JP2005101073A - Stem of semiconductor device package and cladding material therefor - Google Patents

Stem of semiconductor device package and cladding material therefor Download PDF

Info

Publication number
JP2005101073A
JP2005101073A JP2003330036A JP2003330036A JP2005101073A JP 2005101073 A JP2005101073 A JP 2005101073A JP 2003330036 A JP2003330036 A JP 2003330036A JP 2003330036 A JP2003330036 A JP 2003330036A JP 2005101073 A JP2005101073 A JP 2005101073A
Authority
JP
Japan
Prior art keywords
layer
copper
coating layer
iron coating
clad material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330036A
Other languages
Japanese (ja)
Inventor
Naoto Takebe
直人 武部
Yoshimitsu Oda
喜光 織田
Takeshi Hasegawa
剛 長谷川
Masaaki Ishio
雅昭 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Neomaterial Ltd
Original Assignee
Neomax Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Materials Co Ltd filed Critical Neomax Materials Co Ltd
Priority to JP2003330036A priority Critical patent/JP2005101073A/en
Publication of JP2005101073A publication Critical patent/JP2005101073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cladding material which is suitable as material of a stem used for a semiconductor device package and capable of improving the semiconductor device in heat dissipation and cooling performance. <P>SOLUTION: The cladding material for the stem of the semiconductor device is equipped with a base layer 1 formed of iron steel material, a copper layer 2 formed of pure copper or a copper-based copper alloy and laminated on the base layer 1, and an iron coating layer 3 which is formed of soft steel and laminated on the copper layer 2. The iron coating layer 3 has an average hardness of Hv 180 to 230. A surface-hardened layer can be formed on the surface of the iron coating layer 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体素子パッケージのステムおよび同ステムのコイニング成形の素材として好適なクラッド材に関する。   The present invention relates to a stem of a semiconductor element package and a clad material suitable as a material for coining molding of the stem.

レーザダイオードなどの半導体素子を封入した半導体素子パッケージは、半導体素子が装着されるステムと、前記ステムに装着された半導体素子を覆うように設けられたキャップを備える。   A semiconductor element package enclosing a semiconductor element such as a laser diode includes a stem on which the semiconductor element is mounted and a cap provided to cover the semiconductor element mounted on the stem.

前記ステムは、図4に示すように、低炭素鋼で形成された基部21と、前記基部21上に設けられたヒートシンク22とを備えている。前記ヒートシンク22は、前記基部21に積層された平坦部23と、この平坦部23から一体的に立設されたマウント部24とを有している。前記平坦部23およびマウント部24の芯部23a,24aは放熱性に優れた銅あるいは銅を主成分とする銅合金で形成され、これらの芯部23a,24aの表面には抵抗溶接性を向上させるため低炭素鋼で形成された抵抗溶接層25が被覆されている。   As shown in FIG. 4, the stem includes a base portion 21 made of low carbon steel and a heat sink 22 provided on the base portion 21. The heat sink 22 includes a flat portion 23 laminated on the base portion 21 and a mount portion 24 erected integrally from the flat portion 23. The flat portion 23 and the core portions 23a and 24a of the mount portion 24 are formed of copper having excellent heat dissipation or a copper alloy containing copper as a main component, and resistance weldability is improved on the surfaces of the core portions 23a and 24a. Therefore, a resistance welding layer 25 made of low carbon steel is coated.

前記マウント部24の側面(立面)には半導体素子Sが搭載され、前記基部21や平坦部23には半導体素子Sの電極を絶縁状態で取り付けるための挿通孔(図示省略)が適宜開設される。半導体素子Sが搭載された後、前記マウント部24は低炭素鋼で形成されたキャップ26によって覆われ、その開口周縁部が前記平坦部23の外周縁部において抵抗溶接層25に抵抗溶接される。   A semiconductor element S is mounted on a side surface (elevation surface) of the mount portion 24, and through holes (not shown) for attaching the electrodes of the semiconductor element S in an insulated state are appropriately opened in the base portion 21 and the flat portion 23. The After the semiconductor element S is mounted, the mount portion 24 is covered with a cap 26 made of low carbon steel, and the peripheral edge of the opening is resistance welded to the resistance weld layer 25 at the outer peripheral edge of the flat portion 23. .

このような半導体素子パッケージ用のステムは、特許第2880048号公報(特許文献1)に記載されているように、前記基部21の元になる基層と、前記平坦部23およびマウント部24の芯部23a,24aの元になる銅層と、前記抵抗溶接層25の元になる鉄被覆層とが同順序で積層形成されたクラッド材から直径3〜5mm程度のプレス加工素材を採取し、これをコイニング成形することによって一体的に成形される。コイニング成形の際に、クラッド材の銅層および鉄被覆層からステムの平坦部23とマウント部24が抵抗溶接層25とともに一体的に成形される。前記クラッド材は、コイニング成形の際に前記鉄被覆層が銅層と共に円滑に展延してマウント部24を膨出成形するように1000℃程度の高温で十分に軟化焼鈍される。
特許第2880048号公報(請求項2、図2)
As described in Japanese Patent No. 2880048 (Patent Document 1), such a stem for a semiconductor element package includes a base layer that is a base of the base portion 21, a core portion of the flat portion 23 and the mount portion 24. A press working material having a diameter of about 3 to 5 mm is collected from a clad material in which the copper layer that is the basis of 23a and 24a and the iron coating layer that is the basis of the resistance welding layer 25 are laminated in the same order. It is integrally formed by coining. During coining, the flat portion 23 and the mount 24 of the stem are integrally formed with the resistance weld layer 25 from the copper layer and the iron coating layer of the clad material. The clad material is sufficiently softened and annealed at a high temperature of about 1000 ° C. so that the iron coating layer smoothly spreads together with the copper layer and bulges the mount 24 during coining.
Japanese Patent No. 2880048 (Claim 2, FIG. 2)

上記特許文献1に記載されたように、3層クラッド材を用いてコイニング成形することによって、マウント部が平坦部から突出形成されたステムを容易に一体成形することができる。しかし、コイニング成形の際に、マウント部の表面にも不可避的に抵抗溶接層が被覆形成される。この抵抗溶接層を介して、マウント部に半導体素子を搭載すると、抵抗溶接層は鋼材であるため熱伝導率が低く、半導体素子からマウント部の芯部への熱伝導性が劣化する。   As described in Patent Document 1, by performing coining molding using a three-layer clad material, it is possible to easily integrally mold a stem in which a mount portion projects from a flat portion. However, during coining molding, a resistance weld layer is inevitably formed on the surface of the mount portion. When a semiconductor element is mounted on the mount portion via this resistance weld layer, the resistance weld layer is a steel material, so the thermal conductivity is low, and the thermal conductivity from the semiconductor element to the core portion of the mount portion deteriorates.

近年、高速大容量のブロードバンドに対応した大容量光ディスクシステムにおいて、従来の赤色半導体レーザから青紫色半導体レーザへの代替が進められており、このような半導体素子ではより高い放熱性が求められており、前記抵抗溶接層による熱伝導性の劣化も看過することができない問題になっている。   In recent years, high-capacity optical disk systems compatible with high-speed and large-capacity broadband have been replaced by conventional blue semiconductor lasers instead of red semiconductor lasers. Such semiconductor devices are required to have higher heat dissipation. Further, the thermal conductivity deterioration due to the resistance weld layer cannot be overlooked.

本発明は、かかる問題に鑑みなされたもので、半導体素子の放熱性、冷却性に優れた半導体素子パッケージのステムおよびその素材として好適なクラッド材を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a stem of a semiconductor element package excellent in heat dissipation and cooling performance of a semiconductor element and a clad material suitable as a material thereof.

本発明の半導体素子のステム用クラッド材は、鉄鋼材で形成された基層と、純銅あるいは銅を主成分とする銅合金で形成され、前記基層に積層された銅層と、軟鋼で形成され、前記銅層の上に積層された鉄被覆層とを備え、前記鉄被覆層の平均硬度がHv180〜230、好ましくはHv210〜230とされたものである。   The clad material for the stem of the semiconductor element of the present invention is formed of a base layer made of a steel material, pure copper or a copper alloy containing copper as a main component, a copper layer laminated on the base layer, and a mild steel, And an iron coating layer laminated on the copper layer, and the average hardness of the iron coating layer is Hv 180 to 230, preferably Hv 210 to 230.

このクラッド材を用いてマウント部を局部的に膨出させるようにコイニング成形すると、銅層が容易に塑性流動してマウント部を膨出成形する一方で、比較的高めの硬度に調整された軟鋼からなる鉄被覆層は銅層の塑性流動に追随することができず、マウント部の側面(立面)では展延した鉄被覆層(抵抗溶接層)に亀裂が入って分断された状態となり、マウント部の芯部が部分的ないし全面的に露出する。このため、コイニング成形によって膨出成形されたマウント部の側面に半導体素子を搭載すると、半導体素子と溶接抵抗層の隙間から露出したマウント部の芯部の銅材とが直接接触する。このため、半導体素子に対する熱伝導性、冷却性に優れる。前記鉄被覆層の平均硬度はHv210〜230とすることが好ましい。これによって鉄被覆層の平均硬度がHv210未満の場合よりマウント部の芯部の露出面積をより増大させることができる。   When coining to make the mount part bulge locally using this clad material, the copper layer easily plastically flows to bulge the mount part, while mild steel adjusted to a relatively high hardness The iron coating layer consisting of cannot follow the plastic flow of the copper layer, and on the side surface (elevation surface) of the mount part, the expanded iron coating layer (resistance welding layer) is cracked and divided, The core part of the mount part is exposed partially or entirely. For this reason, when a semiconductor element is mounted on the side surface of the mount part bulged by coining molding, the semiconductor element and the copper material of the core part of the mount part exposed from the gap between the welding resistance layers are in direct contact. For this reason, it is excellent in the thermal conductivity with respect to a semiconductor element, and cooling property. The average hardness of the iron coating layer is preferably Hv210-230. As a result, the exposed area of the core portion of the mount portion can be increased more than when the average hardness of the iron coating layer is less than Hv210.

前記クラッド材において、基層も軟鋼で形成することが好ましい。基層を軟鋼で形成することによって、コイニング成形の際、マウント部の下方に位置する基層の下面を上方へ押し込むように成形することによって、マウント部を膨出成形する際に銅層の塑性流動が促進されてマウント部の成形性が向上する。   In the clad material, the base layer is preferably formed of mild steel. By forming the base layer from mild steel, during coining molding, the bottom surface of the base layer located below the mount part is molded so as to be pushed upward, so that the plastic flow of the copper layer is prevented when the mount part is bulged. It is promoted to improve the moldability of the mount part.

また、前記クラッド材において、前記鉄被覆層の表面に表面硬化層を形成しておくとよい。この表面硬化層はコイニング成形の際に亀裂発生の起点となるため、コイニングによるマウント部の膨出成形の際に展延した鉄被覆層に亀裂が入り易く、分断され易くなり、マウント部の芯部銅材の露出面積を増大させることができ、熱伝導性がより向上する。   In the clad material, a hardened surface layer may be formed on the surface of the iron coating layer. Since this surface hardened layer is the starting point of cracking during coining molding, the iron coating layer that has spread during coining bulge molding is likely to crack and break, and the core of the mount The exposed area of the copper part can be increased, and the thermal conductivity is further improved.

前記クラッド材の鉄被覆層の厚さとしては100〜200μm 程度でよく、また銅層の厚さとしては500〜1000μm 程度が好ましい。クラッド材の鉄被覆層の厚さが100μm 以下ではキャップの抵抗溶接性が低下し、一方200μm を越えるとコイニング成形の際に500〜1000μm 程度の厚さの銅層の膨出成形が困難になる。   The thickness of the iron coating layer of the clad material may be about 100 to 200 μm, and the thickness of the copper layer is preferably about 500 to 1000 μm. When the thickness of the iron coating layer of the clad material is 100 μm or less, the resistance weldability of the cap is lowered. On the other hand, when the thickness exceeds 200 μm, it is difficult to bulge and form a copper layer having a thickness of about 500 to 1000 μm during coining molding. .

また、本発明の半導体素子パッケージのステムは、鉄鋼材で形成された基部と、前記基部の上に形成されたヒートシンクとを備え、前記ヒートシンクは前記基部に積層された平坦部と、前記平坦部に一体的に成形されたマウント部とで構成され、前記平坦部およびマウント部は純銅あるいは銅を主成分とする銅合金で形成された芯部の上に軟鋼で形成された抵抗溶接層が被覆形成され、前記抵抗溶接層はマウント部の側面において分断され、マウント部の芯部が部分的ないし全面的に露出したものである。
このステムによれば、銅材が露出したマウント部に半導体素子を搭載することによって、半導体素子が銅材で形成されたマウント部の芯部に直接接触するので、ステム全体として熱伝導性、冷却性に優れる。
The stem of the semiconductor device package of the present invention includes a base portion formed of a steel material and a heat sink formed on the base portion, and the heat sink includes a flat portion stacked on the base portion and the flat portion. The flat portion and the mount portion are covered with a resistance weld layer made of mild steel on a core portion made of pure copper or a copper alloy containing copper as a main component. The resistance weld layer is formed and divided at the side surface of the mount portion, and the core portion of the mount portion is partially or entirely exposed.
According to this stem, by mounting the semiconductor element on the mount portion where the copper material is exposed, the semiconductor element is in direct contact with the core portion of the mount portion formed of the copper material. Excellent in properties.

本発明のクラッド材によれば、軟鋼で形成された鉄被覆層の硬度がHv180〜230に調整されているので、本発明のクラッド材を用いてコイニング成形すると、銅層に比して鉄被覆層が塑性流動し難いため、銅層から膨出成形されたマウント部の側面において展延した鉄被覆層(抵抗溶接層)に亀裂が入って分断され、マウント部の芯部銅材が部分的ないし全面的に露出するようになる。このため、マウント部に搭載された半導体素子は、露出した芯部の銅材に直接接触するため、ステム全体として優れた熱伝導性、冷却性を得ることができる。また、本発明の半導体素子パッケージのステムは、半導体素子が搭載されるマウント部側面の抵抗溶接層が分断され、銅材で形成された芯部が部分的ないし全面的に露出しているので、ステム全体として熱伝導性、冷却性に優れる。   According to the clad material of the present invention, since the hardness of the iron coating layer formed of mild steel is adjusted to Hv 180 to 230, when coining molding is performed using the clad material of the present invention, the iron coating layer is compared with the copper layer. Since the layer is difficult to plastically flow, the iron coating layer (resistance weld layer) extended on the side of the mount part swelled from the copper layer is cracked and divided, and the core copper material of the mount part is partially Or it will be exposed entirely. For this reason, since the semiconductor element mounted in the mount part is in direct contact with the exposed copper material of the core part, it is possible to obtain excellent thermal conductivity and cooling performance as the whole stem. Further, the stem of the semiconductor element package of the present invention is such that the resistance weld layer on the side surface of the mount part on which the semiconductor element is mounted is divided, and the core part formed of copper material is partially or entirely exposed. The stem as a whole has excellent thermal conductivity and cooling performance.

図1は本発明の実施形態に係るクラッド材の部分断面を示しており、基層1の上に銅層2が拡散接合され、さらにその上に鉄被覆層3が拡散接合されている。この実施形態では、前記基層1および鉄被覆層3は共に軟鋼によって形成されている。   FIG. 1 shows a partial cross section of a clad material according to an embodiment of the present invention, in which a copper layer 2 is diffusion bonded on a base layer 1, and an iron coating layer 3 is diffusion bonded thereon. In this embodiment, both the base layer 1 and the iron coating layer 3 are made of mild steel.

前記鉄被覆層3および基層1を形成する軟鋼としては、基本的には圧接性、プレス成形性が良好な、C含有量が0.2mass%程度以下の低炭素鋼やステンレス鋼が好適である。一方、前記銅層2は熱伝導性、展延性に富んだ純銅あるいは銅を主成分とする銅合金で形成される。純銅の純度あるいは銅合金の銅含有量は、98mass%以上、好ましくは99mass%、より好ましくは99.9mass%以上が好ましい。   As the mild steel forming the iron coating layer 3 and the base layer 1, basically, low carbon steel or stainless steel having good pressure contact property and press formability and having a C content of about 0.2 mass% or less is suitable. . On the other hand, the copper layer 2 is formed of pure copper having a high thermal conductivity and spreadability or a copper alloy mainly composed of copper. The purity of pure copper or the copper content of the copper alloy is 98 mass% or more, preferably 99 mass%, more preferably 99.9 mass% or more.

前記基層1は、プレス成形性が要求されない場合は、軟鋼に限らず、よりC量の高い炭素鋼や合金鋼を用いることができる。もっとも、コイニング成形の際に、マウント部の下方にて基層1の下面を上方へ押し上げるように成形することによって銅層2の塑性流動が円滑になり、マウント部が成形し易くなる。このように基層1をマウント部の成形に関与させる場合は、本実施形態のように基層1も軟鋼で形成することが好ましい。   When the press formability is not required, the base layer 1 is not limited to mild steel but may be carbon steel or alloy steel having a higher C content. However, when coining is formed, the plastic layer 2 is made to flow smoothly by forming the lower surface of the base layer 1 to be pushed upward below the mount portion, and the mount portion can be formed easily. Thus, when making the base layer 1 participate in shaping | molding of a mount part, it is preferable to form the base layer 1 also with mild steel like this embodiment.

前記銅層2は、その硬度がHv80〜100程度であって良好なプレス成形性を有する。一方、鉄被覆層3は、むしろプレス成形性が低下した状態に硬度調整される。本発明では後述の実施例から明らかなように、鉄被覆層3の平均硬度はHv180〜230に設定される。鉄被覆層3の平均硬度がHv180未満では展延性が良好過ぎるため、コイニング成形の際にマウント部の側面で展延した鉄被覆層3に亀裂が入り難く、分断され難くなり、マウント部の芯部銅材の露出量が過少となる。一方、Hv230超では銅層2に比して硬過ぎるため、コイニング成形の際にマウント部14の膨出成形が困難になるとともに銅層2との接合性が低下し、剥がれやすくなる。   The copper layer 2 has a hardness of about Hv 80-100 and has good press formability. On the other hand, the hardness of the iron coating layer 3 is adjusted so that the press formability is rather lowered. In the present invention, as will be apparent from Examples described later, the average hardness of the iron coating layer 3 is set to Hv 180 to 230. If the average hardness of the iron coating layer 3 is less than Hv180, the spreadability is too good, so that the iron coating layer 3 spread on the side surface of the mount part is difficult to crack during the coining molding, and it is difficult to split, and the core of the mount part The exposed amount of the copper part becomes too small. On the other hand, if it exceeds Hv230, it is too hard as compared with the copper layer 2, so that it is difficult to bulge the mount portion 14 during coining molding, and the bondability with the copper layer 2 is lowered, and it is easy to peel off.

図2および図3は、前記クラッド材を用いてコイニング成形したステムの断面説明図である。前記クラッド材をコイニング成形によって、ヒートシンク12のマウント部14を膨出成形する際に、図2に示すように、鉄被覆層3が展延して形成された抵抗溶接層15がマウント部14の側面(立面)で亀裂が入って分断され、銅層2が塑性流動して形成されたマウント部14の芯部14aが部分的に露出する。前記鉄被覆層3の平均硬度をHv210〜230と高めに設定することによって、前記亀裂の間隔は増大し、成形条件によっては図3に示すように、マウント部14の側面に全面的に芯部14aが露出するようになる。一方、基層1はコイニング成形の際にマウント部14の方へ突き上げるように成形され、ステムの基部11にはその成形に伴う凹部16が形成され、これに伴って基部11の上に積層された平坦部13も同様にマウント部14側へ突き上げられている。   2 and 3 are cross-sectional explanatory views of a stem coined by using the clad material. When the clad material is coined and the mount portion 14 of the heat sink 12 is bulged, the resistance weld layer 15 formed by spreading the iron coating layer 3 is formed on the mount portion 14 as shown in FIG. The core part 14a of the mount part 14 formed by cracking at the side face (elevation face) and being divided by plastic flow of the copper layer 2 is partially exposed. By setting the average hardness of the iron coating layer 3 as high as Hv 210 to 230, the interval between the cracks increases, and depending on the molding conditions, the core portion is entirely formed on the side surface of the mount portion 14 as shown in FIG. 14a comes to be exposed. On the other hand, the base layer 1 is molded so as to push up toward the mount portion 14 during coining molding, and a concave portion 16 is formed in the base portion 11 of the stem, and is laminated on the base portion 11 accordingly. Similarly, the flat portion 13 is pushed up toward the mount portion 14.

前記鉄被覆層3は、その表面に表面硬化層を形成しておくことが好ましい。表面硬化層を形成することによって、コイニング成形によってマウント部14を膨出成形する際に展延した鉄被覆層(抵抗溶接層)に亀裂が入りやすくなり、マウント部14の側面で抵抗溶接層15がより一層分断されやすくなり、マウント部14の芯部14aの露出面積が増加し、半導体素子との接触面積が増加するため熱伝導性がより向上する。
前記表面硬化層の厚さは前記鉄被覆層3の厚さの7%程度以上あればよく、その硬度は鉄被覆層3の平均硬度よりHv10程度以上高くすればよい。表面硬化層は、鉄被覆層3の表面をワイヤブラシや砥石などによって研磨したり、サンドブラスト、ショットブラストやビーズブラストを施すことによって簡単に形成することができる。
The iron coating layer 3 preferably has a surface hardened layer formed on the surface thereof. By forming the hardened surface layer, the iron coating layer (resistance welding layer) spread when the mount portion 14 is bulged and formed by coining molding is easily cracked, and the resistance welding layer 15 is formed on the side surface of the mount portion 14. Is more easily divided, the exposed area of the core part 14a of the mount part 14 is increased, and the contact area with the semiconductor element is increased, so that the thermal conductivity is further improved.
The thickness of the surface hardened layer may be about 7% or more of the thickness of the iron coating layer 3, and the hardness may be higher than the average hardness of the iron coating layer 3 by about Hv10 or more. The surface hardened layer can be easily formed by polishing the surface of the iron coating layer 3 with a wire brush or a grindstone, or by applying sand blasting, shot blasting or bead blasting.

前記クラッド材の各層の厚さは、銅層2が塑性流動してヒートシンク12のマウント部14がコイニング成形により膨出成形できればよい。一般的には、前記銅層2の層厚は、通常、500〜1000μm 程度でよく、その上に積層形成される鉄被覆層3は100〜200μm 程度でよい。また、基層1の層厚は銅層2と同程度の厚さとすればよい。   The thickness of each layer of the clad material may be such that the copper layer 2 can be plastically flowed and the mount portion 14 of the heat sink 12 can be bulged by coining. In general, the thickness of the copper layer 2 may be about 500 to 1000 μm, and the iron coating layer 3 formed thereon may be about 100 to 200 μm. The layer thickness of the base layer 1 may be approximately the same as that of the copper layer 2.

次に、前記クラッド材の製造方法について説明する。
まず、銅層2の元になる銅材シートの表裏面に、基層1および鉄被覆層3の元になる軟鋼板シート、例えばJIS規格のSPCC、SPCD、SPCEを重ね合わせ、一対のロールに通して圧接し、その後、得られた圧接シートに拡散焼鈍を施す。拡散焼鈍後は必要に応じて仕上圧延することができ、これによって板厚や鉄被覆層3の硬度を調整することができる。
Next, a method for manufacturing the clad material will be described.
First, on the front and back surfaces of the copper sheet that is the basis of the copper layer 2, a mild steel sheet sheet that is the basis of the base layer 1 and the iron coating layer 3, for example, JIS standard SPCC, SPCD, SPCE, is overlaid and passed through a pair of rolls. After that, the obtained pressure contact sheet is subjected to diffusion annealing. After the diffusion annealing, finish rolling can be performed as necessary, and thereby the thickness of the plate and the iron coating layer 3 can be adjusted.

前記圧接の際のロール圧下率は50〜70%程度でよく、また圧接法としては大気下での冷間圧接で十分である。拡散焼鈍は、表面酸化を防止するには窒素等の不活性ガス、水素ガス等の還元性ガス雰囲気下で行うことが好ましい。焼鈍温度は通常(1000℃程度)より低い750〜650℃程度とし、焼鈍時間は数分程度でよい。750℃より高温で焼鈍したり、また焼鈍時間を必要以上に長くすると、鉄被覆層3が過剰に軟化して、所期の硬度を確保することができないようになる。以上のようにして製造されたクラッド材は、適宜の幅にスリットされ、巻き取られる。   The roll reduction ratio at the time of the press contact may be about 50 to 70%, and as the press contact method, cold press contact under the atmosphere is sufficient. In order to prevent surface oxidation, the diffusion annealing is preferably performed in an inert gas atmosphere such as nitrogen or a reducing gas atmosphere such as hydrogen gas. The annealing temperature is about 750 to 650 ° C. which is lower than usual (about 1000 ° C.), and the annealing time may be about several minutes. If annealing is performed at a temperature higher than 750 ° C. or if the annealing time is longer than necessary, the iron coating layer 3 is excessively softened, and the desired hardness cannot be ensured. The clad material manufactured as described above is slit into an appropriate width and wound.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.

純銅製の銅シートの両面に、SPCC(C量:0.12mass%以下)の軟鋼板シートを重ね合わせて60%程度の圧下率にて冷間圧接し、鉄シート(170μm )/銅シート(800μm )/鉄シート(800μm )の構成を有する圧接シートを得た。この圧接シートを600〜1000℃範囲内の種々の温度にて2分間、水素ガス雰囲気中で保持して拡散焼鈍を施した。その後、厚さ調整および硬度調整のために圧下率10%程度で仕上圧延(冷間圧延)を施し、最終板厚が1.6mmの試料No. 1〜12、21〜32のクラッド材を得た。このクラッド材の構成は、鉄被覆層(160μm )/銅層(720μm )/鉄基層(720μm )であった。なお、試料No. 12は拡散焼鈍温度を1000℃とした従来例である。
さらに、試料No. 21〜32については、クラッド材を製作した後、クラッド材の鉄被覆層の表面をワイヤブラシによってブラッシングして表面硬化層を形成した。
A soft steel sheet of SPCC (C amount: 0.12 mass% or less) is superposed on both sides of a copper sheet made of pure copper and cold-welded at a rolling reduction of about 60%, and an iron sheet (170 μm) / copper sheet ( A pressure contact sheet having a structure of 800 μm) / iron sheet (800 μm) was obtained. This pressure contact sheet was held in various atmospheres within the range of 600 to 1000 ° C. for 2 minutes in a hydrogen gas atmosphere to perform diffusion annealing. Then, finish rolling (cold rolling) is performed at a reduction ratio of about 10% for thickness adjustment and hardness adjustment, and the clad materials of sample Nos. 1-12 and 21-32 having a final plate thickness of 1.6 mm are obtained. It was. The structure of this clad material was iron coating layer (160 μm) / copper layer (720 μm) / iron base layer (720 μm). Sample No. 12 is a conventional example in which the diffusion annealing temperature is 1000 ° C.
Further, for Sample Nos. 21 to 32, after manufacturing the clad material, the surface of the iron coating layer of the clad material was brushed with a wire brush to form a hardened surface layer.

前記試料クラッド材の鉄被覆層および銅層の平均硬度を以下の要領にて測定した。クラッド材から硬さ測定試験片を採取し、圧延方向に沿った板厚断面を測定面とするように試験片を樹脂に埋め込み、前記断面が露出するように埋め込み試験片を研磨し、鉄被覆層および銅層の厚さ中央部のビッカース硬さ(測定時の付加加重200gf)を測定した。また、試料No. 21〜32については、鉄被覆層の表面のビッカース硬さ(測定時の付加加重25gf)を測定した。なお、試料No. 21〜32はNo. 1〜12と対応しており、対応する試料の焼鈍温度は同一であり、このため対応する試料の鉄被覆層、銅層の平均硬度は同一となっている。   The average hardness of the iron coating layer and the copper layer of the sample clad material was measured as follows. Take a hardness test piece from the clad material, embed the test piece in resin so that the thickness cross section along the rolling direction is the measurement surface, grind the embedded test piece so that the cross section is exposed, and coat with iron The Vickers hardness (additional load 200 gf at the time of measurement) at the center of the thickness of the layer and the copper layer was measured. Moreover, about sample No. 21-32, the Vickers hardness (additional load 25gf at the time of a measurement) of the surface of an iron coating layer was measured. Samples Nos. 21 to 32 correspond to Nos. 1 to 12, and the annealing temperatures of the corresponding samples are the same. For this reason, the average hardness of the iron coating layer and the copper layer of the corresponding samples is the same. ing.

また、前記クラッド材の各試料から圧延方向に沿って長さ50mm、幅10mmの曲げ試験片を採取し、これを用いて曲げ試験を行った。曲げ試験は、曲げ角度が30°のV字状金型(底部曲げアール=1.6mm)を用いて、鉄被覆層が雌型の成形面側になるようにクラッド材を載置し、上方より雄金型(先端部の曲げアール=1.6mm)をハンマーにて打撃し、試料をV字状成形面に沿って曲げ加工した。また、試験片を90°に曲げた後、さらに2辺のなす角が0°となるように万力にて屈曲させる曲げ試験も行った。曲げ試験後の試験片の曲げ部の外側(鉄被覆層側)を光学顕微鏡(倍率25倍)によって観察し、全幅に渡って完全に連続した亀裂が生じたものを「○○○」、全幅の100%未満、90%以上に渡って不連続な亀裂が生じたものを「○○」、全幅の90%未満、50%以上に渡って不連続な亀裂が生じたものを「○」、全幅の50%未満、20%以上に渡って不連続な亀裂が生じたものを「△」、全幅に渡って亀裂が生じなかったものを「×」と評価した。   Further, a bending test piece having a length of 50 mm and a width of 10 mm was taken from each sample of the clad material along the rolling direction, and a bending test was performed using this. The bending test was performed using a V-shaped mold (bottom bend radius = 1.6 mm) with a bending angle of 30 °, and placing the clad material so that the iron coating layer is on the molding surface side of the female mold. Further, a male mold (bending radius at the tip = 1.6 mm) was hit with a hammer, and the sample was bent along the V-shaped molding surface. Further, a bending test was also performed in which the test piece was bent at 90 ° and then bent by a vise so that the angle formed by the two sides was 0 °. The outer side (iron coating layer side) of the test piece after the bending test was observed with an optical microscope (25 times magnification). Less than 100%, 90% or more of which discontinuous cracks occurred "○○", less than 90% of the total width, 50% or more of those where discontinuous cracks occurred "○", The case where a discontinuous crack occurred over less than 50% and 20% or more of the full width was evaluated as “Δ”, and the case where no crack occurred over the full width was evaluated as “x”.

また、前記クラッド材の各試料を用いて接合強度を調べた。接合強度として、接合状態にある鉄被覆層および銅層を基層から反対方向に10mm/min で引き剥がす際に要する荷重P(N)を板幅W(mm)で除した,板幅1mm当たりの引き剥がし力を求めた。この値は銅層と基層(軟鋼)との接合強度を示すが、同時に銅層と鉄被覆層(軟鋼)との接合強度を示すものである。接合強度が30N/mm以上では取り扱い上問題はないのでを合格(○)、3ON/mm未満を不合格(×)と評価した。これらの測定結果を表1に併せて示す。   Further, the bonding strength was examined using each sample of the clad material. As the bonding strength, the load P (N) required to peel the iron coating layer and copper layer in the bonded state in the opposite direction from the base layer at 10 mm / min is divided by the plate width W (mm). The peel strength was sought. This value indicates the bonding strength between the copper layer and the base layer (soft steel), and at the same time indicates the bonding strength between the copper layer and the iron coating layer (soft steel). When the bonding strength was 30 N / mm or more, there was no problem in handling, so that a pass (◯) and a value less than 3 ON / mm were evaluated as a failure (×). These measurement results are also shown in Table 1.

Figure 2005101073
Figure 2005101073

表1より、試料No. 2〜12の発明例では、鉄被覆層の平均硬度がHv180〜230の範囲内に入っており、曲げ角が30°のV字状金型による曲げ加工によって20%以上の亀裂の発生が認められ、特に0°曲げでは全幅の50%以上に亀裂が発生した。また、発明例では接合強度も取り扱い上問題のない強度が得られた。さらに、表面硬化層を形成した発明例(試料No. 22〜28)では、30°曲げにおいても全幅の50%以上に亀裂が発生し、0°曲げでは90〜100%の領域で亀裂が発生した。コイニング成形によるマウント部の膨出成形は上記曲げ加工に比して素材の受ける変形が大きく、厳しい加工であるので、発明例のクラッド材によれば、マウント部の膨出成形の際に展延した鉄被覆層(抵抗溶接層)に亀裂が生じて、容易に分断され、マウント部の芯部銅材が露出することが予期される。   From Table 1, in the invention examples of sample Nos. 2 to 12, the average hardness of the iron coating layer is in the range of Hv 180 to 230, and 20% by bending with a V-shaped mold having a bending angle of 30 °. The occurrence of the above cracks was observed, and cracks occurred in more than 50% of the total width especially at 0 ° bending. In addition, in the inventive example, the bonding strength was obtained with no problem in handling. Furthermore, in the invention example (Sample Nos. 22 to 28) in which the hardened surface layer was formed, cracks occurred in 50% or more of the entire width even at 30 ° bending, and cracks occurred in the region of 90 to 100% at 0 ° bending. did. The bulge molding of the mount part by coining molding is a severe process that is subject to large deformation compared to the bending process described above. Therefore, according to the clad material of the invention example, the bulge molding of the mount part is performed during the bulge molding process. It is expected that the iron coating layer (resistance welding layer) is cracked and easily divided to expose the core copper material of the mount portion.

本発明の実施形態に係るクラッド材の部分断面図である。It is a fragmentary sectional view of the clad material concerning the embodiment of the present invention. 本発明のクラッド材を素材としてコイニング成形したステムの断面説明図であり、マウント部において芯部銅材が部分的に露出している。It is a section explanatory view of a stem coining-molded using the clad material of the present invention as a raw material, and the core copper material is partially exposed in the mount portion. 比較的硬度の高い鉄被覆層を有する、本発明のクラッド材を素材としてコイニング成形したステムの断面説明図であり、マウント部において芯部銅材が全面的に露出している。FIG. 4 is a cross-sectional explanatory view of a stem that is coined and formed using the clad material of the present invention as a raw material having an iron coating layer having a relatively high hardness, and the core copper material is entirely exposed in the mount portion. 従来のクラッド材を素材としてコイニング成形したステムの断面説明図である。It is sectional explanatory drawing of the stem coining-molded using the conventional clad material.

符号の説明Explanation of symbols

1 基層
2 銅層
3 鉄被覆層
11 基部
12 ヒートシンク
13 平坦部
14 マウント部
15 抵抗溶接層
DESCRIPTION OF SYMBOLS 1 Base layer 2 Copper layer 3 Iron coating layer 11 Base 12 Heat sink 13 Flat part 14 Mount part 15 Resistance welding layer

Claims (6)

鉄鋼材で形成された基層と、純銅あるいは銅を主成分とする銅合金で形成され、前記基層に積層された銅層と、軟鋼で形成され、前記銅層の上に積層された鉄被覆層とを備え、前記鉄被覆層の平均硬度がHv180〜230とされた半導体素子パッケージのステム用クラッド材。   A base layer formed of a steel material, a copper layer formed of pure copper or a copper alloy containing copper as a main component and laminated on the base layer, and an iron coating layer formed of mild steel and laminated on the copper layer A clad material for a stem of a semiconductor device package, wherein the iron coating layer has an average hardness of Hv 180 to 230. 前記鉄被覆層の平均硬度がHv210〜230とされた請求項1に記載したクラッド材。   The clad material according to claim 1, wherein the iron coating layer has an average hardness of Hv210 to 230. 前記基層を軟鋼で形成する請求項1又は2に記載したクラッド材。   The clad material according to claim 1 or 2, wherein the base layer is formed of mild steel. 前記鉄被覆層の表面に表面硬化層が形成された請求項1から3のいずれか1項に記載したクラッド材。   The clad material according to any one of claims 1 to 3, wherein a hardened surface layer is formed on a surface of the iron coating layer. 前記鉄被覆層の厚さは100〜200μm であり、前記銅層の厚さは500〜1000μm である請求項1から4のいずれか1項に記載したクラッド材。   5. The clad material according to claim 1, wherein the iron coating layer has a thickness of 100 to 200 μm, and the copper layer has a thickness of 500 to 1000 μm. 鉄鋼材で形成された基部と、前記基部の上に形成されたヒートシンクとを備え、
前記ヒートシンクは前記基部に積層された平坦部と、前記平坦部に一体的に成形されたマウント部とで構成され、
前記平坦部およびマウント部は純銅あるいは銅を主成分とする銅合金で形成された芯部の上に軟鋼で形成された抵抗溶接層が被覆形成され、
前記抵抗溶接層はマウント部の側面において分断され、マウント部の芯部が部分的ないし全面的に露出した、半導体素子パッケージのステム。
A base formed of a steel material, and a heat sink formed on the base,
The heat sink is composed of a flat portion laminated on the base portion and a mount portion formed integrally with the flat portion,
The flat part and the mount part are coated with a resistance welding layer made of mild steel on a core part made of pure copper or a copper alloy containing copper as a main component,
The stem of the semiconductor device package, wherein the resistance weld layer is divided on a side surface of the mount portion, and a core portion of the mount portion is partially or entirely exposed.
JP2003330036A 2003-09-22 2003-09-22 Stem of semiconductor device package and cladding material therefor Pending JP2005101073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330036A JP2005101073A (en) 2003-09-22 2003-09-22 Stem of semiconductor device package and cladding material therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330036A JP2005101073A (en) 2003-09-22 2003-09-22 Stem of semiconductor device package and cladding material therefor

Publications (1)

Publication Number Publication Date
JP2005101073A true JP2005101073A (en) 2005-04-14

Family

ID=34459125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330036A Pending JP2005101073A (en) 2003-09-22 2003-09-22 Stem of semiconductor device package and cladding material therefor

Country Status (1)

Country Link
JP (1) JP2005101073A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060044A (en) * 2010-09-13 2012-03-22 Shinko Electric Ind Co Ltd Stem for semiconductor package and method for manufacturing stem for semiconductor package
DE102012102306A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for use as light source in automotive region, has solder layer arranged between laser diode chip and mounting element, and chip arranged on mounting element, where thickness of solder layer lies within specific range
DE102012102305A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for projection system, has crystalline protective layer made of dielectric material is formed on radiation uncoupling surface of laser diode chip which is provided on mounting element
DE102012103160A1 (en) * 2012-04-12 2013-10-17 Osram Opto Semiconductors Gmbh laser diode device
US8737445B2 (en) 2012-04-04 2014-05-27 Osram Opto Semiconductors Gmbh Laser diode assembly
US8867582B2 (en) 2012-04-04 2014-10-21 Osram Opto Semiconductors Gmbh Laser diode assembly
US9008138B2 (en) 2012-04-12 2015-04-14 Osram Opto Semiconductors Gmbh Laser diode device
US9421741B2 (en) 2012-07-10 2016-08-23 Neomax Materials Co., Ltd. Chassis and method for manufacturing chassis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060044A (en) * 2010-09-13 2012-03-22 Shinko Electric Ind Co Ltd Stem for semiconductor package and method for manufacturing stem for semiconductor package
DE102012102306A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for use as light source in automotive region, has solder layer arranged between laser diode chip and mounting element, and chip arranged on mounting element, where thickness of solder layer lies within specific range
DE102012102305A1 (en) * 2012-03-19 2013-09-19 Osram Opto Semiconductors Gmbh Laser diode device for projection system, has crystalline protective layer made of dielectric material is formed on radiation uncoupling surface of laser diode chip which is provided on mounting element
CN103326233A (en) * 2012-03-19 2013-09-25 欧司朗光电半导体有限公司 Laser diode device
US9356423B2 (en) 2012-03-19 2016-05-31 Osram Opto Semiconductors Gmbh Laser diode assembly
DE102012102306B4 (en) * 2012-03-19 2021-05-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Laser diode device
US8737445B2 (en) 2012-04-04 2014-05-27 Osram Opto Semiconductors Gmbh Laser diode assembly
US8867582B2 (en) 2012-04-04 2014-10-21 Osram Opto Semiconductors Gmbh Laser diode assembly
DE102012103160A1 (en) * 2012-04-12 2013-10-17 Osram Opto Semiconductors Gmbh laser diode device
US9008138B2 (en) 2012-04-12 2015-04-14 Osram Opto Semiconductors Gmbh Laser diode device
US9331453B2 (en) 2012-04-12 2016-05-03 Osram Opto Semiconductors Gmbh Laser diode device
US9421741B2 (en) 2012-07-10 2016-08-23 Neomax Materials Co., Ltd. Chassis and method for manufacturing chassis

Similar Documents

Publication Publication Date Title
JP6182451B2 (en) Terminal, terminal manufacturing method, electric wire terminal connection structure, electric wire with terminal, and wire harness
JP6113605B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
JP6113674B2 (en) Copper alloy strip with surface coating layer with excellent heat resistance
JPWO2017057665A1 (en) Metal laminate and manufacturing method thereof
US11178786B2 (en) Method for manufacturing hermetic sealing lid member
JP4350753B2 (en) Heat sink member and manufacturing method thereof
WO2018066414A1 (en) Copper alloy plate for heat dissipation component, heat dissipation component, and method for manufacturing heat dissipation component
WO2018066413A1 (en) Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
JP2005101073A (en) Stem of semiconductor device package and cladding material therefor
KR100703829B1 (en) Package for electronic component, lid material for package lid, and production method for lid material
JP4627400B2 (en) Aluminum / nickel clad and battery external terminals
US20090129999A1 (en) Method of brazing a first metal member to a second metal member using a high wettability metal as layer between the two metal members; reformer manufactured by this method, the metal members having grooves
JP7147985B2 (en) Copper composite plate, vapor chamber using copper composite plate, and method for manufacturing vapor chamber
JP4256203B2 (en) Manufacturing method of aluminum / nickel / stainless steel cladding
JP2009190080A (en) Copper-silver brazing filler metal and cladding material for lid of package for electronic component
JP2006051523A (en) Clad material for electrically conductive component, and manufacturing method therefor
CN103931006B (en) The manufacture method of light-emitting component substrate, luminescence component and luminescence component
JPH11111426A (en) Spark plug and its manufacture
JP4239853B2 (en) Brazing composite material, method for producing the same, and brazed product
JP2005339923A (en) Cladding material for conductive component and its manufacturing method
JP2005194571A (en) Ni-Co ALLOY, CLAD MATERIAL, AND PRODUCTION METHOD THEREFOR
JP6073924B2 (en) Electrode material for thermal fuse and method for manufacturing the same
JP2014164972A (en) Method of manufacturing terminal and terminal obtained by that manufacturing method
JP2017011231A (en) Lid material of package for electronic component, and manufacturing method thereof
JPH0278261A (en) Lead frame for semiconductor use and its manufacture

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050111