JPS6130727B2 - - Google Patents

Info

Publication number
JPS6130727B2
JPS6130727B2 JP1623880A JP1623880A JPS6130727B2 JP S6130727 B2 JPS6130727 B2 JP S6130727B2 JP 1623880 A JP1623880 A JP 1623880A JP 1623880 A JP1623880 A JP 1623880A JP S6130727 B2 JPS6130727 B2 JP S6130727B2
Authority
JP
Japan
Prior art keywords
capacitor
electrolytic
ethylene glycol
electrolytic solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1623880A
Other languages
Japanese (ja)
Other versions
JPS56112713A (en
Inventor
Kyoshi Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP1623880A priority Critical patent/JPS56112713A/en
Publication of JPS56112713A publication Critical patent/JPS56112713A/en
Publication of JPS6130727B2 publication Critical patent/JPS6130727B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電解コンデンサをハロゲン化炭化水素
で洗浄した場合に、コンデンサ内部にハロゲン化
炭化水素が透過して生ずるコンデンサ素子の腐蝕
を防止することによつて、コンデンサの寿名特性
を向上せしめる電解コンデンサ用電解液に関す
る。 従来電極箔とスペーサとを巻回してコンデンサ
素子を構成し、該コンデンサ素子をケースに収函
してゴム栓により封口する電解コンデンサで、コ
ンデンサ素子に含浸する駆動用電解液にはエチレ
ングリコール−硼酸アンモン系やエチレングリコ
ール−アジピン酸アンモニウム系などが用いられ
ていた。しかしながら、電解コンデンサの洗浄工
程や印刷基板へ取着するときに用いるハンダフラ
ツクスの除去工程で洗浄剤として使用されるハロ
ゲン化炭化水素、例えば1・1・1トリクロロエ
タンは該ハロゲン化炭化水素への浸漬あるいは蒸
気浴などによつてゴム栓を透過してコンデンサ内
部へ浸入し分解して塩素イオンを生成していた。
該塩素イオンはコンデンサ素子の電極箔および引
出端子を腐蝕せしめるが、この腐蝕は電解コンデ
ンサに電圧を印加したときとくに著しく、ときに
は引出端子の断線を招く欠点があつた。 本発明は上記の点に鑑みてなされたもので、洗
浄に使用するハロゲン化炭化水素がケース内部に
浸入しても腐蝕の発生を防止できる電解コンデン
サ用電解液を提供するものである。これによつて
電解コンデンサの寿命を向上せしめようとするも
のである。以下実施例により説明する。本発明に
なる電解液はエチレングリコール(EG)−水−エ
タノールアミンとアジピン酸との塩からなるエタ
ノールアミンアジペートからなるもので、その実
施例の組成を表に示す。なお、従来例2は若干の
水を含んだ電解液で特開昭54−91754号公報に記
載されているものである。
The present invention is an electrolytic capacitor that improves the longevity characteristics of a capacitor by preventing corrosion of a capacitor element caused by penetration of the halogenated hydrocarbon into the capacitor when the electrolytic capacitor is cleaned with a halogenated hydrocarbon. Regarding electrolytes for use. Conventional electrolytic capacitors consist of a capacitor element formed by winding an electrode foil and a spacer, and the capacitor element is housed in a case and sealed with a rubber stopper.The driving electrolyte that impregnates the capacitor element is ethylene glycol-boric acid. Ammonium-based and ethylene glycol-ammonium adipate-based materials were used. However, halogenated hydrocarbons, such as 1.1.1 trichloroethane, which are used as cleaning agents in the process of cleaning electrolytic capacitors and the process of removing solder flux used when attaching them to printed circuit boards, have a negative impact on the halogenated hydrocarbons. When immersed or in a steam bath, it penetrates through the rubber plug and enters the inside of the capacitor, where it decomposes and generates chlorine ions.
The chlorine ions corrode the electrode foils and lead terminals of the capacitor element, and this corrosion is particularly severe when voltage is applied to the electrolytic capacitor, sometimes resulting in disconnection of the lead terminals. The present invention has been made in view of the above points, and it is an object of the present invention to provide an electrolytic solution for an electrolytic capacitor that can prevent corrosion even if a halogenated hydrocarbon used for cleaning infiltrates the inside of the case. This is intended to improve the life of the electrolytic capacitor. This will be explained below using examples. The electrolytic solution according to the present invention is composed of ethylene glycol (EG), water, and ethanolamine adipate, which is a salt of ethanolamine and adipic acid, and the composition of an example thereof is shown in the table. In addition, Conventional Example 2 is an electrolytic solution containing some water and is described in Japanese Patent Application Laid-Open No. 54-91754.

【表】【table】

【表】 なお表に記載されたモノ、ジ、トリエタノール
アミンアジペートはエタノールアミンアジペート
の1種であり、アジピン酸とエタノールアミンと
を混合し加熱またはエチレングリコール中で該混
合を行うことにより生成できるが、これらは
40wt%を越えるとエチレングリコールに溶解し
なくなる。この表に示した組成からなる電解液を
電極箔とスペーサとを巻回して構成したコンデン
サ素子に含浸し、該コンデンサ素子をアルミニウ
ムからなるケースに収函してゴム栓で封口した定
格50WV−1μFのリード線端子同一方向形電解
コンデンサを作り、該電解コンデンサを1・1・
1トリクロロエタンの蒸気中に10分間浸漬したも
の各々50個を試料として105℃中に50V電圧印加
して放置したときの特性を第1図〜第4図に示
す。すなわち第1図は放置時間と防爆弁動作数と
の関係を示す曲線図であるが、1000hでは全数分
解の上確認した腐蝕数を示してある。第2図は放
置時間と静電容量変化率との関係、第3図は放置
時間とtanδとの関係、第4図は放置時間と漏れ
電流との関係をそれぞれ示す曲線図である。ま
た、第5図は水の添加量を変えた場合のモノエタ
ノールアミンアジペート20wt%、残部がエチレ
ングリコールの組成からなる電解液の比抵抗を示
すものである。これによれば水が5wt%未満の場
合は変化および絶対値が大きく、これは後述する
第3図の参考例2(曲線G)とも一致した傾向で
ある。よつて電解液に水を5wt%以上含有させる
ことによつて比抵抗を減少させることができる効
果があり、tanδを改善できる。 なお第1図〜第4図の曲線に付した記号は表に
示した記号を用いたもので電解液の種別を表わし
たものである。この結果によれば第1図の弁動作
数において従来例1および従来例2(曲線Aおよ
びB)では全数弁動作し、参考例(曲線H)では
1000hにおいて7個の腐蝕が発生している。曲線
A,Bは分解調査結果、腐蝕現象が顕著であり腐
蝕によつて内部圧力が上昇し防爆弁が動作したも
のである。また第2図および第3図における参考
例1(曲線F)の容量変化率およびtanδは電極
液の中に含む水が多くなりすぎたことによつて電
極箔がベーマイト反応を生ずるために変化が大と
なるものであり、第3図における参考例2(曲線
G)は電解液に水を全く含まないので初期から比
抵抗が大なるものである。したがつて上記実施例
の電解液は、水27〜5wt%、エタノールアミンア
ジペート40〜5wt%、残部がエチレングリコール
からなるものということができる。 以上述べたように本発明になる電解コンデンサ
用電解液を用いた電解コンデンサでは、ハロゲン
化炭化水素を洗浄液に使用してもコンデンサ内部
の腐蝕が発生せず、静電容量、tanδ、漏れ電流
の安定したものを得ることができる。勿論洗浄剤
としてハロゲン化炭化水素を使用しない場合でも
同様な特性を得ることができるのは述べるまでも
ないことである。
[Table] The mono-, di-, and triethanolamine adipates listed in the table are a type of ethanolamine adipate, and can be produced by mixing adipic acid and ethanolamine and heating or mixing in ethylene glycol. But these are
If it exceeds 40wt%, it will no longer dissolve in ethylene glycol. A capacitor element made by winding an electrode foil and a spacer was impregnated with an electrolytic solution having the composition shown in this table, and the capacitor element was housed in an aluminum case and sealed with a rubber stopper. Make an electrolytic capacitor with lead wire terminals in the same direction, and connect the electrolytic capacitor to 1.1.
Figures 1 to 4 show the characteristics of 50 samples each immersed in the vapor of 1-trichloroethane for 10 minutes and left at 105°C with a voltage of 50V applied. That is, FIG. 1 is a curve diagram showing the relationship between the standing time and the number of explosion-proof valve operations, and for 1000 hours, the number of corrosion confirmed after complete disassembly is shown. FIG. 2 is a curve diagram showing the relationship between the standing time and the capacitance change rate, FIG. 3 is a curve diagram showing the relationship between the standing time and tan δ, and FIG. 4 is a curve diagram showing the relationship between the standing time and leakage current. Moreover, FIG. 5 shows the specific resistance of an electrolytic solution composed of 20 wt % monoethanolamine adipate and the balance ethylene glycol when the amount of water added is varied. According to this, when the water content is less than 5 wt%, the change and absolute value are large, and this is a tendency that coincides with Reference Example 2 (curve G) in FIG. 3, which will be described later. Therefore, by making the electrolytic solution contain 5 wt% or more of water, there is an effect that the specific resistance can be reduced, and tan δ can be improved. Note that the symbols attached to the curves in FIGS. 1 to 4 are the symbols shown in the table, and represent the types of electrolyte solutions. According to this result, in the conventional example 1 and conventional example 2 (curves A and B), all valves operate at the number of valve operations shown in Fig. 1, and in the reference example (curve H), all valves operate.
Seven corrosions occurred in 1000 hours. Curves A and B show that as a result of the disassembly investigation, the corrosion phenomenon was remarkable, and the internal pressure rose due to the corrosion, causing the explosion-proof valve to operate. In addition, the capacitance change rate and tan δ of Reference Example 1 (curve F) in Figures 2 and 3 change because the electrode foil causes a boehmite reaction due to too much water contained in the electrode solution. In reference example 2 (curve G) in FIG. 3, the electrolytic solution does not contain any water, so the specific resistance is large from the beginning. Therefore, the electrolytic solution of the above example can be said to consist of 27 to 5 wt% water, 40 to 5 wt% ethanolamine adipate, and the balance ethylene glycol. As described above, in the electrolytic capacitor using the electrolytic solution for electrolytic capacitors according to the present invention, corrosion does not occur inside the capacitor even when halogenated hydrocarbon is used as a cleaning solution, and the capacitance, tanδ, and leakage current are reduced. You can get something stable. Of course, it goes without saying that similar characteristics can be obtained even when no halogenated hydrocarbon is used as the cleaning agent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はいずれも本発明および従来
例、参考例になる電解液を含浸した電解コンデン
サを105℃中に電圧印加して放置したときの放置
時間と各特性との関係を示す曲線図で、第1図は
防爆弁動作数、第2図は静電容量変化率、第3図
はtanδ、第4図は漏れ電流を示したものであ
り、第5図は水の添加量と比抵抗との関係を示す
曲線図である。
Figures 1 to 4 all show the relationship between the standing time and each characteristic when electrolytic capacitors impregnated with an electrolyte according to the present invention, a conventional example, and a reference example are left under voltage application at 105°C. In the curve diagrams, Figure 1 shows the number of explosion-proof valve operations, Figure 2 shows the capacitance change rate, Figure 3 shows tanδ, Figure 4 shows the leakage current, and Figure 5 shows the amount of water added. It is a curve diagram showing the relationship between and specific resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 水27〜5wt%、エタノールアミンとアジピン
酸との塩40〜5wt%、残部がエチレングリコール
からなる電解コンデンサ用電解液。
1. An electrolytic solution for electrolytic capacitors consisting of 27-5 wt% water, 40-5 wt% salt of ethanolamine and adipic acid, and the balance ethylene glycol.
JP1623880A 1980-02-12 1980-02-12 Electrolyte for electrolytic condenser Granted JPS56112713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1623880A JPS56112713A (en) 1980-02-12 1980-02-12 Electrolyte for electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1623880A JPS56112713A (en) 1980-02-12 1980-02-12 Electrolyte for electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS56112713A JPS56112713A (en) 1981-09-05
JPS6130727B2 true JPS6130727B2 (en) 1986-07-15

Family

ID=11910970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1623880A Granted JPS56112713A (en) 1980-02-12 1980-02-12 Electrolyte for electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS56112713A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61226913A (en) * 1985-04-01 1986-10-08 エルナ−株式会社 Electrolytic liquid for driving of electrolytic capacitor
US4747021A (en) * 1986-08-15 1988-05-24 Asahi Glass Company Ltd. Electrolytic capacitor

Also Published As

Publication number Publication date
JPS56112713A (en) 1981-09-05

Similar Documents

Publication Publication Date Title
US2932153A (en) Electrolytic capacitor and method of making
JPS6130727B2 (en)
JPH031817B2 (en)
JPH031818B2 (en)
DE1267347B (en) Electrolytic capacitor
JPS61156717A (en) Electrolytic capacitor
JP2549404B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH05205978A (en) Electrolyte of electrolytic capacitor
JPS6054768B2 (en) Electrolyte for electrolytic capacitors
JP2567418B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4082405B2 (en) Aluminum electrolytic capacitor
JPS61156716A (en) Electrolytic capacitor
JP4082407B2 (en) Aluminum electrolytic capacitor
JP4101938B2 (en) Polarized aluminum electrolytic capacitor
JP4082406B2 (en) Aluminum electrolytic capacitor
JP4082404B2 (en) Aluminum electrolytic capacitor
JPH0367331B2 (en)
JPH03102811A (en) Electrolyte for electrolytic capacitor
JP2948239B2 (en) Electrolyte for driving electrolytic capacitors
JP2612021B2 (en) Electrolyte for driving electrolytic capacitors
JP3612672B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2006100637A (en) Electric double-layer capacitor and electrolyte therefor
JP2948252B2 (en) Electrolyte for driving electrolytic capacitors
JPH0754790B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JPH0370116A (en) Electrolyte for driving electrolytic capacitor