JPS6131443A - Elastic material having cushioning characteristic and its preparation - Google Patents
Elastic material having cushioning characteristic and its preparationInfo
- Publication number
- JPS6131443A JPS6131443A JP15250784A JP15250784A JPS6131443A JP S6131443 A JPS6131443 A JP S6131443A JP 15250784 A JP15250784 A JP 15250784A JP 15250784 A JP15250784 A JP 15250784A JP S6131443 A JPS6131443 A JP S6131443A
- Authority
- JP
- Japan
- Prior art keywords
- elastic body
- aluminum
- cushioning
- wire
- cushioning material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vibration Dampers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
(従来の技術)
衝撃の緩和や振動の抑制のために、従来より、ブタジェ
ンスチレンゴム、ウレタンゴムナトノ有機質弾性体がよ
く使用されてきた。[Detailed Description of the Invention] (Industrial Field of Application) (Prior Art) Butadiene styrene rubber and urethane rubber nanoorganic elastomers have been commonly used for shock mitigation and vibration suppression. .
(発明が解決しようとする問題点)
しかし、これら有機質弾性体は、高い弾性を有するため
、引張シ、圧縮または曲げ変形させたとき、その変形で
生じたエネルギーを一挙に放出して、急激に原形状に戻
ろうとする。また、この種の弾性体は、振動吸収材に用
いたとき、振動数によっては振動体と共振してしまうこ
とが多く、振動の抑制作用が不十分なものであった。さ
らに、前記の弾性体は、局所的に荷重を負荷せしめると
その部分のみ変形してしまうため、衝撃によシ局部破壊
が生じ易かった。(Problem to be Solved by the Invention) However, since these organic elastic bodies have high elasticity, when they are deformed in tension, compression, or bending, they release the energy generated by the deformation all at once, resulting in rapid Trying to return to its original shape. Further, when this type of elastic body is used as a vibration absorbing material, it often resonates with the vibrating body depending on the frequency of vibration, and the vibration suppressing effect is insufficient. Furthermore, when a load is locally applied to the elastic body, only that portion deforms, so that local breakage is likely to occur due to impact.
従って、従来の弾性体は、上記の如く緩衝機能に乏しい
ため、それが強く求められる用途や使用条件において十
分に適合できるものではなかった。Therefore, since conventional elastic bodies lack a buffering function as described above, they are not fully suitable for applications and usage conditions in which such a cushioning function is strongly required.
本発明の目的は、前記の欠点を生じず、優れた緩衝性を
有する弾性体を提供することにある。An object of the present invention is to provide an elastic body that does not have the above-mentioned drawbacks and has excellent cushioning properties.
(問題点を解決するための手段)
本発明の緩衝性を有する弾性体は、多数のアルミニウム
系線材が絡まり合ってなる緩衝材を、合成ゴム等の有機
質弾性体内に埋設してなることを特徴とするものおよび
その製造方法である。(Means for Solving the Problems) The elastic body having cushioning properties of the present invention is characterized in that a cushioning material made of a large number of aluminum-based wires entangled is embedded in an organic elastic body such as synthetic rubber. and its manufacturing method.
すなわち、本発明は、剛性を幾分有するアルミニウム系
線材を絡ませたものを柔軟な有機質弾性体に埋設するこ
とにより、衝撃や振動に対して緩衝機能を大きく営むよ
うにしたものである。本発明の弾性体において、複雑に
絡まり合ったアルミニウム系線材が相互に接触若しくは
近接し合う部位をろう付けすると、緩衝材の削性が高ま
り衝撃や振動に対する緩衝性能が更に向上するのでより
好ましい。That is, in the present invention, aluminum-based wire rods having some rigidity are entwined and embedded in a flexible organic elastic body, thereby greatly acting as a buffer against shocks and vibrations. In the elastic body of the present invention, it is more preferable to braze the parts where the intricately entangled aluminum wires come into contact with or come close to each other, since this increases the machinability of the cushioning material and further improves the cushioning performance against shock and vibration.
更に本発明を説明する。本発明の弾性体は、第1図に典
型例を示すように、アルミニウムー珪素合金細線等のア
ルミニウム系線材1・・・を好ましくは複雑に絡まり合
わせた緩衝材2を、ブタジェンスチレンゴム等の有機質
弾性体3内に全体的に好ましくけ均一に埋設したもので
ある。The present invention will be further explained. As a typical example of the elastic body of the present invention is shown in FIG. It is preferable that the organic elastic body 3 is embedded uniformly throughout.
従って、弾性体全体としては、剛性が相当に増大し、こ
の結果弾性が有機質弾性体3のそれと比較して著しく弱
まり、原形状に戻そうとする力が一挙に働かなくなり、
変形で生じたエネルギーを緩慢に放出するようになる。Therefore, the rigidity of the elastic body as a whole increases considerably, and as a result, the elasticity is significantly weakened compared to that of the organic elastic body 3, and the force that attempts to return it to its original shape no longer acts.
The energy generated by deformation is slowly released.
また、振動特性が異なる二種材料の複合体となるため、
振動体との共振が困難となる。さらに、弾性体内でアル
ミニウム系線材1・・・が絡まり合って存在しているた
め、荷重を負荷してもその負荷応力がアルミニウム系線
材1・・・を伝って分散されるようになっている。In addition, since it is a composite of two types of materials with different vibration characteristics,
It becomes difficult to resonate with the vibrating body. Furthermore, since the aluminum wire rods 1... exist entangled within the elastic body, even if a load is applied, the load stress is transmitted through the aluminum wire rods 1... and dispersed. .
緩衝材2の埋設位置は任意であり、緩衝材2を第2図に
示すように有機質弾性体3の上下両側に夫々層状に埋設
してもよく、また第3図に示すように緩衝材2を弾性体
3の中央部のみに層状に埋設して吃よい。緩衝材の露出
を回避することを求める場合には、第3図に示すような
配置にすると好都合である。The cushioning material 2 may be buried in any position, and the cushioning material 2 may be buried in layers on both sides of the organic elastic body 3 as shown in FIG. 2, or in layers as shown in FIG. is buried in a layer only in the center of the elastic body 3 to prevent stuttering. When it is desired to avoid exposure of the cushioning material, it is convenient to use the arrangement as shown in FIG.
また好ましくは、第4図に拡大して示すように、緩衝材
2が、複雑に絡まり合ったアルミニウム系線材1・・・
のうち相互に接触または近接し合う部位を夫々ろう付け
、接合してなる弾性体である。ろう付は部4・・・の形
成により、緩衝材2の剛性がさらに増大して、弾性体と
しての復原力の働きがより緩やかになり、また負荷応力
の分散が一層円滑になる。Preferably, as shown in an enlarged view in FIG.
It is an elastic body made by brazing and joining the parts that are in contact with or close to each other. By forming the brazing parts 4, the rigidity of the cushioning material 2 is further increased, the restoring force acting as an elastic body becomes gentler, and the load stress is distributed more smoothly.
本発明で用いる緩衝材2は、アルミニウム系線材1・・
・が絡まり合ったもので、変形が容易で、かつ相当の弾
性を有するが変形後復原する動きが緩慢であるという特
性を有するものであればよい。アルミニウム系線材1・
・・が種々の角度で折れ曲がって、方向性が無く複雑に
絡まり合ったものがより好ましい。ここでのアルミニウ
ム系線材1とは、アルミニウムあるいはアルミニウム合
金の細線や太繊維をいう。アルミニウム合金材料として
は、アル(=ラムに、珪素(St)、マグネシウム(M
g) s鋼(Cu)、マンガン(Mn)、亜鉛(Zn)
、チタ/(Ti)、クロム(Cr)、ジ/l/ コニウ
ム(Zr )等を少なくとも一種類添加した合金が挙げ
られる。アルミニウム系線材1の径は任意であり、製品
としての本発明の弾性体の厚さや大きさ等を考慮して適
宜調整するとよい。例えば、弾性体が100−X 10
0.X 10.1程度の寸法を有するときには、α2な
いし1.0IIIの径を有する線材1を用いるとよい。The cushioning material 2 used in the present invention is an aluminum wire material 1...
It may be any material as long as it has the characteristics of being entangled with each other, being easily deformed, and having considerable elasticity, but returning slowly to its original state after deformation. Aluminum wire rod 1.
. . are bent at various angles and have no directionality and are intricately intertwined. The aluminum wire 1 herein refers to a thin wire or thick fiber made of aluminum or aluminum alloy. Aluminum alloy materials include aluminum (=lam), silicon (St), and magnesium (M
g) S steel (Cu), manganese (Mn), zinc (Zn)
, tita/(Ti), chromium (Cr), di/l/conium (Zr), and the like. The diameter of the aluminum wire 1 is arbitrary, and may be adjusted as appropriate in consideration of the thickness, size, etc. of the elastic body of the present invention as a product. For example, if the elastic body is 100-X 10
0. When the wire rod has a dimension of approximately X 10.1, it is preferable to use a wire rod 1 having a diameter of α2 to 1.0III.
線材1の長さも任意でs 10cliを越える長線材で
も、数傷の短線材でもよい。また弾性体中の線材1の充
填密度を適宜調整して、弾性体が所望の剛性と弾性等を
備えるようにするとよい。The length of the wire 1 may be arbitrary, and it may be a long wire exceeding s 10cli or a short wire with several flaws. Further, it is preferable to adjust the packing density of the wire rod 1 in the elastic body as appropriate so that the elastic body has desired rigidity, elasticity, etc.
また、本発明で用いる有機質弾性体3は、弾性に富む高
分子弾性体で、例えば従来より使用されてきた天然ゴム
や強靭な各種合成ゴムを適用することができる。具体的
には、ブタジエンスチレンゴム、ブタジェンアクリロニ
トリルゴム、ポリクロロプレン、ブチルゴム、ウレタン
ゴム等を挙げることができる。弾性体3は、弾性率が1
0ないし1000 kpz−程度であるのが適当である
。The organic elastic body 3 used in the present invention is a polymeric elastic body with high elasticity, and for example, conventionally used natural rubber or various tough synthetic rubbers can be used. Specific examples include butadiene styrene rubber, butadiene acrylonitrile rubber, polychloroprene, butyl rubber, urethane rubber, and the like. The elastic body 3 has an elastic modulus of 1
Appropriately, it is about 0 to 1000 kpz.
さて、本発明者等は、特願昭58−191311号に記
載されるように、アルミニウム系材料の新規なろう付は
方法、具体的には、カリウムおよびフッ素を含有する化
成処理液を用いてアルミニウム系材料の表面にフラック
スとしてのペンタフルオロアルミニウム酸カリウム(K
!AJFg )からなる皮膜を形成しその後加熱してろ
う付けする方法を提案しており、この方法によれば、化
成処理液にアルミニウム系材料を接触させるのみで容易
にフラックス層を形成でき、しかもその後のろう付は工
程におけるろう材の流れがなめらかで、ろう材がろう付
は部に均等にゆきわたる。その結果、少量のろう材で、
欠陥のないろう付は接合部を形成することができると共
に、ろう付は後ろう付は部を洗浄しなくてもろう付は接
合部を腐食させることがない。Now, as described in Japanese Patent Application No. 58-191311, the present inventors have developed a new method for brazing aluminum-based materials, specifically, using a chemical conversion treatment solution containing potassium and fluorine. Potassium pentafluoroaluminate (K) as a flux is applied to the surface of aluminum-based materials.
! We have proposed a method in which a film consisting of AJFg) is formed and then heated and brazed. According to this method, a flux layer can be easily formed simply by contacting an aluminum material with a chemical conversion treatment solution, and furthermore, In brazing, the flow of the filler metal during the process is smooth, and the filler metal spreads evenly over the brazing parts. As a result, with a small amount of brazing filler metal,
The braze can form a defect-free joint, and the braze does not corrode the joint without cleaning the braze after the braze.
従って、上記の方法を利用して、具体的には、第5図に
示すように複雑に絡み合わせたアルミニウム系線材1・
・・に、カリウムおよびフッ素を含有する化成処理液を
接触させて線材1の表面にペンタフルオロアルミニウム
酸カリウム皮膜を形成せしめ、次いで例えばアルミニウ
ムー珪素合金短繊維のろう材5・・・を線材1・・・中
に供給し、次に加熱してろう材5によシアルミニウム系
線材1・・・を相互にろう付けして第4図に示すような
緩衝材2を形成し、しかる後該緩衝月2の内部空隙を有
機質弾性体3で充満して本発明の弾性体を製作すると、
線材1相互のろう付けが円滑に進むため、線材ろう付は
タイプの本発明の弾性体を容易にかつ効率良く製造する
ことができる。tた製作後ろう付は部で腐食が生じない
ため、高い耐久性を有する弾性体を得ることができる。Therefore, using the above method, specifically, as shown in FIG.
... is brought into contact with a chemical conversion treatment solution containing potassium and fluorine to form a potassium pentafluoroaluminate film on the surface of the wire rod 1, and then, for example, the brazing material 5 of aluminum-silicon alloy short fibers is applied to the wire rod 1. . . , and then heated to braze the sialuminium-based wire 1 . When the elastic body of the present invention is manufactured by filling the internal void of the buffer moon 2 with the organic elastic body 3,
Since the wire rods 1 are brazed to each other smoothly, the elastic body of the present invention of the wire rod brazing type can be manufactured easily and efficiently. Since corrosion does not occur in the brazed parts after fabrication, it is possible to obtain an elastic body with high durability.
この製法において使用される上記化成処理液中、次の方
法によシ調製される。そのひとつは、フッ化水素カリウ
ム(KHF*)を水に溶解する方法である。フッ化水素
カリウムの溶解量は、水11mす1ないしsagとした
ものがペンタフルオロアルミニウム酸カリウムを生成す
るのに適当である。他の調製方法としては、フッ化カリ
ウム(KF)とフッ化水素(HF)とを水に溶解して混
合水溶液としてもよい。また、水酸化カリウム(KOH
)とフッ化水素とを水に溶解したものでもよい。これら
の水溶液は、フッ素とカリウムのモル比が1〜10であ
って、かつカリウムがcL5〜4077/ll含有して
いるものがよい。The chemical conversion solution used in this production method is prepared by the following method. One method is to dissolve potassium hydrogen fluoride (KHF*) in water. The amount of potassium hydrogen fluoride dissolved in 11 ml to sag of water is suitable for producing potassium pentafluoroaluminate. As another preparation method, potassium fluoride (KF) and hydrogen fluoride (HF) may be dissolved in water to form a mixed aqueous solution. In addition, potassium hydroxide (KOH
) and hydrogen fluoride dissolved in water may also be used. These aqueous solutions preferably have a molar ratio of fluorine to potassium of 1 to 10 and contain potassium of 5 to 4077 cL/ll.
アル1=ウム系線材1と上記化成処理液とを接触せしめ
る方法としては、複雑に折曲げ、湾曲して絡み合わせた
アルミニウム系線材1・・・を化成処理液中に浸漬する
方法や、化成処理液を複雑に絡まり合うアルミニウム系
線材1・・・に塗布あるいは吹き付けする方法などがあ
る。この場合の接触時間は、化成処理液中のカリウムお
よびフッ素の濃度、該処理液の温度などによって一概に
は決まらないが、たとえばa5秒ないし20秒程度の範
囲がよい。該接触によって、アルミニウム系線材1の表
面に存在する酸化物被膜が破壊され、アルミニウムとカ
リウムとフッ素が化学反応し、ペンタフルオロアルミニ
ウム酸カリウムが生成する。この化合物の生成は、化成
処理液の加温により促進される。その結果、ペンタフル
オロアルミニウム酸カリウム皮膜がアルミニウム系線材
表面に強固に形成されていく。ペンタフルオロアルミニ
ウム酸カリウムが線材10表面に(N〜1011/v?
程度固着していると、次のろう付は工程においてペンタ
フルオロアルミニウム酸カリウムが7ラツクスとして作
用するのに望ましい。しかる後、化成処理線材は、加熱
炉に入れるなどして、ろう材(通常、i−7〜12%S
i合金である)により容易にろう付けすることができる
。ろう材は線材の表面にあらかじめクラッドされていて
もよいし、線状ろう材をアルミニウム系線材に混ぜても
よい。As a method of bringing the aluminum-based wire 1 into contact with the chemical conversion treatment solution, there is a method of immersing the aluminum-based wire 1 which is intricately bent, curved and intertwined in the chemical conversion treatment solution, There is a method of applying or spraying a treatment liquid onto the aluminum-based wire material 1 which is intricately intertwined. The contact time in this case is not necessarily determined depending on the concentration of potassium and fluorine in the chemical conversion treatment solution, the temperature of the treatment solution, etc., but is preferably in the range of about 5 seconds to 20 seconds, for example. This contact destroys the oxide film present on the surface of the aluminum-based wire 1, causing a chemical reaction between aluminum, potassium, and fluorine, and producing potassium pentafluoroaluminate. The production of this compound is promoted by heating the chemical conversion treatment solution. As a result, a potassium pentafluoroaluminate film is firmly formed on the surface of the aluminum wire. Potassium pentafluoroaluminate is on the surface of the wire rod 10 (N~1011/v?
Once this is done, subsequent brazing is desirable as the potassium pentafluoroaluminate acts as a 7 lux agent in the process. After that, the chemical conversion treated wire rod is placed in a heating furnace, etc., and is heated to a brazing filler metal (usually i-7 to 12%S).
i alloy), it can be easily brazed. The brazing material may be clad in advance on the surface of the wire, or the linear brazing material may be mixed with the aluminum wire.
ろう付は工程における加熱温度は、アルミニウム系線材
1の融点以下で、ろう材の融点およびペンタフルオロア
ルミニウム酸カリウムの融点である560℃以上の温度
がよく、また加熱雰囲気は、非酸化性雰囲気が最も望ま
しいが少量の酸素が存在する雰囲気でもよい。The heating temperature in the brazing process is preferably below the melting point of the aluminum wire 1 and above 560°C, which is the melting point of the brazing material and potassium pentafluoroaluminate, and the heating atmosphere is a non-oxidizing atmosphere. Most preferably, an atmosphere containing a small amount of oxygen may be used.
また、ろう付けした緩衝材2を有機質弾性体3に埋設す
る方法としては、溶融した有機質弾性体3を緩衝材2内
に注入しその後冷却する方法や、弾性体3の原料(未加
硫ゴム イオウ々ど)を緩衝材2内に充填し、加熱によ
り化学反応を起こして弾性体3を生成せしめ、その後冷
却する方法などが挙げられる。In addition, methods for embedding the brazed cushioning material 2 in the organic elastic body 3 include a method in which the molten organic elastic body 3 is injected into the cushioning material 2 and then cooled, and a method in which the raw material of the elastic body 3 (unvulcanized rubber Examples include a method in which the cushioning material 2 is filled with sulfur (sulfur, etc.), a chemical reaction is caused by heating to generate the elastic body 3, and the elastic body 3 is then cooled.
(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
アルミニウム−α5チマグネシウム合金細線(径α2〜
1.0關、長さ5〜30cIL)のアルミニウム系線材
を接緒に折曲げ、湾曲させて、第5図に示す如く絡まり
合った層状物(100,mX 10011X 15NN
)に形成し、次いでこの層状物にカリウムおよびフッ
素を含有する化成処理液(濃度および調製は、上記の記
載に従う。)を浸漬等により接触させてペンタフルオロ
アルミニウム酸カリウム皮膜をアルミニウム系線材表面
に形成せしめ、次にAJ−12Si合金の短繊維(径約
α5M2%長さ10〜20B)のろう材を化成処理線材
の層状物中に供給し、続いてこれを加熱炉に入れ610
℃で10分間加熱してろう付けを行ないその後炉より取
り出し放冷し九。その結果、随所に第4図に示す如くろ
う付けされた層状の緩衝材が得られた。しかる後、この
緩衝材を適当な型に入れ、さらに有機質弾性体原料であ
る未加硫ゴムとこのゴムに対して約10重量係のイオウ
とを前記型に入れ、150℃に加熱して有機質弾性体を
形成して、第1図に示す如く全層タイプで緩衝材と有機
質弾性体の体積比(以下、単に体積比という)が7:3
である実施例1の弾性体を製作した。Aluminum-α5 magnesium alloy thin wire (diameter α2~
Aluminum wire rods with a length of 1.0 cm and a length of 5 to 30 cIL are bent and curved to form a tangled layered material (100 m x 10011 x 15 NN) as shown in Figure 5.
), and then this layered material is brought into contact with a chemical conversion treatment solution containing potassium and fluorine (concentration and preparation according to the above description) by immersion or the like to form a potassium pentafluoroaluminate film on the surface of the aluminum wire. Next, short fibers of AJ-12Si alloy (diameter: α5M2% length: 10-20B) are supplied into the layered material of the chemical conversion treated wire, and then placed in a heating furnace at 610
Heat it at ℃ for 10 minutes to perform brazing, then remove it from the furnace and let it cool. As a result, a layered cushioning material brazed at various locations as shown in FIG. 4 was obtained. Thereafter, this cushioning material was placed in a suitable mold, and unvulcanized rubber, which is a raw material for organic elastic material, and sulfur in an amount of about 10 parts by weight based on this rubber were placed in the mold, and heated to 150°C to form an organic material. As shown in Figure 1, the elastic body is a full-layer type with a volume ratio of the cushioning material and the organic elastic body (hereinafter simply referred to as volume ratio) of 7:3.
An elastic body of Example 1 was manufactured.
また、上記と同様な製法により、いずれも全層タイプ(
第1図)であって、アルミニウム系線材の径がα2 I
llで体積比が5=5の実施例2の弾性体、線材の径が
[L5IIEで体積比が5=5の実施例3の弾性体、線
材の径がrL5mWで体積比が6:4の実施例4の弾性
体、および線材の径が1.0111で体積比が3ニアの
実施例5の弾性体を夫夫製作した。In addition, using the same manufacturing method as above, both are full-layer types (
(Fig. 1), and the diameter of the aluminum wire is α2 I
The elastic body of Example 2 with a volume ratio of 5 = 5 in L5IIE, the elastic body of Example 3 with a volume ratio of 5 = 5, the wire diameter of r The elastic body of Example 4 and the elastic body of Example 5 in which the diameter of the wire rod was 1.0111 and the volume ratio was 3 nia were manufactured.
さらに、上記と類似の製法により、同じアルミニウム系
線材より彦り層厚が511Ilの2個の緩衝材を有機質
弾性体の上下両側に埋設して、第2図に示す如き上下二
層タイプの実施例6ないし実施例8の弾性体(実施例1
と同寸法、同材質)を夫々製作した。実施例6は線材の
径がα2 mmで体積比が5.5のもので、また実施例
7は線材の径が0.2で体積比が6:4のもので、さら
に実施例8は線材の径が(15關で体積比が5=5のも
のである。なお、ここでの体積比はいずれ本、層状部分
における割合を示す。Furthermore, by using a manufacturing method similar to that described above, two cushioning materials made of the same aluminum wire rod and having a layer thickness of 511 Il were buried on both sides of the organic elastic body, creating a two-layered upper and lower type as shown in Figure 2. Elastic bodies of Examples 6 to 8 (Example 1
(same dimensions, same material). Example 6 has a wire rod diameter of α2 mm and a volume ratio of 5.5, Example 7 has a wire rod diameter of 0.2 and a volume ratio of 6:4, and Example 8 has a wire rod diameter of 0.2 mm and a volume ratio of 6:4. The diameter is (15 mm) and the volume ratio is 5=5.The volume ratio here indicates the proportion in the layered portion.
またさらに、上記と類似の製法により、同じアルミニウ
ム系線材よりなり層厚が8闘の緩衝材を有機質弾性体の
中央部に埋設して、第5図に示す如き中央単層タイプの
実施例9および実施例100弾性体(実施例1と同寸法
、同材質)を夫々製作した。両実施例とも、層状部分で
の体積比が5=5であって、また実施例9は線材の径が
IIL51!W!で、実施例10は該径がo、 s I
lmである。また比較のため、実施例におけるものと同
質の有機質弾性体(実施例1の弾性体と同寸法)を準備
した。Further, by using a manufacturing method similar to that described above, a cushioning material made of the same aluminum wire rod and having a layer thickness of 8 mm was buried in the center of the organic elastic body to produce a central single-layer type Example 9 as shown in FIG. and Example 100 elastic bodies (same dimensions and same material as Example 1) were manufactured. In both Examples, the volume ratio in the layered portion is 5=5, and in Example 9, the diameter of the wire is IIL51! W! In Example 10, the diameter is o, s I
lm. For comparison, an organic elastic body of the same quality as that in Example (same size as the elastic body of Example 1) was prepared.
而して、各実施例の弾性体の緩衝性能を知るべく、その
目安となる鋼球のはね返シ試験を行なった。この試験は
、実施例または比較例の弾性体を定盤上に置き、直径3
cILの鋼球を弾性体より1WL上方の高さから自由落
下させて、鋼球のはね返シ高さを測定すること釦より行
ない、各実施例におけるはね返り高さと比較例における
それとの比を算出した。この結果を下記の第1表に示す
。In order to find out the buffering performance of the elastic bodies of each example, a steel ball rebound test was conducted to serve as a guideline. In this test, the elastic body of the example or comparative example was placed on a surface plate, and the
A steel ball of cIL is allowed to fall freely from a height of 1WL above the elastic body, and the rebound height of the steel ball is measured using the button, and the ratio of the rebound height in each example to that in the comparative example is calculated. Calculated. The results are shown in Table 1 below.
この表よシ、実施例の弾性体はいずれも優れた緩衝性能
を有することがわかる。From this table, it can be seen that the elastic bodies of the examples all have excellent cushioning performance.
(発明の効果)
以上説明したように、本発明の緩衝性を有する弾性体は
、アルミニウム系線材の埋設によって剛性を増大せしめ
たことにより、反面弾性が弱まり変形で生じたエネルギ
ーを徐々に放出するようになシ、原形に戻そうとする復
原作用が緩慢になる。また、有機重合体と金属線材の複
合構造にして振動体との共振が困難となるようにしたこ
とにより、均一な振動吸収特性を有するようになり、振
動を効果的に吸収することができる。さらに、絡ま9合
う前記線材を埋設して負荷応力が分散されるようにした
ことにより、局所的に衝撃や荷重を加えても局部的な変
形や破壊が生じ難くなる。従って、上記の如く優れた緩
衝機能を有するため、衝撃緩和部材、振動抑制部材等と
して極めて有用である。(Effects of the Invention) As explained above, the elastic body with cushioning properties of the present invention has increased rigidity by embedding aluminum wire rods, and on the other hand, its elasticity weakens and the energy generated by deformation is gradually released. As a result, the restoring action that attempts to return it to its original shape becomes slower. In addition, by using a composite structure of an organic polymer and a metal wire to make it difficult to resonate with the vibrating body, it has uniform vibration absorption characteristics and can effectively absorb vibrations. Furthermore, by embedding the entangled wire rods so that the load stress is dispersed, local deformation or destruction is less likely to occur even if a local impact or load is applied. Therefore, since it has an excellent buffering function as described above, it is extremely useful as a shock absorbing member, a vibration suppressing member, etc.
j1!1図ないし第3図は本発明の各典型例の弾性体を
示す断面図、
第4図は本発明の他の典型例の弾性体の内部を示す拡大
図、
第5図は第4図の弾性体の製作中途状態を示す拡大図で
ある。
図中、
1・・・アルミニウム系線材
2・・・緩衝材
3・・・有機質弾性体
4・・・ろう付は部
5・・・ろう材
(ほか1名)
第1図
5・−ろう材
第2図
ン
第3図j1!1 to 3 are cross-sectional views showing the elastic body of each typical example of the present invention, FIG. 4 is an enlarged view showing the inside of the elastic body of another typical example of the present invention, and FIG. FIG. 3 is an enlarged view showing a state in which the elastic body shown in the figure is in the middle of being manufactured. In the figure, 1... Aluminum wire rod 2... Cushioning material 3... Organic elastic body 4... Brazing part 5... Brazing metal (1 other person) Figure 1 5 - Brazing metal Figure 2 and Figure 3
Claims (3)
衝材を、合成ゴム等の有機質弾性体内に埋設してなるこ
とを特徴とする緩衝性を有する弾性体。(1) An elastic body having a cushioning property characterized by embedding a cushioning material made of a large number of entangled aluminum wires in an organic elastic body such as synthetic rubber.
からなり、線材が相互に接触若しくは近接し合う部位を
ろう付けしてなるものであることを特徴とする特許請求
の範囲第1項記載の弾性体。(2) The cushioning material is made of aluminum wire rods intertwined in a complicated manner, and the portions where the wire rods touch or come close to each other are brazed. Elastic body.
ウムおよびフッ素を含有する化成処理液を接触させて線
材表面にペンタフルオロアルミニウム酸カリウム皮膜を
形成せしめ、その後加熱してろう材により前記アルミニ
ウム系線材を相互にろう付けして緩衝材とし、該緩衝材
をゴム等の有機質弾性体中に埋設せしめることを特徴と
する緩衝性を有する弾性体の製造方法。(3) A chemical conversion treatment solution containing potassium and fluorine is brought into contact with the intricately intertwined aluminum wire to form a potassium pentafluoroaluminate film on the surface of the wire, and then heated and brazed with the aluminum wire. 1. A method for manufacturing an elastic body having cushioning properties, which comprises brazing the two together to form a cushioning material, and embedding the cushioning material in an organic elastic body such as rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15250784A JPS6131443A (en) | 1984-07-23 | 1984-07-23 | Elastic material having cushioning characteristic and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15250784A JPS6131443A (en) | 1984-07-23 | 1984-07-23 | Elastic material having cushioning characteristic and its preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6131443A true JPS6131443A (en) | 1986-02-13 |
Family
ID=15541961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15250784A Pending JPS6131443A (en) | 1984-07-23 | 1984-07-23 | Elastic material having cushioning characteristic and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6131443A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06503399A (en) * | 1990-06-22 | 1994-04-14 | アプライド パワー インク. | connecting rod |
-
1984
- 1984-07-23 JP JP15250784A patent/JPS6131443A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06503399A (en) * | 1990-06-22 | 1994-04-14 | アプライド パワー インク. | connecting rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU655468B2 (en) | A joint, a laminate, and a method of preparing a nickel titanium alloy member surface for bonding to another layer of metal | |
JP3718529B2 (en) | Method for producing porous electrode wire for electric discharge machining | |
TWI306044B (en) | High strength flux cored electrode and method of arc welding high strength steel | |
US4042725A (en) | Solder alloy and soldering process | |
JPH0336241B2 (en) | ||
KR20170096413A (en) | Clad steel wire and method thereof | |
JPH01246486A (en) | Production of silicon carbide fiber-reinforced aluminum-based perform wire | |
JP2003211285A (en) | Welding wire and its production method | |
JPS6131443A (en) | Elastic material having cushioning characteristic and its preparation | |
CA2513691A1 (en) | Pre-plating surface treatments for enhanced galvanic-corrosion resistance | |
JP2003290972A (en) | Welding method using ultra-low temperature transformation solvent, and high fatigue resistance joint and ultra-low temperature transformation solvent | |
JPH06158197A (en) | Production of composite material | |
JP2005101073A (en) | Stem of semiconductor device package and cladding material therefor | |
JP2006305630A (en) | Manufacturing method of weld joint having excellent fatigue characteristic | |
JPH07251293A (en) | Method for hard facing by welding onto aluminum alloy surface | |
US4215764A (en) | Acoustic filter | |
JP3017058B2 (en) | Cut wire for welding | |
JPH03236732A (en) | Tip of fishing rod | |
JP2747079B2 (en) | Manufacturing method of flux cored wire for stainless steel | |
JP2000119072A (en) | Joining of silicon nitride to carbon steel | |
JPH07119057A (en) | Wire for reinforcing rubber and its production | |
JP2008093714A (en) | Brazed body of stainless steel material and aluminum alloy material, and brazing method | |
JP2004285410A (en) | Brazed porous aluminum substrate and its manufacturing method | |
JPH01255653A (en) | Manufacture of high damping aluminum alloy member | |
JP3403796B2 (en) | Braiding method of PC structure reinforcement |