JPS6131185B2 - - Google Patents
Info
- Publication number
- JPS6131185B2 JPS6131185B2 JP57021068A JP2106882A JPS6131185B2 JP S6131185 B2 JPS6131185 B2 JP S6131185B2 JP 57021068 A JP57021068 A JP 57021068A JP 2106882 A JP2106882 A JP 2106882A JP S6131185 B2 JPS6131185 B2 JP S6131185B2
- Authority
- JP
- Japan
- Prior art keywords
- anode
- magnetic field
- discharge
- cathode
- vacuum vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011800 void material Substances 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 11
- 229910052719 titanium Inorganic materials 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000004927 fusion Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
発明の技術分野
本発明はクロストフイールド放電の行なわれる
磁場中放電装置に関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a magnetic field discharge device in which crossed field discharge is performed.
背景技術とその問題点
近年核融合実現に向けて、高温高密度プラズマ
の生成と閉じ込めの努力が為されている。核融合
装置として磁場閉じ込め形装置が有望視されてい
るが、この装置で解決を急がれる問題として、プ
ラズマに供給される不純物を抑制しなければなら
ないことがある。近年トカマクに於て第一壁をチ
タンで蒸着すると、不純物供給は著しく抑制され
ることがわかつてきた。チタン蒸着はトカマク放
電の休止時に、チタンを加熱蒸発して行われる。Background technology and its problems In recent years, efforts have been made to generate and confine high-temperature, high-density plasma in order to realize nuclear fusion. Magnetic field confinement devices are seen as promising as nuclear fusion devices, but one problem that must be urgently solved with these devices is the need to suppress impurities supplied to the plasma. In recent years, it has been found that when the first wall of a tokamak is vapor-deposited with titanium, impurity supply is significantly suppressed. Titanium deposition is performed by heating and vaporizing titanium when the tokamak discharge is stopped.
長時間にわたつてチタンの蒸着を行うと、チタ
ンの膜が蒸着された物体から、はく離するという
問題があり、核融合装置に於ては、はく離したチ
タンがプラズマに混入してその不純物になること
を避けなければならず、チタンを加熱蒸発して形
成される蒸着膜よりも強固なチタンの膜を形成す
る方法と装置の出現が望まれていた。 When titanium is vapor-deposited over a long period of time, there is a problem that the titanium film peels off from the object on which it is deposited, and in nuclear fusion devices, the peeled-off titanium mixes with the plasma and becomes an impurity. Therefore, it has been desired to develop a method and apparatus for forming a titanium film that is stronger than a vapor-deposited film formed by heating and evaporating titanium.
一方核融合装置のプラズマ不純物としては、原
子量の大きい原子イオンの悪影響が著しく、原子
量の小さい原子イオンの方が悪影響の程度が低い
ことに着目して、壁面を原子量の小さい物質でコ
ーテイングする方法が提案され、実用的な装置の
出現が望まれていた。 On the other hand, regarding plasma impurities in nuclear fusion devices, atomic ions with large atomic weights have a significant negative effect, while atomic ions with small atomic weights have a lower degree of negative effect, so a method of coating the wall surface with a substance with small atomic weight has been proposed. It was hoped that a proposed and practical device would emerge.
発明の目的
本発明は斯かる事情にかんがみて為されたもの
で、その目的とするところは第一に、コーテイン
グされる物体の表面に密着性のよい強固な膜を形
成することのできる装置の構成を提供すること、
第二に、蒸気圧が非常に低い物質をも壁面にコー
テイングできる装置の構成を提供することであ
る。Purpose of the Invention The present invention was made in view of the above circumstances, and its first purpose is to provide an apparatus that can form a strong film with good adhesion on the surface of an object to be coated. providing the configuration;
The second object is to provide an apparatus configuration that can coat a wall surface even with a substance having a very low vapor pressure.
発明の概要
磁場中に陽・陰両極を配設して低作動ガス圧
力、高度電々圧のクロストフイールド放電を発
生・維持する様にし、クロストフイールド放電に
より生成される高エネルギイオンにより効率よく
生成されるスパツタされた原子を陽極に放電の安
定性を害することのない様に設けられた空隙を通
して放電装置の外部に導き、真空容器壁に対し絶
縁を施されてそれを貫通する部分の真空内表面が
スパツタされた原子により汚染され絶縁不良をき
たさぬ様に遮へい体を設け、かつ該クロストフイ
ールド放電装置は真空容器に対し着脱自在とし
て、真空容器内の壁面にスパツタリングによるコ
ーテイングを施せるとともに、スパツタリングを
しない期間は所定の場所に移動できるようして、
目的を達成した。Summary of the Invention By arranging positive and negative poles in a magnetic field, a cross-field discharge of low working gas pressure and high electric pressure is generated and maintained, and high-energy ions generated by the cross-field discharge are efficiently generated. The sputtered atoms are guided to the outside of the discharge device through a gap provided to the anode so as not to impair the stability of the discharge. A shielding body is provided to prevent insulation defects from being contaminated by sputtered atoms, and the crossed field discharge device is detachable from the vacuum vessel, allowing sputtering coating to be applied to the walls of the vacuum vessel, and preventing sputtering. During the period when you are not using it, you can move it to a designated location.
Achieved the purpose.
発明の実施例
第1図及び第2図は本発明の一実施例を示す磁
場中放電装置の外形図及び断面図である。第1図
の断面図は絶縁部材により真空容器に対し絶縁を
施されて真空容器壁を貫通する結電径路の部分は
それぞれの構成を示すそれぞれの部分の断面で示
し、他の部分は第2図の外形図に於て鎖線A―A
で示す平面における断面を示している。Embodiment of the Invention FIGS. 1 and 2 are an external view and a sectional view of a magnetic field discharge device showing an embodiment of the present invention. In the cross-sectional view of FIG. 1, the portions of the electrically conductive path that are insulated from the vacuum chamber by an insulating member and that penetrate the wall of the vacuum chamber are shown as cross-sections of the respective portions showing their respective configurations, and the other portions are shown as cross-sections of the respective portions. In the outline drawing of the figure, chain line A-A
The figure shows a cross section along the plane indicated by .
1aは2個の陽極端部材で、その間には8個の
翼体1bが固着され、2個の該陽極端部材1a及
び8個の翼体1bは一体となつて管壁の外部表面
積の1/2以上の空隙を有する管を形成し、該管は
陽極1として使用される。2aは2個の板状エン
ドハツトで、該エンドハツト2aの間に固着され
た中心部電極2bと共に陰極2を構成する。該陰
極2を構成するエンドハツト2aは該陽極1であ
る管の両開口端にそれぞれ離間が近接して、これ
を覆うごとく配設される。放電を行わせるときに
は、該陽極1の管の軸心は磁場の方向と平行であ
るようになされている。磁場が印加されている
時、陽極1と陰極2の間に所定の電圧を印加する
とマグネトロン放電が該陽極1の管の内面と該陰
極2の陽極側表面で形成される部分に発生し維持
される。 Reference numeral 1a designates two anode end members, and eight blade bodies 1b are fixed between them, and the two anode end members 1a and the eight blade bodies 1b together cover 1 of the external surface area of the tube wall. A tube having a gap of 2/2 or more is formed, and the tube is used as the anode 1. Reference numeral 2a denotes two plate-shaped end hats, which constitute the cathode 2 together with a center electrode 2b fixed between the end hats 2a. The end hats 2a constituting the cathode 2 are disposed close to and covering both open ends of the tube, which is the anode 1, respectively. When a discharge is caused, the axis of the tube of the anode 1 is parallel to the direction of the magnetic field. When a predetermined voltage is applied between the anode 1 and the cathode 2 while a magnetic field is applied, a magnetron discharge is generated and maintained at the portion formed by the inner surface of the tube of the anode 1 and the anode side surface of the cathode 2. Ru.
3は給電径路を兼ねる4本の陽極の支柱で各陽
極の端部材1aに固着された2個の給電径路を兼
ねる枠4に固着される。5は給電径路を兼ねる4
本の陰極の支柱で、各エンドハツト2aに2個ず
つ固着された給電径路を兼ねる4本の支柱6の各
2本ずつに固着された2個の給電径路を兼ねる枠
7に固着される。 Reference numeral 3 denotes four anode supports that also serve as power supply paths, and are fixed to two frames 4 that also serve as power supply paths and are fixed to the end members 1a of each anode. 5 serves as a power supply path 4
The main cathode supports are fixed to a frame 7 which also serves as two power feeding paths and which are fixed to two of each of the four pillars 6 which also serve as power feeding paths, two of which are fixed to each end hat 2a.
8は8個の中空円筒状の絶縁部材でそれぞれそ
の両開口端には接続金具9及び10が気密にかつ
互に絶縁されて固着され、該接続金具9は全て、
通常接地電位で使用される図示されない真空容器
と同電位のフランジ11に気密に接続される。1
2はベローズでその一端は該フランジ11に気密
に接続される。13はフランジで本発明の磁場中
放電装置が使用される図示されない真空容器のフ
ランジに気密に接続して使用される。14は管
で、該管14及び該ベローズ12は図示されない
部分で図示されない部材により相互に気密に接続
される。15は棒で、該フランジ11を該フラン
ジ13に対し所定の位置の間を移動させ、かつ固
定支持するものである。16は遮へい体でそれぞ
れの支柱3及び5の全てに取りつけられ、該支柱
3及び5は該遮蔽体16を気密に貫通して、該支
柱3は該フランジ11との絶縁を保持されてその
真空外の側に端子17を形成して給電ケーブルに
接続され、該支柱5は該フランジ11の真空外の
側に端子18を形成して給電ケーブルに接続され
る。全ての該遮蔽体16はそれぞれが対面する該
接続金具10に気密に固着される。かくして、該
陽極1及び該陰極2は相互の位置関係を変えるこ
となく、それらを収容する図示されない真空容器
に対し位置可変に支持されると共に、本実施例に
於ては該陽極1及び該陰極2はともに絶縁部材8
により図示されない該真空容器に対して絶縁を施
されて真空容器壁の一部を形成する核フランジ1
1を貫通する給電径路を有する。該遮蔽体16は
全て、その夫々が該接続金具10を介して固着さ
れている核絶縁部材8の真空側の表面の全ての点
から、該陽極1である管の内面と該陰極2の陽極
形表面で形成される部分が見通せない様な形状と
大きさに作られ、該絶縁部材8と該陽極1及び核
陰極2との間に配設されている。 Reference numeral 8 denotes eight hollow cylindrical insulating members, each of which has connection fittings 9 and 10 fixed to both open ends thereof in an airtight manner and insulated from each other.
It is hermetically connected to a flange 11 at the same potential as a vacuum vessel (not shown) which is normally used at ground potential. 1
2 is a bellows, one end of which is hermetically connected to the flange 11. A flange 13 is used while being airtightly connected to a flange of a vacuum container (not shown) in which the magnetic field discharge device of the present invention is used. Reference numeral 14 denotes a tube, and the tube 14 and the bellows 12 are hermetically connected to each other by a member not shown at a portion not shown. Reference numeral 15 denotes a rod for moving the flange 11 between predetermined positions relative to the flange 13 and for fixedly supporting the flange 11. A shield 16 is attached to each of the pillars 3 and 5, and the pillars 3 and 5 pass through the shield 16 in an airtight manner, and the pillar 3 is kept insulated from the flange 11 so that its vacuum is maintained. A terminal 17 is formed on the outer side of the flange 11 to connect to the power supply cable, and the support column 5 has a terminal 18 formed on the side outside the vacuum of the flange 11 to be connected to the power supply cable. All the shields 16 are hermetically fixed to the connecting fittings 10 facing each other. In this way, the anode 1 and the cathode 2 are supported in a variable position with respect to the vacuum container (not shown) that houses them without changing their mutual positional relationship, and in this embodiment, the anode 1 and the cathode 2 are both insulating members 8
A core flange 1 which is insulated with respect to the vacuum vessel (not shown) and forms a part of the vacuum vessel wall.
It has a power supply path that passes through 1. All of the shields 16 are connected to the inner surface of the tube, which is the anode 1, and the anode of the cathode 2, from all points on the vacuum side surface of the nuclear insulating member 8, each of which is fixed via the connection fitting 10. It is made in such a shape and size that the portion formed by the shaped surface cannot be seen through, and is disposed between the insulating member 8 and the anode 1 and the nuclear cathode 2.
以上第1図及び第2図に示した実施例を参照し
て本発明の作用を説明すると、本発明はその使用
される真空容器の種類を制限するものではない
が、実施例として核融合装置の一種のトカマクを
例として採り、該トカマクのプラズマに面する第
一壁のコーテイングに於ける効果を説明する。ト
カマク放電をしない状態でトロイダル磁場だけ発
生させる。該陽極1の管の長さはトカマクの大半
径に較べて充分小さいので、該管の軸心は該トロ
イダル磁場と実質的に平行であるようにでき、そ
の様に配設して使用される。磁場の強さはトカマ
ク放電に於けるものより小さくてよく、例えば
0.5テスラでもよい。核陽極と該陰極の間に高電
圧を印加すると、核陽極1である管の内面と核陰
極の陽極側表面で形成される部分にマグネトロン
放電が発生し自続する。陽・陰極間電圧はそれら
の電極近傍の気体の種類と圧力及びコーテイング
に供される物質の種類で決定すればよいが、例え
ば10kVでよい。 The operation of the present invention will be explained with reference to the embodiments shown in FIGS. 1 and 2. Although the present invention does not limit the type of vacuum vessel used, Taking a type of tokamak as an example, the effect of coating the first wall facing the plasma of the tokamak will be explained. Only a toroidal magnetic field is generated without tokamak discharge. Since the length of the tube of the anode 1 is sufficiently small compared to the large radius of the tokamak, the axis of the tube can be substantially parallel to the toroidal magnetic field, and it is used with such arrangement. . The strength of the magnetic field may be smaller than that in a tokamak discharge, e.g.
0.5 Tesla is fine. When a high voltage is applied between the nuclear anode and the cathode, a magnetron discharge is generated in a portion formed by the inner surface of the tube, which is the nuclear anode 1, and the anode side surface of the nuclear cathode, and is self-sustaining. The voltage between the anode and cathode may be determined depending on the type and pressure of the gas near the electrodes and the type of substance used for coating, and may be, for example, 10 kV.
核陰極2の中心部電極2bの表面はコーテイン
グに供される物質、例えばチタンで形成され、マ
グネトロン放電で生成されたイオンは高エネルギ
で核中心部電極2bに衝突し、その表面物質例え
ばチタンを効率よくスパツタする。スパツタされ
た物質の多くの部分は核陽極1の空隙を貫通して
核陽極1の外部へ射制され、該陽極1及び該陰極
2の周辺の固体表面、例えばトカマクの第一壁に
堆積し、核スパッタされた物質、例えばチタンの
コーテイングが行われる。周知の如く、マグネト
ロン放電によりスパツタされた物質によるコーテ
イングは、蒸着によるもの等と比較して密着性の
良い強固な膜が形成される。これが発明の第一目
的であるコーテイングされる物体の表面に密着性
の良い強固な膜を形成することができる本発明の
第一の効果である。本発明ではコーテイングはス
パツタリングで行われるので、その第二の目的で
ある、蒸気圧が非常に低い物質をも壁面にコーテ
イングすることができるという効果の達成がなさ
れる。 The surface of the central electrode 2b of the nuclear cathode 2 is formed of a material to be coated, such as titanium, and ions generated by magnetron discharge collide with the nuclear central electrode 2b with high energy, coating the surface material such as titanium. Splash efficiently. A large portion of the sputtered material passes through the gap in the nuclear anode 1 and is ejected to the outside of the nuclear anode 1, and is deposited on a solid surface around the anode 1 and the cathode 2, such as the first wall of a tokamak. , a coating of a nuclear sputtered material, for example titanium, is applied. As is well known, a coating made of a material sputtered by magnetron discharge forms a strong film with better adhesion than that made by vapor deposition. This is the first effect of the present invention, which is the first objective of the present invention, which is that a strong film with good adhesion can be formed on the surface of the object to be coated. In the present invention, since the coating is performed by sputtering, the second objective of the present invention, which is to be able to coat the wall surface even with a substance having a very low vapor pressure, is achieved.
なお陰極は中心部電極を持たなくてよい。この
場合の放電はPIG放電となり、第1回のマグネト
ロン放電と類似の効果が得られる。 Note that the cathode does not need to have a center electrode. The discharge in this case is a PIG discharge, and an effect similar to the first magnetron discharge can be obtained.
発明の効果
本発明は所謂その場(insitu)コーテイングが
行われる様になされたものであり、該陽極及び該
陰極は相互の位置関係を変えることなく、それら
を収容する真空容器に対して位置可変に支持され
ているので、本発明の磁場中放電装置が使用され
ないとき、例えばトカマクの第1壁のコーテイン
グが終了した後では、別の位置に格納等のために
移すことができ、例えばトカマクの第1壁の後方
に格納することにより、トカマク放電に支障をき
たさない。また該遮蔽体は該絶縁部材の真空側表
面がスパツタされた物質で汚染され絶縁不良が生
起することを無くしているので、本磁場中放電装
置は長期にわたつて使用可能である。Effects of the Invention The present invention is designed to perform so-called in-situ coating, and the anode and the cathode can be moved in position with respect to the vacuum container housing them without changing their mutual positional relationship. When the magnetic field discharge device of the present invention is not in use, for example after the coating of the first wall of the tokamak is completed, it can be moved to another location for storage, etc. By storing it behind the first wall, it does not interfere with tokamak discharge. Furthermore, the shield prevents the vacuum side surface of the insulating member from being contaminated with sputtered substances and causing insulation defects, so the present magnetic field discharge device can be used for a long period of time.
第1図及び第2図は本発明の一実施例を示す磁
場中放電装置の外形図及び断面図である。
1……陽極、1a……陽極端部材、1b……翼
体、2……陰極、2a……エンドハツト、2b…
…中心部電極、3,5,6……給電径路を兼ねる
支柱、4,7……給電径路を兼ねる枠、8……絶
縁部材、9,10……接続金具、11,13……
フランジ、12……ベローズ、14……管、15
……棒、16……遮へい体、17,18……端
子。
FIGS. 1 and 2 are an external view and a sectional view of a magnetic field discharge device showing an embodiment of the present invention. 1...Anode, 1a...Anode end member, 1b...Blade body, 2...Cathode, 2a...End hat, 2b...
...Central electrode, 3, 5, 6... Support that also serves as a power feeding path, 4, 7... Frame that also serves as a power feeding path, 8... Insulating member, 9, 10... Connection fittings, 11, 13...
Flange, 12...Bellows, 14...Pipe, 15
... Rod, 16 ... Shielding body, 17, 18 ... Terminal.
Claims (1)
ルド放電を行なわせしめるために前記真空容器に
着脱自在としたものにおいて、前記真空容器に着
脱自在の基台と、この基台に絶縁部材を介して植
設された給電径路を兼ねる支柱と、この支柱に前
記クロスフイールド放電を行なわせる陽極及び陰
極を設けて構成した放電部と、この放電部で行な
われる放電を、前記絶縁部材の真空側に面した表
面の全べての位置から見て、見ることができず、
かつ他の部材と離間して設け、かつ前記絶縁部材
と前記放電部との間に設けた遮へい体とを具備し
てなることを特徴とする磁場中放電装置。 2 陽極極の表面が1/2以上の空隙を有して構成
されていることを特徴とする特許請求の範囲第1
項記載の磁場中放電装置。 3 陽極を筒状とし、この筒の軸中心部に中心電
極を設けてなることを特徴とする特許請求の範囲
第1項記載の磁場中放電装置。[Scope of Claims] 1. A vacuum vessel that is detachably attached to the vacuum vessel in order to cause cross-field discharge to occur in the vacuum vessel where a magnetic field exists, including a base that is detachable from the vacuum vessel, and an insulating base on the base. A discharge section is constructed by installing a support that also serves as a power supply path and is installed through a member, and an anode and a cathode that perform the cross-field discharge on this support. visible from all positions on the surface facing the vacuum side,
A magnetic field discharge device, further comprising: a shield provided apart from other members and provided between the insulating member and the discharge section. 2 Claim 1, characterized in that the surface of the anode is configured with a void of 1/2 or more.
The magnetic field discharge device described in Section 1. 3. The magnetic field discharge device according to claim 1, wherein the anode is cylindrical, and a center electrode is provided at the center of the axis of the cylindrical anode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57021068A JPS58141385A (en) | 1982-02-15 | 1982-02-15 | Discharging device in magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57021068A JPS58141385A (en) | 1982-02-15 | 1982-02-15 | Discharging device in magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58141385A JPS58141385A (en) | 1983-08-22 |
JPS6131185B2 true JPS6131185B2 (en) | 1986-07-18 |
Family
ID=12044561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57021068A Granted JPS58141385A (en) | 1982-02-15 | 1982-02-15 | Discharging device in magnetic field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58141385A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10941305B2 (en) | 2015-12-16 | 2021-03-09 | Ferro Corporation | Thermoplastic screen printing paste |
-
1982
- 1982-02-15 JP JP57021068A patent/JPS58141385A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10941305B2 (en) | 2015-12-16 | 2021-03-09 | Ferro Corporation | Thermoplastic screen printing paste |
Also Published As
Publication number | Publication date |
---|---|
JPS58141385A (en) | 1983-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970005769B1 (en) | Magnetic immersion field emission electron gun | |
JP2572250B2 (en) | Magnetic field generator | |
CN111088472B (en) | Coating system | |
US8157976B2 (en) | Apparatus for cathodic vacuum-arc coating deposition | |
CN107946159A (en) | A kind of adjustable ion gun and electrostatic confinement fusion reactor | |
JP3481953B2 (en) | Equipment for coating substrates | |
JPS6131185B2 (en) | ||
US3601649A (en) | Electron beam generating system for high beam potentials | |
US3719582A (en) | Ion source for slow-ion sputtering | |
JP2835265B2 (en) | Magnetic field immersion type electron gun and method of operating magnetic field immersion type electron gun | |
JP2006190563A (en) | Sputter ion pump | |
JPH0465057A (en) | Charge particle beam apparatus | |
JP2552701B2 (en) | Ion source | |
JP5048538B2 (en) | Coaxial vacuum arc deposition source and vacuum deposition equipment | |
US3614510A (en) | Nonthermionic cathode discharge devices | |
JPS5740845A (en) | Ion beam generator | |
JP4901624B2 (en) | Film forming apparatus and film forming method | |
JPS588104B2 (en) | Electron gun for heating, melting and drying | |
JPH10121235A (en) | Composite sputtering cathode and sputtering device using the cathode | |
JPH11214199A (en) | Evacuation device for cyclotron device, evacuation method and reproducing method for vacuum pump | |
JP2009057583A (en) | Film-forming apparatus and film-forming method | |
JPS5820090B2 (en) | Magnetron type ion generator using electron impact heating method | |
JPS5924186B2 (en) | sputtering equipment | |
WO1999016924A1 (en) | Ion plating apparatus | |
JPS609101B2 (en) | How to generate glow discharge |