelength through the optical interferometer. , and is previously determined by the method described below. The first approximation value λ 1 of the wavelength of the measured light is calculated from the position δ 1 of the singular point and the interference order n 1 of the interference ring of the first optical interferometer (rounded off to the nearest whole number, determined as an integer value ) . Calculated from formula (2). λ 1 = D 1 - δ 1 /n 1 (2) Next, the measured light is passed through a second optical interferometer and the position δ 2 of the singular point of the measured light with respect to the second known standard position D 2 is observed. . D 2 −n 2 λ=δ 2 (3) Interference order n of the second optical interferometer determined using the position δ 2 of this singular point and the first approximation value λ 1 obtained by equation (2) 2 (rounded off to the nearest whole number, determined as an integer value), the second approximation value λ 2 of the wavelength of the light to be measured is calculated from equation (4). λ 2 = D 2 − δ 2 /n 2 (4) Therefore, by using the third, fourth, etc. optical interferometers and repeating the improvement of the approximate value by the above method, the The wavelength of the light to be measured can be determined with high accuracy. FIG. 1 shows an example of the configuration of an optical interferometer when a standard position is determined from the interference length specific to the optical interferometer. The standard position can be determined by attaching a piezoelectric element PZI to the optical interferometer I and measuring the fringe of a reference light of a known wavelength with respect to the voltage applied to this element. FIG. 2 shows an example of an optical system of an apparatus for carrying out the method for sequentially determining optical wavelengths of the present invention. M0M4
is a beam splitter that splits the measured light L 0 or the reference light L s . I 1 to I 4 are first to fourth optical interferometers whose interference lengths increase successively, such as Fabry-Perot etalons, and an example of their specific configuration is shown in FIG. 3. R 1 to R 4 are photo diode arrays (RETICON CCPD) that convert interference rings from each optical interferometer projected thereon into electrical signals. These signal patterns are each digitized by A/D converters AD 1 to AD 4 and input to computer MC for wavelength calculation. Example In the apparatus shown in FIG. 2, each etalon I 1 to I 4 has mirror spacing of 15 μm, 0.2 mm, and 2 mm as shown in FIG.
mm, 20 mm, and the fringes from each etalon are captured as a spatial image by a lens using a photo diode array (256 elements, spatial resolution 17 μm) R 1
~Created an interference ring on R4 . Etalons I 2 to I 4 were configured so that the opposite side to the mirror surface was polished into a curved surface to provide a lens effect and to reduce the number of optical components. For etalons I 3 and I 4 , the inside of the mirror surface was vacuumed to avoid the dispersion effect of air. In addition, each etalon's reflective surface has flat high reflection characteristics (reflectance of 80 to 90
%) was applied. A He-Ne laser (633 nm) was used as a reference light. As shown in Table 1, first, the fringe order for each etalon with respect to the reference light was determined. etalon
For I 1 to I 3 , Ar ion lasers with known wavelengths (SP-166 type, oscillation line: 514.5 nm, 501.7 nm,
496.5nm, 488.0nm, 476.5nm, 472.7nm,
For etalon I4 , a dye laser (CW) tuned to the absorption line of iodine was used.
-599-21 type) to create those fringes, and determined Table 1 from the relative positions of them and the fringes created by the reference beam.

【表】 表1で求めた参照光He−Neレーザのフリンジ
次数を用い、被測定光として各種色素レーザの波
長を、上述した逐次近似方式により決定した。そ
の結果、±2×10-7の精度で連続又パルス発振レ
ーザいずれについても波長を決定することができ
た。 この実施例で用いたフオト・ダイオード・アレ
ーは光積分型であるためレーザ光の照射時間に対
する制限がなく、短かいパルスレーザに対しても
波長測定ができた。フオト・ダイオード・アレー
の感度の限界から測定すべきレーザ光のエネルギ
ーは2〜5μJ程度であつた。また波長の決定ま
でに要する計算機CPの計算処理時間は約25ms
であつた。
[Table] Using the fringe order of the reference light He-Ne laser determined in Table 1, the wavelengths of various dye lasers as the light to be measured were determined by the above-mentioned successive approximation method. As a result, we were able to determine the wavelength of both continuous and pulsed lasers with an accuracy of ±2×10 -7 . Since the photo diode array used in this example is of an optical integration type, there is no restriction on the irradiation time of laser light, and the wavelength can be measured even for short pulse lasers. The energy of the laser beam to be measured was about 2 to 5 μJ due to the sensitivity limit of the photo diode array. Also, the calculation processing time required by the computer CP to determine the wavelength is approximately 25ms.
It was hot.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる光干渉器の一例を断面
で示す正面図、第2図は本発明を実施するための
装置の一例を光学系で示す。第3図は本発明の実
施例に用いた各エタロンの構成を示す図。 図中の符号:Lo……被測定、Ls……参照光、
M0〜M4……ビームスプリツタ、I1〜I4……光干渉
器又はエタロン、R1〜R4……フオト・ダイオー
ド・アレー、AD1〜AD4……A/Dコンバータ、
MC……計算機。
FIG. 1 is a front view showing a cross section of an example of an optical interference device used in the present invention, and FIG. 2 is a front view showing an example of an apparatus for carrying out the invention as an optical system. FIG. 3 is a diagram showing the configuration of each etalon used in the embodiment of the present invention. Symbols in the figure: Lo...Measurement target, Ls ...Reference light,
M0 to M4 ...beam splitter, I1 to I4 ...optical interferometer or etalon, R1 to R4 ...photo diode array, AD1 to AD4 ...A/D converter,
MC...Calculator.

Claims (1)

【特許請求の範囲】 1 干渉長が逐次大きくなる少なくとも2個の光
干渉器を用意し、 第1の光干渉器に被測定光を通して第1の既知
の標準位置に対する被測定光の特異点の位置を観
測し、 その特異点の位置と第1の光干渉器の干渉次数
とから被測定光の波長の第一次の近似値を算出
し、 第2の光干渉器に被測定光を通して第2の既知
の標準位置に対する被測定光の特異点の位置を観
測し、 この特異点の位置と前記の第一次近似値を用い
て判定した第2の光干渉器の干渉次数とから被測
定光の波長の第二次近似値を算出することを特徴
とする光波長の逐次決定方法。 2 前記の特異点は干渉光の明点(nλ)又は暗
点((n+1/2)λ)であることを特徴とする特許
請求の範囲第1項に記載の光波長の逐次決定方
法。 3 前記の標準位置は光干渉器固有の干渉長から
決定される位置又は既知波長の参照光を光干渉器
に通して決定した特異点の位置であることを特徴
とする特許請求の範囲第1項又は第2項に記載の
光波長の逐次決定方法。 4 前記の特異点は参照光がつくる干渉光の明点
又は暗点であることを特徴とする特許請求の範囲
第3項に記載の光波長の逐次決定方法。 5 被測定光を少なくとも2つの光路に分割する
ビームスプリツタ、 第1の光路に配置したエタロンとホト・ダイオ
ード・アレーとこのホト・ダイオード・アレーに
接続したデイジタル変換器とを含む特異点位置観
測装置及び、 第2の光路に配置した前記のエタロンの干渉長
よりも大きい干渉長のエタロンとホト・ダイオー
ド・アレーとこのホト・ダイオード・アレーに接
続したデイジタル変換器とを含む特異点位置観測
装置を備え、前記のデイジタル変換器の出力から
被測定光の波長を逐次決定する装置。
[Claims] 1. At least two optical interferometers whose interference lengths increase successively are prepared, and the measured light is passed through the first optical interferometer to determine the singularity of the measured light relative to the first known standard position. Observe the position, calculate the first approximation value of the wavelength of the measured light from the position of the singular point and the interference order of the first optical interferometer, and pass the measured light to the second optical interferometer. Observe the position of the singular point of the light to be measured with respect to the known standard position of A method for sequentially determining a light wavelength, characterized by calculating a second-order approximate value of the wavelength of light. 2. The method for sequentially determining a light wavelength according to claim 1, wherein the singular point is a bright point (nλ) or a dark point ((n+1/2)λ) of the interference light. 3. Claim 1, wherein the standard position is a position determined from an interference length specific to an optical interferometer or a position of a singular point determined by passing a reference light of a known wavelength through an optical interferometer. The method for sequentially determining the optical wavelength according to item 1 or 2. 4. The method for sequentially determining a light wavelength according to claim 3, wherein the singular point is a bright spot or a dark spot of interference light produced by the reference light. 5 Singularity position observation including a beam splitter that splits the light to be measured into at least two optical paths, an etalon placed in the first optical path, a photodiode array, and a digital converter connected to the photodiode array. and a singularity position observation device including an etalon with a coherence length larger than the coherence length of the etalon disposed in a second optical path, a photodiode array, and a digital converter connected to the photodiode array. A device for sequentially determining the wavelength of the light to be measured from the output of the digital converter.
JP11885480A 1980-08-28 1980-08-28 Method and device for sequential determination of light wavelength Granted JPS5742824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11885480A JPS5742824A (en) 1980-08-28 1980-08-28 Method and device for sequential determination of light wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11885480A JPS5742824A (en) 1980-08-28 1980-08-28 Method and device for sequential determination of light wavelength

Publications (2)

Publication Number Publication Date
JPS5742824A JPS5742824A (en) 1982-03-10
JPS6131807B2 true JPS6131807B2 (en) 1986-07-23

Family

ID=14746777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11885480A Granted JPS5742824A (en) 1980-08-28 1980-08-28 Method and device for sequential determination of light wavelength

Country Status (1)

Country Link
JP (1) JPS5742824A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT390836B (en) * 1988-03-11 1990-07-10 Tabarelli Werner DEVICE FOR DETERMINING THE WAVE LENGTH OR DETERMINATION OF CRUMINUM
JP5498399B2 (en) 2008-02-12 2014-05-21 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Color detector
KR20100126379A (en) 2008-02-13 2010-12-01 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. Color detector having area scaled photodetectors
CN113324665B (en) * 2020-02-29 2022-10-11 华为技术有限公司 Wavemeter, method for obtaining parameters of wavemeter and method for on-line calibration

Also Published As

Publication number Publication date
JPS5742824A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
US20070013917A1 (en) Measuring apparatus
JP2553276B2 (en) Three-wavelength optical measuring device and method
US4682025A (en) Active mirror wavefront sensor
US5841125A (en) High energy laser focal sensor (HELFS)
JP2001349781A (en) Double pass double etalon spectrometer
US4329055A (en) Interferometer apparatus for measuring the wavelengths of optical radiation
EP0611438A1 (en) Measuring instruments.
JPH07198320A (en) Interference measuring method for absolute measurement and laser interferometer suitable for method thereof
US4222667A (en) Fizeau fringe light evaluator and method
US6462827B1 (en) Phase-based wavelength measurement apparatus
US5757488A (en) Optical frequency stability controller
JPS6131807B2 (en)
Tomic et al. Low-coherence interferometric method for measurement of displacement based on a 3× 3 fibre-optic directional coupler
Hariharan Improved oblique-incidence interferometer
EP0158505B1 (en) Active mirror wavefront sensor
JP2554363B2 (en) Optical interferometer
CN107942339A (en) A kind of photon counting laser interference distance measuring method
Giacomo The michelson interferometer
US6816264B1 (en) Systems and methods for amplified optical metrology
Fernández-Guasti et al. Coherence and frequency spectrum of a Nd: YAG laser: generation and observation devices
Imran et al. Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry
CN113607290B (en) Laser wavelength measuring device and method
Hlubina Measuring a spectral bandpass of a fibre-optic spectrometer using time-domain and spectral-domain two-beam interference
JPH07243943A (en) Optical waveguide dispersion measuring method and device
JP2502092B2 (en) Interfering device