JPS613140A - Radiation sensitive composition - Google Patents

Radiation sensitive composition

Info

Publication number
JPS613140A
JPS613140A JP12360484A JP12360484A JPS613140A JP S613140 A JPS613140 A JP S613140A JP 12360484 A JP12360484 A JP 12360484A JP 12360484 A JP12360484 A JP 12360484A JP S613140 A JPS613140 A JP S613140A
Authority
JP
Japan
Prior art keywords
resin
film
resist
molecular weight
resist film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12360484A
Other languages
Japanese (ja)
Inventor
Fumio Murai
二三夫 村井
Shigeki Mori
重喜 森
Hiroshi Shiraishi
洋 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP12360484A priority Critical patent/JPS613140A/en
Publication of JPS613140A publication Critical patent/JPS613140A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Abstract

PURPOSE:To obtain a radiation sensitive compsn. superior in heat and dry etching resistances as a resist high in sensitivity to light, X-rays, electron and ion beams by using a phenol resin contg. no low mol. wt. component in the radiation sensitive compsn. contg. a phenol resin and a dissolution inhibitor. CONSTITUTION:For example, a novolak resin is used and as the dissolution inhibitor, poly(2-methylpentene-1-sulfone) is used, and they are dissolved in isoamyl acetate to form a resist. A silicon oxide film 5 is formed on a silicon substrate 4, and the film 5 is coated with a resist film 6. The film 6 is irradiated with electron beams 18, developed with an aq. soln. of tetramethylammonium hydroxide, and further, the film 5 is dry etched in fluorine type plasma to form a hole 7. Denaturalization of the resist film using the resin A contg. no lower mol. wt. component of trimer or below is not found at all and no deformation of the hole is not found, too.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、光、電子線、X線およびイオン線等の放射線
に感応する組成物に係り、特に耐熱性。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a composition sensitive to radiation such as light, electron beams, X-rays, and ion beams, and particularly to heat-resistant compositions.

耐ドライエツチング性に優れた放射線感応性組成物に関
する。
This invention relates to a radiation-sensitive composition with excellent dry etching resistance.

〔発明の背景〕[Background of the invention]

従来の電子線レジスト膜形成に使用されている放射線感
応性組成物として、アルカリ可溶性樹脂と溶解抑止剤と
を混合したものが一般に用いられている。この場合のア
ルカリ可溶性樹脂としては。
As a radiation-sensitive composition used in conventional electron beam resist film formation, a mixture of an alkali-soluble resin and a dissolution inhibitor is generally used. In this case, the alkali-soluble resin is:

ポリビニルフェノール樹脂、ノボラック樹脂等のフェノ
ール系の樹脂が用いられている。
Phenolic resins such as polyvinylphenol resin and novolak resin are used.

しかし、上記の放射線感応性組成物を用いた電子線レジ
スト膜に、所望のパターンを形成してこれをマスクとし
て2例えば基板上の厚いシリコン酸化膜をドライエツチ
ングする場合、レジスト膜が熱によって変質し、被加工
材料であるシリコン酸化膜の形状が変形するという欠点
があった。
However, when a desired pattern is formed on an electron beam resist film using the above-mentioned radiation-sensitive composition and used as a mask 2, for example when dry etching a thick silicon oxide film on a substrate, the resist film changes in quality due to heat. However, there was a drawback that the shape of the silicon oxide film, which is the material to be processed, was deformed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の欠点を解消し、耐
熱性および耐ドライエツチング性に優れた。光、電子線
、X線およびイオン線用レジストとして高感度の放射線
感応性組成物を提供するにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide excellent heat resistance and dry etching resistance. The object of the present invention is to provide a highly sensitive radiation-sensitive composition as a resist for light, electron beams, X-rays, and ion beams.

〔発明の概要〕[Summary of the invention]

本発明者らは、前述した従来技術における電子線レジス
ト膜の欠点である。ドライエツチングにおける変質の原
因を究明するために、用いるフェノール樹脂の分子量の
分布に注目し種々研究を重ねた結果、フェノール樹脂中
に含まれる低分子量成分がその原因であることを突き止
め本発明を完成するに至った。
The present inventors have discovered the above-mentioned drawbacks of the electron beam resist film in the prior art. In order to investigate the cause of deterioration during dry etching, we focused on the molecular weight distribution of the phenolic resin used and conducted various studies. As a result, we discovered that the cause was the low molecular weight components contained in the phenolic resin, and completed the present invention. I ended up doing it.

実験の結果、フェノール樹脂中に低分子量成分が含まれ
る場合にのみ、レジスト膜に変質が生じることが判明し
、また、逆に高分子量成分のみの場合には、放射線照射
領域と非照射領域とのアルカリ現像液に体する溶解度の
差異が小さいこと。
As a result of experiments, it was found that the resist film deteriorates only when the phenolic resin contains low molecular weight components, and conversely, when only high molecular weight components are included, the radiation irradiated area and non-irradiated area are different. The difference in solubility in alkaline developing solutions is small.

すなわち、感度が低いということも明らかになった。In other words, it was also revealed that the sensitivity was low.

そして、さらに詳細に実験を行なった結果、フェノール
樹脂の分子量分布のうち、3量体以下の低分子量成分を
含まない9例えばノボラック樹脂を用いた場合は、感度
の低下が少なく耐熱性、耐ドライエツチング性にすぐれ
たレジスト膜が形成できることが明確になった。
As a result of more detailed experiments, we found that in the molecular weight distribution of phenolic resins, for example, when using novolac resins, which do not contain low molecular weight components below trimers, there is less deterioration in sensitivity, heat resistance, and dry resistance. It has become clear that a resist film with excellent etching properties can be formed.

本発明は、フェノール樹脂および溶解抑止剤を含有する
放射線感応性組成物において、上記フェノール樹脂に低
分子量成分を含まないフェノール樹脂を用いることを特
徴とするものであって、さらに詳細には、フェノール樹
脂に3量体以下の低分子量成分を含まないフェノール樹
脂を用いる放射線感応性組成物である。
The present invention is characterized in that, in a radiation-sensitive composition containing a phenolic resin and a dissolution inhibitor, a phenolic resin containing no low molecular weight components is used as the phenolic resin. This is a radiation-sensitive composition that uses a phenolic resin that does not contain low molecular weight components of trimers or less.

フェノール樹脂に、3量体以下の低分子量成分を含むフ
ェノール樹脂を用いたレジスト膜は、ドライエツチング
、例えばプラズマエツチング中に。
A resist film using a phenol resin containing a low molecular weight component of trimer or less is subjected to dry etching, for example, plasma etching.

基板表面温度が上昇し、低分子量成分が気化しそれによ
ってレジスト膜が変質し、レジストパターンの形状が変
形するという現象が起る。
A phenomenon occurs in which the substrate surface temperature rises, low molecular weight components are vaporized, the resist film is thereby altered, and the shape of the resist pattern is deformed.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明に関する一実施例をあげ、さらに詳細に説
明する。
An example of the present invention will be given below and will be described in more detail.

第1表に9本実施例において用いたレジスト膜形成用の
放射線感応性組成物溶液の組成を示す。
Table 1 shows the composition of the radiation-sensitive composition solution for resist film formation used in this example.

第1表 第1表に示すとおり、アルカリ可溶性フェノール樹脂と
してノボラック樹脂を用い、溶解抑止剤としてポリ(2
−メチルペンテン−1−スルホン)を用い、これを重量
比で88:12の割合に混合して。
Table 1 As shown in Table 1, novolak resin was used as the alkali-soluble phenol resin, and poly(2
-methylpentene-1-sulfone) and were mixed at a weight ratio of 88:12.

溶媒である酢酸イソアミルに溶解した。It was dissolved in the solvent isoamyl acetate.

この組成物によって形成したレジスト膜は、光。A resist film formed with this composition is exposed to light.

電子線、X線あるいはイオン線に対して高感度のポジ型
レジストとして働く。ここで、ノボラック樹脂として、
第1図(a)、第2図(a)および第3図(a)に示す
3種類の分子量分布を持つ樹脂A、樹脂Bおよび樹脂C
を用いてレジスト膜を製作した。樹脂Aは、第1図(a
)に示すごとく3量体以下の低分子量成分を含まない樹
脂で、樹脂Bは第2図(a)に示すごとく、1量体の分
子量成分1を含まず、2量体の分子量成分2,3量体の
分子量成分3を含むものであり、樹脂Cは第3図(a)
に示すごとく、1量体の分子量成分1゜2量体の分子量
成分2および3量体の分子量成分3を含有する樹脂であ
る。
Works as a positive resist with high sensitivity to electron beams, X-rays, or ion beams. Here, as novolak resin,
Resin A, resin B, and resin C having three types of molecular weight distributions shown in Figure 1 (a), Figure 2 (a), and Figure 3 (a).
A resist film was manufactured using the following method. Resin A is shown in Figure 1 (a
) As shown in Figure 2(a), resin B does not contain any low molecular weight components of trimer or less, and as shown in Figure 2(a), resin B does not contain monomer molecular weight component 1, dimer molecular weight component 2, It contains trimer molecular weight component 3, and resin C is shown in Figure 3(a).
As shown in the figure, the resin contains molecular weight component 1 of monomer, molecular weight component 2 of dimer, and molecular weight component 3 of trimer.

上記の3種類のノボラック樹脂を用いて、第4図に示す
ドライエツチングプロセスによって、シリコン基板上の
シリコン酸化膜のドライエツチングを行なった。すなわ
ち、第4図(、)に示すようにシリコン基板4の表面に
、厚さ2.5.のシリコン酸化膜5を被着し、膜厚1.
5−のレジスト6を塗布した。次に、電子線18を8μ
c/aIの照射量で照射した。ついで、テトラメチルハ
イドロオキサイドの水溶液によって現像し、第4図(b
)に示す構造を得た。次に、弗素系ガスプラズマ中にて
、シリコン酸化膜を深さ2pにドライエッチングするこ
とにより、第4図(c)に示す、2−角の孔7を形成し
た。そして、走査電子顕微鏡によって、シリコン酸化膜
をドライエツチングして形成した2−角の孔の断面形状
を観察した。第1図(b)は、ノボラック樹脂A、第2
図(b)は樹脂B、そして第3図(b)は樹脂Cを用い
た場合における。それぞれの孔の断面写真である。
A silicon oxide film on a silicon substrate was dry etched by the dry etching process shown in FIG. 4 using the above three types of novolac resins. That is, as shown in FIG. 4(,), a layer with a thickness of 2.5. A silicon oxide film 5 with a film thickness of 1.
5- resist 6 was applied. Next, the electron beam 18 is
It was irradiated with a dose of c/aI. Then, it was developed with an aqueous solution of tetramethyl hydroxide, and the image shown in Fig. 4 (b) was developed.
) was obtained. Next, the silicon oxide film was dry-etched to a depth of 2p in fluorine gas plasma to form a 2-square hole 7 as shown in FIG. 4(c). Then, the cross-sectional shape of the two-sided hole formed by dry etching the silicon oxide film was observed using a scanning electron microscope. FIG. 1(b) shows Novolac resin A,
FIG. 3(b) shows the case where resin B is used, and FIG. 3(b) shows the case where resin C is used. These are cross-sectional photographs of each hole.

すなわち、第3図(b)より明らかなごとく、低分子量
成分をすべて含む樹脂Cを用いたレジスト膜8は、ドラ
イエツチング中に変質を生じ、またシリコン酸化膜中の
孔9は形状が変形し1ている。
That is, as is clear from FIG. 3(b), the resist film 8 using resin C containing all low molecular weight components undergoes deterioration during dry etching, and the pores 9 in the silicon oxide film are deformed in shape. There are 1.

また、第2図(b)よりわかるように、1量体の分子量
成分を含まない樹脂Bを用いたレジスト膜10は、少し
変質を生じているが、孔11には変形が見られない。そ
して、第1図(b)から明らかなごとく、3量体以下の
低分子量成分を含まない樹脂Aを用いたレジスト膜12
は変質が全く見られず。
Furthermore, as can be seen from FIG. 2(b), the resist film 10 using resin B that does not contain a monomer molecular weight component is slightly altered in quality, but no deformation is observed in the pores 11. As is clear from FIG. 1(b), the resist film 12 is made using resin A that does not contain low molecular weight components of trimer or less.
No deterioration was observed at all.

かつ孔13の形状にも変形はない。Moreover, there is no deformation in the shape of the hole 13.

第5図は、ノボラック樹脂の種類によるレジスト膜の感
度特性を示すグラフであって、電子線照射量(c/ad
)に対する残膜率(残膜厚さ/塗布膜厚さ)の関係を示
す。すなわち、樹脂A、BおよびCを用いたレジスト膜
の感度特性は、それぞれ曲線16.15および14で表
わされる。そして高分子量成分のみのノボラック樹脂を
用いたレジスト膜の感度特性は曲線17で示されるごと
く、電子線照射量に対する残膜率が小さく、感度が低い
ことを表わしている。このグラフの曲線16から明らか
なごとく、3量体以下の低分子量成分を含まないノボラ
ック樹脂は感度低下が極めて少ない。
FIG. 5 is a graph showing the sensitivity characteristics of resist films depending on the type of novolac resin, and shows the electron beam irradiation amount (c/ad
) and the relationship between the remaining film rate (residual film thickness/coating film thickness). That is, the sensitivity characteristics of resist films using resins A, B, and C are represented by curves 16.15 and 14, respectively. As shown by curve 17, the sensitivity characteristics of a resist film using a novolak resin containing only a high molecular weight component show that the remaining film ratio with respect to the amount of electron beam irradiation is small, indicating that the sensitivity is low. As is clear from curve 16 in this graph, the novolac resin that does not contain low molecular weight components of trimer or less has extremely little decrease in sensitivity.

以上の結果から、3量体以下の低分子量成分を含まない
ノボラック樹脂を用いたレジスト膜は。
From the above results, a resist film using a novolak resin that does not contain low molecular weight components of trimer or less.

耐熱性、耐ドライエツチング性に優れ、かつ放射線の照
射に対して感度特性の劣化がないことを示している。
It has excellent heat resistance and dry etching resistance, and shows no deterioration in sensitivity characteristics due to radiation irradiation.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく9本発明による放射線感応性
組成物を用いたレジスト膜は、光、電子線、X線あるい
はイオン線に対する感応性がよく。
As explained in detail above, a resist film using the radiation-sensitive composition according to the present invention has good sensitivity to light, electron beams, X-rays, or ion beams.

耐熱性、耐ドライエツチング性に優れているので。It has excellent heat resistance and dry etching resistance.

LSI等の半導体の微細加工に威力を発揮するレジスト
材料としてその価値は大きい。
It has great value as a resist material that is effective in microfabrication of semiconductors such as LSI.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の樹脂Aの分子量分布を示す図、
第1図(b)は本発明の樹脂Aを用いシリコン酸化膜を
ドライエツチングして形成した孔の走査電子顕微鏡によ
る断面写真、第2図(a)は樹脂Bおよび第3図(a)
は樹脂Cの分子量分布を示す図、第2図(b)は樹脂B
および第3図(b)は樹脂Cを用いてシリコン酸化膜を
ドライエツチングして形成した孔の走査電子顕微鏡によ
る断面写真、第4図(a)、(b)、(c)は電子線に
よるドライエツチングプロセスを示す図、第5図はノボ
ラック樹脂の種類によるレジスト膜の電子線による感度
特性を示す図である。 符号の説明 1・・・1量体の分子量成分 2・・2量体の分子量成分 3・・・3量体の分子量成分 4・・・シリコン基板 5・・シリコン酸化膜 6・・・レジスト膜 7・・・孔 8・・・樹脂Cを用いたレジスト膜 9・・・樹脂Cを用いたレジストによるシリコン酸化膜
中の孔 10・・・樹脂Bを用いたレジスト膜 11・・・樹脂Bを用いたレジストによるシリコン酸化
膜中の孔 12・・・樹脂Aを用いたレジスト膜 13・・・樹脂Aを用いたレジストによるシリコン酸化
膜中の孔 14・・・樹脂Cの感度特性 15・・・樹脂Bの感度特性 16・・・樹脂Aの感度特性 17・・・高分子量成分樹脂の感度特性18・・・電子
FIG. 1(a) is a diagram showing the molecular weight distribution of resin A of the present invention,
FIG. 1(b) is a scanning electron microscope cross-sectional photograph of a hole formed by dry etching a silicon oxide film using resin A of the present invention, FIG. 2(a) is a cross-sectional photograph of resin B and FIG. 3(a).
Figure 2(b) shows the molecular weight distribution of resin C, and Figure 2(b) shows the molecular weight distribution of resin B.
3(b) is a cross-sectional photograph taken by a scanning electron microscope of a hole formed by dry etching a silicon oxide film using resin C, and FIG. 4(a), (b), and (c) are taken by an electron beam. A diagram showing the dry etching process, and FIG. 5 is a diagram showing the sensitivity characteristics of resist films to electron beams depending on the type of novolak resin. Explanation of symbols 1... Molecular weight component of monomer 2... Molecular weight component of dimer 3... Molecular weight component of trimer 4... Silicon substrate 5... Silicon oxide film 6... Resist film 7... Hole 8... Resist film using resin C 9... Hole in silicon oxide film formed by resist using resin C 10... Resist film 11 using resin B... Resin B Holes 12 in silicon oxide film formed by resist using Resin A... Resist film 13 using Resin A... Holes 14 in silicon oxide film formed by resist using Resin A... Sensitivity characteristics of Resin C 15. ... Sensitivity characteristics of resin B 16 ... Sensitivity characteristics of resin A 17 ... Sensitivity characteristics of high molecular weight component resin 18 ... Electron beam

Claims (1)

【特許請求の範囲】 1、フェノール樹脂および溶解抑止剤を含有する放射線
感応性組成物において、上記フェノール樹脂に低分子量
成分を含まないフェノール樹脂を用いることを特徴とす
る放射線感応性組成物。 2、フェノール樹脂に含まれない低分子量成分は、3量
体以下であることを特徴とする特許請求の範囲第1項記
載の放射線感応性組成物。
[Scope of Claims] 1. A radiation-sensitive composition containing a phenolic resin and a dissolution inhibitor, characterized in that the phenolic resin is a phenolic resin that does not contain a low molecular weight component. 2. The radiation-sensitive composition according to claim 1, wherein the low molecular weight component not contained in the phenol resin is a trimer or less.
JP12360484A 1984-06-18 1984-06-18 Radiation sensitive composition Pending JPS613140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12360484A JPS613140A (en) 1984-06-18 1984-06-18 Radiation sensitive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12360484A JPS613140A (en) 1984-06-18 1984-06-18 Radiation sensitive composition

Publications (1)

Publication Number Publication Date
JPS613140A true JPS613140A (en) 1986-01-09

Family

ID=14864720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12360484A Pending JPS613140A (en) 1984-06-18 1984-06-18 Radiation sensitive composition

Country Status (1)

Country Link
JP (1) JPS613140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211639A (en) * 1986-03-12 1987-09-17 Nec Corp Energy sensitive composition and pattern forming method using said composition
JPH02282745A (en) * 1989-04-25 1990-11-20 Toray Ind Inc Positive type photoresist composition and fine pattern forming method using the same composition
JPH03125152A (en) * 1989-10-09 1991-05-28 Mitsubishi Electric Corp Coating composition for photoresist
US6537736B1 (en) 1999-03-12 2003-03-25 Matsushita Electric Industrial Co., Ltd. Patten formation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211639A (en) * 1986-03-12 1987-09-17 Nec Corp Energy sensitive composition and pattern forming method using said composition
JPH02282745A (en) * 1989-04-25 1990-11-20 Toray Ind Inc Positive type photoresist composition and fine pattern forming method using the same composition
JPH03125152A (en) * 1989-10-09 1991-05-28 Mitsubishi Electric Corp Coating composition for photoresist
US6537736B1 (en) 1999-03-12 2003-03-25 Matsushita Electric Industrial Co., Ltd. Patten formation method

Similar Documents

Publication Publication Date Title
US4439516A (en) High temperature positive diazo photoresist processing using polyvinyl phenol
US6753129B2 (en) Method and apparatus for modification of chemically amplified photoresist by electron beam exposure
CA1273522A (en) Positive photoresist compositions
US6358670B1 (en) Enhancement of photoresist plasma etch resistance via electron beam surface cure
US4125650A (en) Resist image hardening process
EP0126266B1 (en) Low striation positive resist composition
JP2505033B2 (en) Electron beam resist composition and method for forming fine pattern using the same
US4259430A (en) Photoresist O-quinone diazide containing composition and resist mask formation process
JPH01128062A (en) Screening resistable photoresist clad
US6340556B1 (en) Tailoring of linewidth through electron beam post exposure
JP2006064851A (en) Micropattern forming material, method for forming micro resist pattern, and electronic device
JP2001272797A (en) Pattern forming method
KR100477401B1 (en) A method for reducing metal ion contaminants in photoresist compositions containing an organic polar solvent by ion exchange
JP3924317B2 (en) Metal ion reduction in novolak resin solution using anion exchange resin
US4968582A (en) Photoresists resistant to oxygen plasmas
JPS613140A (en) Radiation sensitive composition
JPH0368904B2 (en)
TW200910014A (en) Composition for forming fine pattern and method for forming fine pattern using the same
US4259369A (en) Image hardening process
US5114827A (en) Photoresists resistant to oxygen plasmas
JP3765582B2 (en) Mixed solvent system for positive photoresist
JP3035721B2 (en) Method of forming resist pattern
JP4161245B2 (en) Method for forming chemically amplified resist pattern
JPH07311467A (en) Water-soluble composition, pattern forming method using the same and production of semiconductor device
JP3523752B2 (en) Lithography base material and etching resist material using the same