JPS6131674A - Photo-turbine - Google Patents

Photo-turbine

Info

Publication number
JPS6131674A
JPS6131674A JP15425584A JP15425584A JPS6131674A JP S6131674 A JPS6131674 A JP S6131674A JP 15425584 A JP15425584 A JP 15425584A JP 15425584 A JP15425584 A JP 15425584A JP S6131674 A JPS6131674 A JP S6131674A
Authority
JP
Japan
Prior art keywords
impeller
light
plate
reflective
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15425584A
Other languages
Japanese (ja)
Inventor
Takashi Aoki
孝志 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15425584A priority Critical patent/JPS6131674A/en
Publication of JPS6131674A publication Critical patent/JPS6131674A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • F03G6/045Devices for producing mechanical power from solar energy using a single state working fluid gaseous by producing an updraft of heated gas or a downdraft of cooled gas, e.g. air driving an engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H3/00Use of photons to produce a reactive propulsive thrust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PURPOSE:To simplify the structure of photo-turbine for converting the light energy into mechanical rotary energy in the air, by providing a spiral and/or radial reflector/straightner while arranging an impeller rotatably in the center. CONSTITUTION:Plural (eight in the drawing) reflector/straightner 1 are arranged in spiral on a circular bottom plate 4 then an impeller 2 is journaled rotatably to the rotary shaft 5 planted vertically from the center of the bottom plate 4 such that it will be positioned in the center of the spiral of said reflector/ straightner 1. While a tube having open ends 3 is arranged above the reflector/ straightner 1 coaxially with the impeller 2. An updraft is produced by the thermal energy produced from each vane of the impeller 2 through irradiation of light and the air flow sucked through the gap of said reflector/straightner 1 is straightened and taken in then collided against one face of impeller to rotate the impeller.

Description

【発明の詳細な説明】 〔目的〕 産業上の利用分野 この発明は、光エネルギーを大気中において機械的回転
のエネルギーに変換する羽根車装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object] Industrial Application Field This invention relates to an impeller device for converting light energy into mechanical rotational energy in the atmosphere.

従来の技術 光を羽根車に照射することにより、光のエネルギーを直
接機械的回転のエネルギーに変換する装置としては、1
873年にCrookesが発明したラジオメータとい
う装置がある(例えば、真島正市、磯部考「計測学通論
」(1983.3)東京大学出版会、P198)。これ
は透明な高真空球の中に垂直軸型羽根車を入れたもので
ある。各羽根はうすい平板であり、その板面は鉛直面内
にある。そして羽根の一面のみ黒い煤を塗り、他面は白
いかピカピカの反射面にしてある。光が羽根に当たると
黒い面の温度が他面より上昇し、黒い面に当たる分子は
温められ、運動量が増加する。この運動量の増加は分子
が羽根に衡突し反発するさいに起るから、羽根に圧力が
生じ黒い面が押されるような形で羽根車の回転が起る。
Conventional technology There are 1 devices that directly convert light energy into mechanical rotational energy by irradiating light onto an impeller.
There is a device called a radiometer that was invented by John Crookes in 873 (for example, Masaichi Mashima, Takashi Isobe, ``General Theory of Measurement'' (1983.3), University of Tokyo Press, p. 198). This is a transparent high-vacuum bulb with a vertical shaft impeller placed inside it. Each blade is a thin flat plate whose surface lies in a vertical plane. One side of the feather is coated with black soot, and the other side is either white or has a shiny reflective surface. When light hits the feather, the temperature of the black side rises compared to the other side, and the molecules that hit the black side are warmed and their momentum increases. This increase in momentum occurs when the molecules collide with and repel the blades, creating pressure on the blades and causing the impeller to rotate in such a way that the black surface is pushed.

発明が解決しようとする問題点 上述のラジオメータは極めて軽い羽根車しか回転せず、
得られる回転のパワーも小さいという欠点がある。また
回転のエネルギーは真空球の中に発生しているので、そ
のエネルギーを真空をやぶることなく外部にとり出すの
には、余分の仕組およびエネルギー損失を伴なう。また
羽根車が回転し続けるためには、球内が高い真空に保た
れている必要があり、大気圧にすると回転しないという
欠点がある。そして真空中の気体分子の平均自由行程が
球の寸法と同程度でないといけないので大きな羽根車(
例えば寸法数m)を作ることは困難である。
Problems to be Solved by the Invention The radiometer described above rotates only an extremely light impeller;
The drawback is that the rotational power obtained is also small. Also, since rotational energy is generated within the vacuum sphere, extracting that energy outside without breaking the vacuum requires extra mechanisms and energy loss. In addition, in order for the impeller to continue rotating, the inside of the bulb must be kept at a high vacuum, and there is a drawback that it will not rotate if it is at atmospheric pressure. And since the mean free path of gas molecules in vacuum must be about the same size as the sphere, a large impeller (
For example, it is difficult to make a material with dimensions of several meters.

本発明は従来のものがもつ上述の欠点を一掃するもので
あり、大気圧中で作動可能で、回転のパワ一が大きく、
外部からの太陽光による自然光はもちろん人工光によつ
ても回転し、タービンに対しいかなる位置に光源があつ
てもよく、そして直径数mにも及ぶ大きな羽根車をも可
能とならしめた、光エネルギーにより直接機械的回転運
動を起こすフオトタービンを提供することを目的とする
The present invention eliminates the above-mentioned drawbacks of the conventional ones, and can operate under atmospheric pressure, has large rotational power,
It rotates not only with natural sunlight from outside but also with artificial light, the light source can be located at any position relative to the turbine, and it has become possible to use large impellers with a diameter of several meters. The object of the present invention is to provide a phototurbine that directly generates mechanical rotational motion using energy.

〔構成〕〔composition〕

問題点を解決するための手段 第1図は、本発明第1実施例を示す斜視図であり、第2
図はその分解斜視図である。第3図は第1図の平面図で
ある。数枚の反射整流板1が渦状に配置してある。図で
は渦状をなす反射整流板は8枚で示したが、8枚に限定
するものではない。
Means for Solving the Problems FIG. 1 is a perspective view showing a first embodiment of the present invention, and a second embodiment of the present invention is shown in FIG.
The figure is an exploded perspective view. FIG. 3 is a plan view of FIG. 1. Several reflective rectifying plates 1 are arranged in a spiral shape. In the figure, eight spiral-shaped reflective rectifying plates are shown, but the number is not limited to eight.

この渦状反射整流板の渦の中心部に羽根車2が、底板4
の中心から垂直にたてた回転軸5に回動自在に軸支して
ある。両端開放型の筒3は第1図のように反射整流板の
上方にとりつける。第1〜3図では筒3の直径は、羽根
車2の直径より少し大きい場合を例示したが、この大き
さに限定するものではなく、もつと大きくい(例えば底
板4と同じ直径にし)てもよろしい。その場合は反射整
流板1の上部に円環状のうすいふたをする。
The impeller 2 is located at the center of the vortex of this spiral reflection straightening plate, and the bottom plate 4
It is rotatably supported on a rotating shaft 5 vertically extending from the center. The cylinder 3, which is open at both ends, is attached above the reflective rectifier plate as shown in FIG. In Figures 1 to 3, the diameter of the cylinder 3 is illustrated as being slightly larger than the diameter of the impeller 2, but it is not limited to this size, and it can be made larger (for example, by making it the same diameter as the bottom plate 4). It's okay too. In that case, a thin annular lid is placed over the reflective rectifier plate 1.

以上の手段により、羽根車は光エネルギーを受けて大気
中で従来よりもずつと大きなパワーで力強く回転する。
By using the above method, the impeller receives light energy and rotates powerfully in the atmosphere with much more power than before.

作用 まず、第1図に示した装置から羽根車2を取り出し、こ
れを垂直軸に回動自在に軸支した場合、即ち裸の状態の
羽根車を垂直軸にて回動自在に軸支した場合の作用につ
いて先に述べる。
Operation First, when the impeller 2 is taken out from the device shown in Fig. 1 and rotatably supported on a vertical shaft, that is, the naked impeller is rotatably supported on a vertical shaft. The effect in this case will be described first.

この裸の羽根車に光を照射すると大気中で羽根車の回転
が比較的弱いながら起ることが判つた。
When this naked impeller was irradiated with light, it was found that the impeller rotated in the atmosphere, albeit relatively weakly.

いま水平面に対する羽根の傾きの角度を第4図に示すよ
うにθとすると、羽根車の角速度は第5図の曲線(a)
に示したようになり、θに依存する。
Now, if the angle of inclination of the blade with respect to the horizontal plane is θ as shown in Figure 4, then the angular velocity of the impeller is as shown by the curve (a) in Figure 5.
It depends on θ, as shown in .

またトルクおよび軸出力(=トルク×角速度)のθ依存
性は、それぞれ第6図の曲線(a)および第7図の曲線
(a)に示した。θ=90°およびその近傍の角度にお
いては回転は起らず、単に微小角度の左右への振れとな
る。ラジオメータの羽根はθ=90°に作られているの
で、その羽根車を大気中に置けば左右にかすかにふれる
のみで回転は起らないということになる。それでは、ラ
ジオメータの羽根を傾ければ、大気中で回転するように
なるかというと、もつと羽根の数を増加し、羽根を長く
広くしないと、回転はかなり困難である。
The θ dependence of torque and shaft output (=torque×angular velocity) is shown in curve (a) in FIG. 6 and curve (a) in FIG. 7, respectively. At θ=90° and angles in the vicinity thereof, no rotation occurs, and only a slight left/right deflection occurs. The vanes of the radiometer are made with θ = 90°, so if the impeller is placed in the atmosphere, it will only slightly move left and right and will not rotate. Now, if we tilt the blades of a radiometer, will it rotate in the atmosphere?However, unless we increase the number of blades and make them long and wide, rotation will be quite difficult.

第5図の曲線(a)、第6図の曲線(a)および第7図
の曲線(a)に示したように、θが30°付近と150
°付近において最大の角速度、トルクおよび軸出力が得
られる。この場合、羽根の片面の光反射率を大きくし、
他面の光吸収率を大きくしてもよくあるいは両面とも同
一状態の面にしてもよろしい。θ<90°では時計方向
、θ>90°では反時計方向の回転となる。従つて、第
1図および第2図に示した羽根車は時計方向に回転する
As shown in curve (a) in Figure 5, curve (a) in Figure 6, and curve (a) in Figure 7, θ is around 30° and 150°.
Maximum angular velocity, torque, and shaft power are obtained around 30°. In this case, increase the light reflectance on one side of the blade,
The light absorption rate of the other surface may be increased, or both surfaces may be in the same state. When θ<90°, the rotation is clockwise, and when θ>90°, the rotation is counterclockwise. Therefore, the impeller shown in FIGS. 1 and 2 rotates clockwise.

真空中の気体分子の平均自由行程は、真空度によるが実
際のラジオメータの場合、数cm程度である。これに対
し大気中での平均自由行程は、10−4mm程度である
。従つて光照射したとき、羽根の表面から10−4mm
程度の距離内に運動量の大きい分子からなる沿面層が発
生する。そして羽根の傾き角θが90°でないときに羽
根の両面での圧力差が起り回転運動が起るものと考えら
れる。
The mean free path of gas molecules in a vacuum depends on the degree of vacuum, but in the case of an actual radiometer, it is on the order of several centimeters. On the other hand, the mean free path in the atmosphere is about 10-4 mm. Therefore, when irradiated with light, the distance from the surface of the blade is 10-4 mm.
A creeping layer consisting of molecules with large momentum is generated within a distance of approximately It is thought that when the blade inclination angle θ is not 90°, a pressure difference occurs on both sides of the blade, causing rotational movement.

この回転のトルクと軸出力は、第6図(a)および第7
図(a)に示すように、θが30°付近および150°
付近のところで最大になることが実験により得られたわ
けである。以上は裸の羽根車であつて、このままでは回
転のトルクや軸出力は小さい。
The torque and shaft output of this rotation are shown in Figures 6(a) and 7.
As shown in figure (a), θ is around 30° and 150°
Experiments have shown that the maximum value occurs near the vicinity. The above is a bare impeller, and as it is, the rotational torque and shaft output are small.

つぎに羽根車を第1図に示す如き構造にて実験してみる
と、回転の角速度、トルクおよび軸出力はそれぞれ第5
図の曲線(b)、第6図の曲線(b)および第7図の曲
線(b)に示したようになり、裸の羽根車に較べて著る
しく大きくなる。本発明における反射整流板1は、渦状
に配置してあるので周囲からくる光を集光して羽根を照
射する作用をしている。また底板4は上方および斜め上
方からの光を反射して羽根車に当てる作用をしている。
Next, when we experimented with an impeller with the structure shown in Figure 1, we found that the angular velocity of rotation, torque, and shaft output were
As shown in the curve (b) in the figure, the curve (b) in FIG. 6, and the curve (b) in FIG. 7, the impeller becomes significantly larger than the bare impeller. Since the reflective rectifying plate 1 in the present invention is arranged in a spiral shape, it has the function of condensing light coming from the surroundings and irradiating the blades. Further, the bottom plate 4 has the function of reflecting light from above and diagonally above so that it hits the impeller.

もちろん直接羽根に当たる光線もある。光照射により羽
根で発生した熱エネルギーは気体分子の熱エネルギーと
なり、上昇気流となる。筒3は気流の上昇を助ける作用
をしているし、この上昇気流に伴ない渦状反射整流板の
各間隙から吸い込まれる気流は、渦流の形に整流されて
中へ入り羽根の片面に当たるので羽根車の回転を助ける
Of course, there are also rays of light that hit the blades directly. Thermal energy generated by the blades due to light irradiation becomes thermal energy of gas molecules, resulting in an upward air current. The cylinder 3 has the function of helping the airflow rise, and the airflow that is sucked in from each gap of the spiral reflection straightening plate along with this rising airflow is rectified in the form of a vortex, enters the inside, and hits one side of the blade, so that the airflow Helps the car rotate.

この方法によれば、第5図の曲線(b)、第6図の曲線
(b)および第7図の曲線(b)に示したように、θ=
90°およびその近傍において、角速度、トルク、軸出
力は0とならず、かなり大きな値を示し、またいかなる
θに対しても回転運動が起る。
According to this method, θ=
At and around 90°, the angular velocity, torque, and shaft output do not become 0, but exhibit considerably large values, and rotational motion occurs for any θ.

実験してみると、羽根車の形状に関係なく回転が起る。In experiments, rotation occurs regardless of the shape of the impeller.

最も極端な例として、羽根を全然有しない円筒形あるい
は円板形のものでも軸支すれば回転する。ただし、θ≒
30°〜60°の傾きの羽根をもつ羽根車の形状のもの
の方が回転のトルクおよび軸出力は断然大きい。
In the most extreme example, a cylindrical or disk-shaped object with no blades can rotate if supported on its axis. However, θ≒
The rotational torque and shaft output of the impeller shape having blades with an inclination of 30° to 60° are by far greater.

第8図は本発明第2実施例の平面図であつて、反射整流
板1を第3図の平板のかわりに、図示したような形の曲
面板を用いることを示している。
FIG. 8 is a plan view of a second embodiment of the present invention, showing that a curved plate having the shape shown in the figure is used as the reflective rectifying plate 1 instead of the flat plate shown in FIG.

この反射整流板も平面板と同様の作用をもつ。ここに図
示した形の曲面板の代りに折曲げ板を用いたり、その他
の変形も考えられる。
This reflective rectifier plate also has the same effect as a flat plate. It is also conceivable to use a bent plate instead of the curved plate shown here, and other variations.

第9図は本発明第3実施例であり、筒の上方をすぼめた
形の筒を用いる方法である。このようにすると上方への
気流のすい上げが強くなる。従つてその分だけ筒の長さ
を短かくできる。
FIG. 9 shows a third embodiment of the present invention, which uses a cylinder whose upper part is constricted. By doing this, the upward airflow will be stronger. Therefore, the length of the cylinder can be shortened by that much.

第10図は本発明第4実施例であり、外筒7の中に内筒
6を設けた構造のものである。このようにすると上方へ
の気流のすい上げが強くなる。従つてその分だけ筒の長
さを短かくできる。
FIG. 10 shows a fourth embodiment of the present invention, which has a structure in which an inner cylinder 6 is provided within an outer cylinder 7. By doing this, the upward airflow will be stronger. Therefore, the length of the cylinder can be shortened by that much.

第11図は、本発明第5実施例の底板等の斜視図である
。反射整流板8が底板4に傾けて中心より放射状に取付
けてあるので、下からの気流がらせん状に上昇し、羽根
の回転を促す作用をもつ。この放射状に配置した反射整
流板8は、第1図に示した渦状の反射整流板1と両方同
時に用いてもよく、あるいはどちらか一方だけでもよい
。即ち、この放射状反射整流板8の上に筒3をのせた構
造を用いると、渦状反射整流板1がなくても、筒の中で
羽根車および回転体の回転は起る。第11図には、この
底板4を支える支持具9の下に反射板10をおく方法を
示している。
FIG. 11 is a perspective view of the bottom plate, etc. of the fifth embodiment of the present invention. Since the reflective rectifying plate 8 is attached to the bottom plate 4 at an angle and radially from the center, the airflow from below rises in a spiral shape, which has the effect of promoting the rotation of the blades. Both of the radially arranged reflective rectifying plates 8 and the spiral reflective rectifying plate 1 shown in FIG. 1 may be used simultaneously, or only one of them may be used. That is, if a structure in which the cylinder 3 is placed on the radial reflection rectifier plate 8 is used, the rotation of the impeller and the rotating body will occur within the cylinder even without the spiral reflection rectifier plate 1. FIG. 11 shows a method of placing the reflector 10 under the support 9 that supports the bottom plate 4. As shown in FIG.

第12図は本発明第6実施例であり、反射板11、12
を設けることにより、上方および斜め上方からくる光線
が、これらによつて反射し羽根車に集まるようにした構
造である。反射板11は渦状の反射整流板1の間隙に設
け、反射板12は底板4の外周に沿つて設けてある。こ
の場合、底板4と反射板12が一体となつて凹面鏡の形
をなすようにしてもよい。
FIG. 12 shows a sixth embodiment of the present invention, in which reflection plates 11, 12
By providing these, light rays coming from above and diagonally above are reflected and concentrated on the impeller. The reflecting plate 11 is provided in the gap between the spiral reflection straightening plates 1, and the reflecting plate 12 is provided along the outer periphery of the bottom plate 4. In this case, the bottom plate 4 and the reflecting plate 12 may be integrated into a concave mirror shape.

第12図は特に太陽エネルギーを用いるときのものであ
り、太陽光線集光のため反射板11、12のほかに、さ
らに反射板13、14と天板15を設けたものである。
FIG. 12 shows an example in which solar energy is used in particular, and in addition to reflectors 11 and 12, reflectors 13 and 14 and a top plate 15 are provided for concentrating solar rays.

天板15は集光の働らきをもつものでレンズ式でも反射
式でもよろしい。このほか、さらに公知の集光法(例え
ば、日本太陽エネルギー学会「太陽エネルギー読本」(
昭52.5)オーム社、P210)を併用して集光すれ
ばなお軸出力は向上する。天板15は集光作用のほかに
、雨を防ぎ、そして下向に吹く場合の風が筒3に入らな
いような働らきをする。
The top plate 15 has the function of condensing light, and may be of a lens type or a reflective type. In addition, there are also known light concentration methods (for example, the Japanese Society of Solar Energy ``Solar Energy Reader'')
The shaft output can be further improved by condensing the light using Ohmsha, P210). In addition to condensing light, the top plate 15 functions to prevent rain and prevent wind from entering the cylinder 3 when it blows downward.

反射板11、12、13と底板4は上方または斜め上方
からくる風を反射整流板1の内部へと導びき羽根車に渦
状の風となつて当てる作用をまつ。風向は一般には水平
成分が主なので、反射整流板1、8の間隙から渦状やら
せん状に整流されて内部に入り、羽根車の回転をいつそ
う助ける働らきをする。従つて本発明のフオトタービン
は光エネルギーのみならず風力エネルギーも併用可能で
ある。
The reflecting plates 11, 12, 13 and the bottom plate 4 guide the wind coming from above or obliquely upward into the reflecting rectifying plate 1, so that it hits the impeller as a spiral wind. Since the wind direction generally has a horizontal component as its main component, the wind is rectified into the interior through the gap between the reflective rectifying plates 1 and 8 in a spiral or spiral shape, and serves to assist the rotation of the impeller. Therefore, the phototurbine of the present invention can use not only light energy but also wind energy.

本発明の実施例の図においては、全て筒の水平断面が円
の場合を示したが、筒でありさえすれば他の形でもよろ
しい。また筒はなくても回転するが、あつた方がトルク
および軸出力が大きくなる。
In the drawings of the embodiments of the present invention, the case where the horizontal cross section of the cylinder is circular is shown, but other shapes may be used as long as the horizontal cross section is a cylinder. Although it will rotate even without a cylinder, the torque and shaft output will be greater if it is heated.

羽根車や回転体は反射整流板1または8によつて起る光
または気流の渦の中心部に設けても、それよりまつと上
方の筒の中に設けてもよい。但し上方の筒の中では回転
トルクおよび軸出力が小さくなることはさけられない。
The impeller or rotating body may be provided at the center of the vortex of light or airflow generated by the reflective rectifying plate 1 or 8, or may be provided in a cylinder above the reflective rectifying plate 1 or 8. However, it is unavoidable that the rotational torque and shaft output become small in the upper cylinder.

ラジオメータは、羽根が高熱源、そしてがラス球が低熱
源として働く一種の熱機関であるが、低熱源のガラス球
も放射によるかなりな温度上昇があるため効率低下をま
ぬがれない。ところが本発明のフオトタービンにおける
低熱源は反射整流板の開口部であり、自由空間と直接接
していることと、さらに気流が流れやすい構造であるの
で、そのような心配はない。
A radiometer is a type of heat engine in which the blades serve as a high heat source and the glass bulb serves as a low heat source, but even the glass bulb, which is a low heat source, suffers from a drop in efficiency due to the considerable temperature rise caused by radiation. However, in the phototurbine of the present invention, the low heat source is the opening of the reflective straightening plate, which is in direct contact with the free space, and has a structure that allows air to flow easily, so there is no such concern.

漸次放射を弱めていくとき、ウジオメータの方が先に止
まるが、本発明のフオトタービンは依然として回り続け
る。即ちフオトタービンの方が回転のための光放射強度
の閾値が低い。
As the radiation is gradually weakened, the eudiometer stops first, but the phototurbine of the present invention continues to rotate. That is, the phototurbine has a lower threshold of optical radiation intensity for rotation.

〔効果〕〔effect〕

発明の効果 本発明による、大気中で光エネルギーを直接機械的エネ
ルギーに変換するフオトタービンは、以下に記す(1)
〜(7)の効果を有する。
Effects of the Invention The phototurbine according to the present invention, which directly converts light energy into mechanical energy in the atmosphere, is described below (1).
It has the effects of ~(7).

(1)大気中で作動するので真空中から機械的エネルギ
ーを外に取り出すという余分な仕組と、そのときのエネ
ルギー損失がなくなり、製造、取扱いも簡便になる。
(1) Since it operates in the atmosphere, there is no need for an extra mechanism to extract mechanical energy from the vacuum, and there is no energy loss at that time, making it easier to manufacture and handle.

(2)従来のラジオメータに較べて、本発明のフオトタ
ービンの方が回転が起る光放射強度に対する閾値が低い
、つまり回転しやすい、という効果がある。
(2) Compared to conventional radiometers, the phototurbine of the present invention has a lower threshold for light radiation intensity at which rotation occurs, that is, it rotates more easily.

(3)本発明の構造を使えば、大きな装置(例えば寸法
数m)が可能となる。装置が大きいほどトルクと軸出力
が大きくなるので従来のものより格段に大きなトルクと
軸出力のものを作ることができる。
(3) By using the structure of the present invention, large devices (for example, dimensions of several meters) are possible. The larger the device, the greater the torque and shaft output, so it is possible to create a device with much larger torque and shaft output than conventional ones.

(4)室内にても窓側の明るいところならば、自然放射
により十分回転する。また人工光に対しては、一般に使
われている電気スタレド(40W)や蛍光灯スタンド(
15W)のそばに置いても十分回転するという効果があ
る。
(4) Even indoors, if you are in a bright place near a window, the rotation will be sufficient due to natural radiation. In addition, for artificial light, commonly used electric stars (40W) and fluorescent lamp stands (
15W), it has the effect of rotating sufficiently even when placed near it.

(5)開口部の開口度を調節することにより、回転速度
、トルク、軸出力を調節することができる。
(5) By adjusting the degree of opening of the opening, the rotational speed, torque, and shaft output can be adjusted.

(6)風も回転に寄与するので、風力エネルギーも併用
できる。
(6) Since wind also contributes to rotation, wind energy can also be used.

(7)比較的低い温度で直接メカニカルな回転運動を起
すユニークな一種の熱機関としての教育的効果がある。
(7) It has an educational effect as a unique type of heat engine that directly generates mechanical rotational motion at relatively low temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例でその斜視図、第2図は第
1図の分解斜視図、第3図は第1図の平面図、第4図は
羽根車の羽根の水平に対する傾斜角θを示す図、第5図
は角速度のθ依存性を示す図(実験データ)、第6図は
トルクのθ依存性を示す図(実験データ)、第7図は軸
出力(=トルク×角速度)のθ依存性を示す図(実験デ
ータ)、第8図は本発明第2実施例の平面図、第9図は
本発明第3実施例の筒の斜視図、第10図は本発明第4
実施例の筒の斜施図、第11図は本発明第5実施例で底
板等の斜視図、第12図は本発明第6実施例の説明図、
である。 1…(渦状)反射整流板、2…羽根車、3…筒、4…底
板、5…回転軸、6…内筒、7…外筒、8…(放射状)
反射整流板、9…支持具、10〜14…反射板、15…
天板、
Fig. 1 is a perspective view of the first embodiment of the present invention, Fig. 2 is an exploded perspective view of Fig. 1, Fig. 3 is a plan view of Fig. 1, and Fig. 4 is a horizontal view of the impeller blades. Figure 5 shows the angle of inclination θ, Figure 5 shows the θ dependence of angular velocity (experimental data), Figure 6 shows the θ dependence of torque (experimental data), and Figure 7 shows the shaft output (= torque). x angular velocity) (experimental data), Fig. 8 is a plan view of the second embodiment of the present invention, Fig. 9 is a perspective view of the cylinder of the third embodiment of the present invention, and Fig. 10 is the main Invention No. 4
FIG. 11 is a perspective view of the bottom plate etc. of the fifth embodiment of the present invention; FIG. 12 is an explanatory diagram of the sixth embodiment of the present invention;
It is. DESCRIPTION OF SYMBOLS 1... (vortex-like) reflective rectifier plate, 2... impeller, 3... tube, 4... bottom plate, 5... rotating shaft, 6... inner cylinder, 7... outer cylinder, 8... (radial)
Reflection rectifying plate, 9... Support, 10-14... Reflection plate, 15...
Top board,

Claims (1)

【特許請求の範囲】[Claims] 渦状をなす反射整流板1あるいは放射状をなす反射整流
板8の両方またはいずれか一方を底板4に固定し、これ
らの反射整流板によって光あるいは気流が回転するとき
のその回転の中心部もしくは中心部の上方に羽根車を軸
支し、反射整流板1と8の両方もしくは1の方だけを使
うときは上部に筒3を有し、または有しない、そして反
射整流板8のみを使うときは上部に筒3を有する、光エ
ネルギーを機械的回転運動に変えるフォトタービン。
Either or both of the spiral-shaped reflective rectifier plate 1 and the radial-shaped reflective rectifier plate 8 are fixed to the bottom plate 4, and when light or airflow is rotated by these reflective rectifier plates, the center or center of rotation is fixed. The impeller is pivoted above, and when using both reflective rectifier plates 1 and 8 or only 1, there is or is not a tube 3 at the top, and when only reflective rectifier plate 8 is used, the upper tube 3 is provided. A phototurbine that converts light energy into mechanical rotational motion, having a tube 3 at the top.
JP15425584A 1984-07-25 1984-07-25 Photo-turbine Pending JPS6131674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15425584A JPS6131674A (en) 1984-07-25 1984-07-25 Photo-turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15425584A JPS6131674A (en) 1984-07-25 1984-07-25 Photo-turbine

Publications (1)

Publication Number Publication Date
JPS6131674A true JPS6131674A (en) 1986-02-14

Family

ID=15580209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15425584A Pending JPS6131674A (en) 1984-07-25 1984-07-25 Photo-turbine

Country Status (1)

Country Link
JP (1) JPS6131674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101002A (en) * 1990-08-17 1992-04-02 Nobuyuki Furuhashi Energy conversion method by law of motion and conversion device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101002A (en) * 1990-08-17 1992-04-02 Nobuyuki Furuhashi Energy conversion method by law of motion and conversion device thereof

Similar Documents

Publication Publication Date Title
US4148298A (en) Hemispherical collector of direct dispersed and reflected waves
US4088116A (en) Radiant energy collector
US7797939B2 (en) Concentrating solar energy receiver
US5103646A (en) Solar and wind powered generator
JP6228135B2 (en) Off-axis Cassegrain solar collector
KR101716459B1 (en) Turbine
US20110220092A1 (en) reflective solar energy collection sysetm
AU2006343171B2 (en) Hyperbolic solar trough field system
JP5388357B2 (en) Solar power plant
CA1097167A (en) Solar energy heating apparatus
JPWO2014181585A1 (en) Hybrid wind power generator
TW201819758A (en) Vertical axis wind turbine with automatic adjustment of blade angle
JPS6361579B2 (en)
US4295462A (en) Energy concentrator system
US4494529A (en) Solar trap
CN105066484B (en) Metal tube surface radiant intensity measurement device and method in groove type solar thermal-collecting tube
JPS6131674A (en) Photo-turbine
US4353003A (en) Solar electric generator
US8786126B2 (en) Wind turbine having two hemispherical blades
US4137902A (en) Energy concentrator system
JP2013016619A (en) Photovoltaic power generation device
JPS6141479A (en) Optical motor decorative toy
JPS6131188A (en) Optical motor decorative toy
JPH0974776A (en) Power generation apparatus
JPWO2002052204A1 (en) Solar radiation concentrator