JPS61156716A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPS61156716A
JPS61156716A JP28060384A JP28060384A JPS61156716A JP S61156716 A JPS61156716 A JP S61156716A JP 28060384 A JP28060384 A JP 28060384A JP 28060384 A JP28060384 A JP 28060384A JP S61156716 A JPS61156716 A JP S61156716A
Authority
JP
Japan
Prior art keywords
electrolytic
bismuth oxide
capacitor element
capacitor
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28060384A
Other languages
Japanese (ja)
Other versions
JPH0257328B2 (en
Inventor
豊 横山
伊藤 隆人
篠崎 郁彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP28060384A priority Critical patent/JPS61156716A/en
Publication of JPS61156716A publication Critical patent/JPS61156716A/en
Publication of JPH0257328B2 publication Critical patent/JPH0257328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電解コンデンサの改良に係り、特に電解コン
デンサの耐腐食特性の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to improvements in electrolytic capacitors, and particularly to improvements in corrosion resistance properties of electrolytic capacitors.

〔従来の技術〕[Conventional technology]

電解コンデンサは、アルミニウム、タンタルなどの皮膜
形成性金属を陽極に用い、この陽極表面に誘電体となる
絶縁性の酸化皮膜を陽極酸化処理等により形成し、陰極
として酸化皮膜のない同種もしくは他の金属を対抗配置
し、これら電極間に紙、多孔質プラスチックなどのセパ
レータを介在させて巻回あるいは、層状に重ね合わせて
コンデンサ素子を形成している。
Electrolytic capacitors use a film-forming metal such as aluminum or tantalum as an anode, and an insulating oxide film that becomes a dielectric is formed on the surface of this anode by anodizing, and a similar or other material without an oxide film is used as a cathode. A capacitor element is formed by arranging metals facing each other and winding or layering them with a separator such as paper or porous plastic interposed between these electrodes.

図面は、−a的な巻回構造のアルミニウム電解コンデン
サの素子構造を例示したもので、帯状のアルミニウム陽
極箔矛はその表面が拡面化のためのエツチング処理が施
されるとともに、その上面に陽極酸化処理により、誘電
体酸化皮膜層が形成されている。
The drawing shows an example of the element structure of an aluminum electrolytic capacitor with a -a-like winding structure. A dielectric oxide film layer is formed by anodizing.

そして、この陽極箔2に対抗させて、同様に帯状のアル
ミニウム陰極箔3が配置され、これら陽極箔2、陰極箔
3の間に前記電極箔より僅かに幅の広いセパレータ祇4
が挟み込まれて円筒状に巻回されてコン・デンサ素子l
が形成されている。なおリード5は、コンデンサ素子1
の電極箔2.3と外部との電気的接続をおこなうために
各々の電極箔に取りつけられ、コンデンサ素子1の巻回
端面から引き出されたものである。
A strip-shaped aluminum cathode foil 3 is similarly arranged opposite to this anode foil 2, and between these anode foil 2 and cathode foil 3 there is a separator 4 that is slightly wider than the electrode foil.
is sandwiched and wound into a cylindrical shape to form a capacitor element l.
is formed. Note that the lead 5 is connected to the capacitor element 1.
It is attached to each electrode foil and drawn out from the winding end surface of the capacitor element 1 in order to electrically connect the electrode foil 2.3 with the outside.

そして、このコンデンサ素子に電解液を含浸し、外部へ
の電極引出し手段を設けたうえ、金属、樹脂等の外装ケ
ースあるいは、樹脂モールド等の手段で外装が施され、
電解コンデンサとなる。
Then, this capacitor element is impregnated with an electrolytic solution, provided with a means for drawing out the electrodes to the outside, and then covered with an outer case made of metal, resin, etc., or with means such as resin molding.
Becomes an electrolytic capacitor.

電解コンデンサは、誘電体が陽極の皮膜形成性金属の表
面に形成された酸化皮膜であり、電解液がこの酸化皮膜
と接触して、コンデンサの機能を持つことになる。すな
わち電解液が真の陰極として機能している。また、電解
液はこの酸化皮膜の劣化部分に作用して、皮膜を修復さ
せる機能を有している。このことは、酸化皮膜と電解液
の接触面で常に局所的に陽極酸化反応が常におこなわれ
ていることになる。
In an electrolytic capacitor, the dielectric is an oxide film formed on the surface of a film-forming metal as an anode, and when the electrolyte comes into contact with this oxide film, it functions as a capacitor. In other words, the electrolyte functions as a true cathode. Furthermore, the electrolytic solution has the function of acting on the deteriorated portions of this oxide film and repairing the film. This means that an anodic oxidation reaction is always occurring locally at the contact surface between the oxide film and the electrolyte.

ところが、この陽極酸化反応の部位に塩素イオンが存在
すると、アルミニウムは塩素と化合し塩化アルミニウム
となり、さらに加水分解して水酸化アルミニウムが形成
される。そして塩素イオンはあたかも触媒のように作用
してアルミニウムの腐食を進行させ、漏れ電流の増加、
内圧上昇等に始まり、ついには内部リードの断線等によ
り電解コンデンサの機能を全く損ねてしまうことになる
However, when chlorine ions are present at the site of this anodic oxidation reaction, aluminum combines with chlorine to form aluminum chloride, which is further hydrolyzed to form aluminum hydroxide. In addition, chlorine ions act as if they were catalysts, accelerating the corrosion of aluminum, increasing leakage current, and
This starts with an increase in internal pressure, and eventually leads to a breakage of internal leads, which completely impairs the functionality of the electrolytic capacitor.

このため、電解コンデンサの内部は、塩素の存在を極力
排除しなければならない。しかしながら、塩素は電極箔
のエツチング処理を、塩酸あるいは塩化ナトリウム水溶
液中でおこなうので、完全な塩素の除去は極めて難しい
。また電解コンデンサは、印刷配線基板上に半田により
取り付けられるが、この半田付は後の基板洗浄に、トリ
クロロエタン等のハロゲン系洗浄剤を使用するので、残
存洗浄剤が、電解コンデンサの封口部分やリード引き出
し部分から内部に浸透し、腐食発生の原因となることも
ある。
Therefore, the presence of chlorine must be eliminated as much as possible inside the electrolytic capacitor. However, since the electrode foil is etched with chlorine in hydrochloric acid or an aqueous sodium chloride solution, it is extremely difficult to completely remove chlorine. Furthermore, electrolytic capacitors are attached to printed wiring boards by soldering, but since this soldering uses halogen-based cleaning agents such as trichloroethane to clean the board afterward, residual cleaning agents may be left behind on the sealing parts of the electrolytic capacitors or on the leads. It may seep into the interior through the drawer and cause corrosion.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、従来のこのような技術背景に対し、内部残
存あるいは外部から侵入する塩素による腐食発生を防止
し、信頼度の高い電解コンデンサを得ることにある。
SUMMARY OF THE INVENTION The present invention aims to prevent corrosion caused by chlorine remaining inside or entering from the outside, and to provide a highly reliable electrolytic capacitor.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、陽極電極、陰極電極間にセパレータを介在
させ、電解液を含浸したコンデンサ素子に、ビスマス酸
化物を含有させたことを特徴としている。
This invention is characterized in that a separator is interposed between an anode electrode and a cathode electrode, and a capacitor element impregnated with an electrolytic solution contains bismuth oxide.

〔作用〕[Effect]

ビスマスの酸化物すなわち酸化ビスマス、あるいはビス
マス酸の塩は、その詳細な理由は明らかではないが、塩
素等の陰イオンを吸着する能力に優れている。この発明
は、このことに着目して、ビスマス酸化物をコンデンサ
素子内部に存在させて電解液中の塩素イオンを捕捉しよ
うとするものである。
Bismuth oxide, ie, bismuth oxide, or bismuth acid salt has an excellent ability to adsorb anions such as chlorine, although the detailed reason for this is not clear. This invention focuses on this and attempts to capture chlorine ions in the electrolyte by making bismuth oxide exist inside the capacitor element.

まず、ビスマスの酸化物が塩素イオンの捕捉をおこなう
能力の確認をおこなった実験例を示す。
First, we will show an experimental example in which we confirmed the ability of bismuth oxide to capture chloride ions.

実験は、N、N−ジメチルフォルムアミドにマレイン酸
およびトリエチルアミンを溶解した電解コンデンサ用電
解液に、一定量の塩素イオンを存在させ、ここにビスマ
ス酸化物を入れて所定時間放置後の塩素イオンの濃度変
化を調べた。
In the experiment, a certain amount of chlorine ions were added to an electrolytic solution for an electrolytic capacitor in which maleic acid and triethylamine were dissolved in N,N-dimethylformamide, and bismuth oxide was added thereto. The concentration change was investigated.

実験条件は、前記の電解液の塩素イオン濃度が1100
ppになるように塩化ナトリウムを添加し、この中に第
1表に示すビスマス酸化物を混合し、60℃で20時間
放置後の塩素イオン残量を測定したものである。なお、
混合したビスマス酸化物はいずれも電解液に不溶のため
、2時間毎に攪拌をおこなった。
The experimental conditions were that the chlorine ion concentration of the electrolyte was 1100
Sodium chloride was added to the solution so as to give a ppm of sodium chloride, and the bismuth oxide shown in Table 1 was mixed therein, and the remaining amount of chlorine ions was measured after the mixture was left at 60° C. for 20 hours. In addition,
Since all of the mixed bismuth oxides were insoluble in the electrolytic solution, stirring was performed every 2 hours.

これら実験例かられかるように、ビスマス酸化物を混合
した電解液は、当初1100ppに調整した塩素イオン
濃度が、所定時間経過後にいずれも1/2前後まで低下
しており、塩素イオンがビスマス酸化物に吸着されたこ
とを示している。
As can be seen from these experimental examples, the chlorine ion concentration of the electrolytic solution mixed with bismuth oxide, which was initially adjusted to 1100 pp, decreased to around 1/2 after a predetermined period of time, and the chlorine ions were oxidized by bismuth oxide. This indicates that it has been adsorbed to something.

〔実施例〕〔Example〕

次に、実際の電解コンデンサを製作して腐食の抑制につ
いて調べた結果を示す。
Next, we will present the results of an investigation into corrosion suppression using actual electrolytic capacitors manufactured.

製作した電解コンデンサは、帯状のアルミニウム電極を
セパレータ紙とともに巻回した通常の電解コンデンサで
、定格電圧63V、静電容1110μF、外形寸法lO
φX 12.5mのものである。そしてこの発明の実施
例については、マニラ繊維紙からなるセパレータ紙の表
面に、水を加えてスラリー状にしたビスマス酸化物を塗
布し、乾燥させてから電極箔とともに巻回してコンデン
サ素子とした。
The manufactured electrolytic capacitor is a normal electrolytic capacitor in which a band-shaped aluminum electrode is wound together with separator paper, and has a rated voltage of 63 V, a capacitance of 1110 μF, and an external dimension of lO.
It has a diameter of 12.5 m. In an example of the present invention, bismuth oxide made into a slurry by adding water was applied to the surface of a separator paper made of manila fiber paper, dried, and then wound together with an electrode foil to form a capacitor element.

使用電解液は、N、N−ジメチルフォルムアミド−マレ
イン酸系の電解液で、組成は次のとおりである。
The electrolytic solution used was an N,N-dimethylformamide-maleic acid based electrolytic solution and had the following composition.

N、N−ジメチルフォルムアミド   84%1t%マ
レイン酸            9wt%トリエチル
アミン         7wt%この電解液に塩化ナ
トリウムを溶解して、塩素イオンで1100ppの濃度
になるように調整した。この電解液を前記コンデンサ素
子に含浸後、外装ケースに収納し、開口部を封口部材で
密封して電解コンデンサを完成させた。
N,N-dimethylformamide 84% 1t% Maleic acid 9wt% Triethylamine 7wt% Sodium chloride was dissolved in this electrolytic solution and adjusted to a concentration of 1100 pp with chlorine ions. After impregnating the capacitor element with this electrolytic solution, it was housed in an exterior case, and the opening was sealed with a sealing member to complete an electrolytic capacitor.

この電解コンデンサを110℃で63Vの電圧を印加し
て寿命試験をおこない、腐食の発生割合をみた。なお比
較例として、ビスマス酸化物を塗布しない通常のセパレ
ータ紙で巻回したコンデンサ素子に同じ電解液を含浸し
て同様に寿命試験をおこなった。この結果を、第2表に
示す。
A life test was conducted on this electrolytic capacitor by applying a voltage of 63 V at 110° C., and the rate of occurrence of corrosion was observed. As a comparative example, a capacitor element wound with ordinary separator paper not coated with bismuth oxide was impregnated with the same electrolyte and subjected to the same life test. The results are shown in Table 2.

第2表 この結果から明らかなように、この発明のビスマス酸化
物をセパレータ紙に塗布した実施例は、いずれも、塗布
をおこなわないものに比べて腐食の発生が極めて少なく
、ビスマス酸化物が腐食抑制に効果のあることがわかる
Table 2 As is clear from the results, in all of the examples in which the bismuth oxide of the present invention was applied to the separator paper, the occurrence of corrosion was extremely low compared to the cases in which no application was made, and the bismuth oxide corroded. It can be seen that it is effective in suppressing it.

なお、この実施例で挙げたビスマス酸化物以外にモ、他
の形態の酸化ビスマス、あるいはビスマス酸の塩におい
ても、同様に塩素イオンを吸着し、電解コンデンサの腐
食を抑制する効果が得られる。
In addition to the bismuth oxide mentioned in this example, other forms of bismuth oxide or salts of bismuth acid can also be used to similarly adsorb chlorine ions and have the effect of suppressing corrosion of the electrolytic capacitor.

また、この実施例においては、ビスマス酸化物をスラリ
ー状にしてセパレータ紙に塗布して、ビスマス酸化物を
コンデンサ素子内に存在させたが、この含有のための手
段は何もこれに限られるものでなく、電極箔側に塗布を
おこなってもよい。
In addition, in this example, bismuth oxide was made into a slurry and applied to the separator paper so that bismuth oxide was present in the capacitor element, but the means for containing the bismuth oxide is not limited to this. Alternatively, the coating may be applied to the electrode foil side.

また、スラリー状にせず、粉状のものをコンデンサ素子
巻同時に電極箔とセパレータ紙間にnk布巻回してもよ
い。さらには、このビスマス酸化物はいずれも電解液に
不溶であるが、電解液中に分散させておいてコンデンサ
素子に含浸してもよい。
Alternatively, instead of making it into a slurry, a powdered material may be wound with NK cloth between the electrode foil and the separator paper at the same time as winding the capacitor element. Further, although this bismuth oxide is insoluble in the electrolytic solution, it may be dispersed in the electrolytic solution and impregnated into the capacitor element.

(発明の効果〕 以上述べたようにこの発明によれば、電解コンデンサの
塩素による腐食を抑制するので、腐食による漏れ電流の
増加、内部リードの断線、封口部の開弁等の電解コンデ
ンサにとって致命的な事故の発生を防止することができ
、極めて信頬度の高い電解コンデンサを得ることができ
る。
(Effects of the Invention) As described above, according to the present invention, corrosion of electrolytic capacitors due to chlorine is suppressed, which can be fatal to electrolytic capacitors such as increased leakage current, disconnection of internal leads, and opening of valves due to corrosion. This makes it possible to prevent the occurrence of accidents, and to obtain an electrolytic capacitor with extremely high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、巻回構造の電解コンデンサ素子をあられした、
説明図である。 1・・・コンデンサ素子、2・・・陽極箔、3・・・陰
極箔、4・・・セパレータ紙、5・・・リード。
The drawing shows an electrolytic capacitor element with a wound structure.
It is an explanatory diagram. DESCRIPTION OF SYMBOLS 1... Capacitor element, 2... Anode foil, 3... Cathode foil, 4... Separator paper, 5... Lead.

Claims (3)

【特許請求の範囲】[Claims] (1)陽極電極、陰極電極間にセパレータを介在させ、
電解液を含浸したコンデンサ素子を、外装ケース内部に
収納してなる電解コンデンサにおいて、前記コンデンサ
素子にビスマス酸化物を含有させたことを特徴とする電
解コンデンサ。
(1) A separator is interposed between the anode electrode and the cathode electrode,
1. An electrolytic capacitor comprising a capacitor element impregnated with an electrolytic solution housed inside an exterior case, characterized in that the capacitor element contains bismuth oxide.
(2)ビスマス酸化物は、コンデンサ素子の電極または
セパレータに塗布されているところの特許請求の範囲第
(1)項記載の電解コンデンサ。
(2) The electrolytic capacitor according to claim (1), wherein the bismuth oxide is applied to an electrode or a separator of a capacitor element.
(3)ビスマス酸化物は、コンデンサ素子中の電解液に
混合されているところの特許請求の範囲第(1)項記載
の電解コンデンサ。
(3) The electrolytic capacitor according to claim (1), wherein the bismuth oxide is mixed with an electrolyte in the capacitor element.
JP28060384A 1984-12-27 1984-12-27 Electrolytic capacitor Granted JPS61156716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28060384A JPS61156716A (en) 1984-12-27 1984-12-27 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28060384A JPS61156716A (en) 1984-12-27 1984-12-27 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS61156716A true JPS61156716A (en) 1986-07-16
JPH0257328B2 JPH0257328B2 (en) 1990-12-04

Family

ID=17627329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28060384A Granted JPS61156716A (en) 1984-12-27 1984-12-27 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61156716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231208A (en) * 1988-03-11 1989-09-14 Toshiba Chem Corp Conductive paste
KR20160021992A (en) 2014-08-19 2016-02-29 주식회사 동우 이앤씨 건축사사무소 Cutoff washer type waterproof-cap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231208A (en) * 1988-03-11 1989-09-14 Toshiba Chem Corp Conductive paste
KR20160021992A (en) 2014-08-19 2016-02-29 주식회사 동우 이앤씨 건축사사무소 Cutoff washer type waterproof-cap

Also Published As

Publication number Publication date
JPH0257328B2 (en) 1990-12-04

Similar Documents

Publication Publication Date Title
EP0704871A1 (en) Electrolytic capacitor
JPH05159987A (en) Solid electrolytic capacitor
JPS61156716A (en) Electrolytic capacitor
JPS61156717A (en) Electrolytic capacitor
JP4835488B2 (en) Electrolytic capacitor and electrolytic capacitor manufacturing method
JPH11126732A (en) Aluminium electrolytic capacitor
JP2538292B2 (en) Electrolytic capacitor
US3654523A (en) Wet electrolytic capacitors
JP3594259B2 (en) Aluminum electrolytic capacitors
JP4082405B2 (en) Aluminum electrolytic capacitor
JP4119510B2 (en) Aluminum electrolytic capacitor
JP4082407B2 (en) Aluminum electrolytic capacitor
JP3367221B2 (en) Electrolytic capacitor
JP4082404B2 (en) Aluminum electrolytic capacitor
JP4082406B2 (en) Aluminum electrolytic capacitor
JPS61158134A (en) Electrolytic capacitor
JP3264077B2 (en) Electrolytic capacitor
JPS61158135A (en) Electrolytic capacitor
JPH0774055A (en) Electrolytic capacitor and its tab terminal
JP4101937B2 (en) Polarized aluminum electrolytic capacitor
JPH06176975A (en) Electrolytic capacitor and its tab terminal
JP3367220B2 (en) Electrolytic capacitor
JPS58151014A (en) Aluminum electrolytic condenser
JPS6130727B2 (en)
JP4004121B2 (en) Polarized aluminum electrolytic capacitor