JPS6130638A - Method for measuring temperature of molten body in copper converter - Google Patents

Method for measuring temperature of molten body in copper converter

Info

Publication number
JPS6130638A
JPS6130638A JP59150076A JP15007684A JPS6130638A JP S6130638 A JPS6130638 A JP S6130638A JP 59150076 A JP59150076 A JP 59150076A JP 15007684 A JP15007684 A JP 15007684A JP S6130638 A JPS6130638 A JP S6130638A
Authority
JP
Japan
Prior art keywords
tuyere
converter
temperature
transparent body
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59150076A
Other languages
Japanese (ja)
Other versions
JPH0520489B2 (en
Inventor
Takayoshi Kimura
隆義 木村
Seiichi Tsuyukuchi
露口 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP59150076A priority Critical patent/JPS6130638A/en
Publication of JPS6130638A publication Critical patent/JPS6130638A/en
Publication of JPH0520489B2 publication Critical patent/JPH0520489B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0037Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids
    • G01J5/004Radiation pyrometry, e.g. infrared or optical thermometry for sensing the heat emitted by liquids by molten metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/041Mountings in enclosures or in a particular environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/05Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path
    • G01J5/051Means for preventing contamination of the components of the optical system; Means for preventing obstruction of the radiation path using a gas purge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To eliminate trouble due to fume generated in a converter, etc. by covering the outer end of the tuyere of a copper converter with a transparent body, regulating the flow rate of gas blown into a molten body in the converter to Mach 1 or above in the standard state at the tip of the tuyere, and measuring the temp. of the molten body with a noncontact type thermometer through the transparent body. CONSTITUTION:A transparent body 12 is fixed in a cap 7 on a tuyere box 1 of a copper converter to form a peeping window. A radiant pyrometer 13 is placed at a position close to the transparent body 12 at the outside of the converter and on the extension of a tuyere pipe 3. Air is sent to the tuyere from a blast pipe 2 so that the flow rate (Nm/sec) of the air blown into the molten body 8 under high pressure is regulated to Mach 1 or above in the standard state at the tip of the tuyere pipe 3, and the temp. of the molten body 8 is measured with the pyrometer 13 through the transparent body 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅転炉内の高温の溶体の温度測定法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the temperature of a hot solution in a copper converter.

〔従来の技術〕[Conventional technology]

従来、銅転炉内の溶体の温度測定には保護管の付いた浸
漬温度計、消耗型の浸漬温度計などを用いて転炉炉口か
ら直接溶体中へ温度計を浸漬するか、非接触型の光高温
計、輻射高温計などを炉口付近から溶体表面に向けて設
置するなどの方法が用いられている。
Conventionally, to measure the temperature of the solution in a copper converter, an immersion thermometer with a protection tube or a consumable immersion thermometer was used to measure the temperature of the solution in the converter. Methods such as a type optical pyrometer, radiation pyrometer, etc. are installed from near the furnace mouth toward the melt surface.

しかしながら、保護管を用いる場合には、熱的衝撃、機
械的衝撃、あるいは溶体による溶損などにより、保護管
の寿命が短かく、長期間の連続使用に耐えず、且つ費用
も高いこと、また消耗型の温度計では連続測定が不可能
なこと、且つ費用が高いことなどの欠点があった。非接
触型の光高温計、輻射高温計、二色温度計等では溶体と
測定器との間に高濃度のダスト、ヒユーム等が存在して
、しかもその濃度は刻々と変化するために精度の良い測
定が行なえないという欠点があった。
However, when using a protection tube, the lifespan of the protection tube is short due to thermal shock, mechanical shock, or erosion due to melting, it cannot withstand continuous use for a long period of time, and it is expensive. Consumable thermometers have drawbacks such as inability to perform continuous measurements and high cost. In non-contact optical pyrometers, radiation pyrometers, two-color thermometers, etc., there is a high concentration of dust, fume, etc. between the solution and the measuring instrument, and the concentration changes from moment to moment, resulting in poor accuracy. The drawback was that good measurements could not be made.

一方、銅転炉の操業では銅、鉄、硫黄を主成分とする溶
融状態の鎖中に、液面下に開口した複数の羽口を通して
空気または酸素富化空気を吹き込み、鉄分はスラグとし
、硫黄分はSOガスとして除去して銅約99%の粗銅に
仕上げている。この銅転炉で従来採用されている操業条
件は、送風圧0.6〜l、 2 kg/bm2(ゲージ
圧)であり、羽口パイプ内の気体の流速は60〜140
 Nm/sea (標準状態での流速)程度である。こ
のような条件下では、溶体中に吹き込まれた空気または
酸素富化空気の挙動は安定せず、気流がバブリング状と
なり、羽口に気泡が頻繁に吹き戻される現象が発生し、
このとき羽口パイプ内に溶体が侵入し羽口が閉塞される
On the other hand, in the operation of a copper converter, air or oxygen-enriched air is blown into a molten chain mainly consisting of copper, iron, and sulfur through multiple tuyere openings below the liquid surface, and the iron content is turned into slag. The sulfur content is removed as SO gas to produce blister copper, which is approximately 99% copper. The operating conditions conventionally adopted in this copper converter are a blowing pressure of 0.6 to 1, 2 kg/bm2 (gauge pressure), and a gas flow rate in the tuyere pipe of 60 to 140 kg/bm2 (gauge pressure).
The flow rate is approximately Nm/sea (flow rate under standard conditions). Under these conditions, the behavior of the air or oxygen-enriched air blown into the solution is unstable, the airflow becomes bubbling, and air bubbles are frequently blown back into the tuyere.
At this time, the solution enters the tuyere pipe and the tuyere is blocked.

そのため、従来の実用規模の銅転炉には、羽口を間欠的
に打ちあけるための所謂パンチング操作が必要で、羽口
の炉内に開口している反対側の炉外の端部からパンチン
グロッドを、人力またはパンチングロッドを備えたパン
チング装置を用いて打開しており、多大の労力を要する
かあるいは設備費が高価になる欠点があり、このパンチ
ング時には羽口の炉外開口端を通じて、羽口内の清浄な
送風気体を介して炉内の溶体が理論的には観察可能であ
るが、実際上は羽口端部からの高圧送風気体の漏洩、羽
口端開口部とパンチングロッドの間隙が狭いこと、パン
チングロッドをり1抜くときの高熱物の飛散により観察
は極めて困難であり、且つパンチングロッドによる打開
なしでは羽口の炉内開口端が閉塞してしまうので羽口の
炉外端に覗き窓を設けたとしても全く実用にはならない
もので〔発明が解決しようとする問題点〕 本発明は上記のような欠点や問題点を解消し、非接触型
の温度計で中間のヒユーム等による障害を受けることな
く溶体の温度を測定できるようにすることを目的とした
ものである。
For this reason, conventional practical-scale copper converters require a so-called punching operation to intermittently punch the tuyeres. The rod is punched manually or by using a punching device equipped with a punching rod, which requires a lot of labor or requires high equipment costs. Theoretically, it is possible to observe the solution in the furnace through the clean blown gas in the mouth, but in reality, it is possible to observe the leakage of high-pressure blown gas from the tuyere end and the gap between the tuyere end opening and the punching rod. Observation is extremely difficult due to the narrow space and the scattering of high-temperature materials when the punching rod is pulled out, and the opening end of the tuyere inside the furnace will be blocked unless the punching rod is used to break through the hole. Even if a viewing window was provided, it would not be practical at all. [Problems to be solved by the invention] The present invention solves the above-mentioned drawbacks and problems, and uses a non-contact type thermometer to measure intermediate fumes, etc. The purpose is to be able to measure the temperature of a solution without being disturbed by

〔問題点を解決するための手段〕[Means for solving problems]

発明者等は種々検討の結果、転炉の操業において羽口の
閉塞を防止し、従来必須とされていたパンチングを不要
とするためには羽口先端から溶体中に吹き込む気体の流
速を標準状態流速(Nm/sθC)でマツハ1以上(3
4・0Nr11/8θC以上)、送風圧力を2〜3.5
1%&とすることにより達成されることを見出し特願昭
58−222884号として出願したが、このような操
業を行なう場合に従来の羽口ボックスを改造して、羽口
の炉内開口端と反対側の端部を透明体で閉じることによ
り送風中宮時この透明体を介して炉外から炉内の溶体が
観察できるようにし、炉外には非接触型の温度計を設け
て炉内溶体温度を測定するようにしたものであって、こ
のような溶体の測温可能な羽口は大型転炉の場合、例え
ば約50本ある羽口のうち数本あれば事足りるので全羽
口のうち一部のみの羽口を高温送風を適用してもよく、
また全羽口を高速送風してそのうち一部のみの羽口に透
明体を装着しても良い。
As a result of various studies, the inventors determined that the flow rate of the gas injected into the solution from the tip of the tuyere should be set to a standard value in order to prevent clogging of the tuyere during converter operation and eliminate the need for punching, which was previously considered essential. Matsuha 1 or more (3
4.0Nr11/8θC or higher), blowing pressure 2 to 3.5
He discovered that this could be achieved by setting the tuyeres to 1% and filed a patent application No. 58-222884, but when carrying out such operations, the conventional tuyere box was modified and the opening end of the tuyere inside the furnace was changed. By closing the opposite end with a transparent body, the melt inside the furnace can be observed from outside the furnace through this transparent body during the ventilation process, and a non-contact thermometer is installed outside the furnace to monitor the inside of the furnace. It is designed to measure the temperature of the solution, and in the case of a large converter, only a few of the approximately 50 tuyeres that can measure the temperature of the solution are sufficient, so it is possible to measure the temperature of the solution. High-temperature air may be applied to only some of the tuyeres.
Alternatively, all the tuyeres may be blown at high speed and transparent bodies may be attached to only some of them.

以下図面を用いて本発明方法に使用される羽口の構造を
従来構造の羽口と対比して説明する。第2図は従来の羽
口の構造を示す断面図で、1は羽口ボックス、2は圧搾
気体の送風管、3は鋼管前の羽口管で、転炉炉体4・、
耐火煉瓦5を貫通してその一端は炉内に開口している。
The structure of the tuyere used in the method of the present invention will be explained below with reference to the drawings in comparison with a tuyere of conventional structure. Fig. 2 is a cross-sectional view showing the structure of a conventional tuyere, in which 1 is a tuyere box, 2 is a compressed gas blast pipe, 3 is a tuyere pipe in front of a steel pipe, and the converter body 4...
One end of the refractory brick 5 is opened into the furnace.

6は鋼球で、羽口ボックス1の羽口管3の延長線上で炉
内開口端と反対側に設けられたキャップ7の部分から高
圧気体が漏洩するのを防止するための球状弁となってい
る。これによって送風管2から送られる高圧気体は鋼球
6をキャップ7の内側に押しつけるので羽口管3を経て
ほぼ全量が転炉溶体8内に吹き込まれる。然しなから従
来の羽口部の流速では逐次羽口が閉塞されてくるのでパ
ンチング操作が必要になる。第3図は、パンチングロッ
ドを挿入した状態を示す図で羽口内径よりも若干細いパ
ンチングロッド9をキャップ7から挿入すると鋼球6は
パンチングロッド9に押されて、羽口ボックス]のポケ
ット部10に移動し、パンチングロッド9上にのった形
となる。パンチングロッド9により羽口管3の閉塞部は
打開されるが、パンチングロッド9とキャップ7との間
隙11からは送風気体が漏洩する。
Reference numeral 6 denotes a steel ball, which serves as a spherical valve to prevent high-pressure gas from leaking from a portion of a cap 7 provided on the opposite side of the opening end of the furnace on the extension of the tuyere pipe 3 of the tuyere box 1. ing. As a result, the high-pressure gas sent from the blast pipe 2 presses the steel ball 6 against the inside of the cap 7, so that almost the entire amount is blown into the converter melt 8 through the tuyere pipe 3. However, at the conventional flow rate in the tuyeres, the tuyeres are successively closed, making a punching operation necessary. FIG. 3 shows a state in which the punching rod is inserted. When the punching rod 9, which is slightly thinner than the inner diameter of the tuyere, is inserted from the cap 7, the steel ball 6 is pushed by the punching rod 9, and the punching rod 9 is pushed into the pocket of the tuyere box. 10, and is placed on the punching rod 9. Although the punching rod 9 breaks the blockage of the tuyere pipe 3, the blown gas leaks from the gap 11 between the punching rod 9 and the cap 7.

本発明方法においては、羽口流速をマツハ1以上とする
ので、羽口の閉塞が起こらず、パンチングロッド9使用
の必要がないので、第1図に示すように従来の羽口ボッ
クス1を改造して羽口ボックス1のキャップ7の部分に
透明体12を装着し閉ざし、覗き窓とした。このように
すれば炉外から羽口ボックスおよび羽口管内のダスト、
ヒユーム等を含まない清浄な気体を通して炉内溶体を直
接観察できるので羽口延長線上の透明体12の近くに例
えば輻射高温計13を置けば炉内溶体温度を連続的に測
定することができる。尚、この高温計は羽口延長線上の
羽口ボックスに固定しておけば操業中の転炉の若干の傾
動に対処でき、またスラグの排出、粗銅の排出の際のよ
うに転炉を送風状態から90°近く傾転させるときは温
度測定も不要となるので温度計を簡単に取はずせるよう
にしておくと都合が良い。
In the method of the present invention, since the tuyere flow velocity is set to 1 or higher, the tuyere does not become clogged and there is no need to use the punching rod 9. Therefore, the conventional tuyere box 1 is modified as shown in FIG. Then, a transparent body 12 was attached to the cap 7 of the tuyere box 1 and closed to serve as a viewing window. In this way, dust inside the tuyere box and tuyere pipe can be removed from outside the furnace.
Since the solution in the furnace can be directly observed through clean gas that does not contain fumes, the temperature of the solution in the furnace can be continuously measured by placing, for example, a radiation pyrometer 13 near the transparent body 12 on the extension line of the tuyere. If this pyrometer is fixed to the tuyere box on the tuyere extension line, it can cope with slight tilting of the converter during operation, and it can also be used to prevent the converter from blowing air, such as when discharging slag or blister copper. It is convenient to have a thermometer that can be easily removed since it is not necessary to measure the temperature when tilting it by nearly 90 degrees from the original state.

羽口ボックスのキャップ7の部分に装着する透明体12
は耐熱ガラスに限らず温度と送風圧力に耐えて透明度の
よいものであれば良く、例えば石英、水晶、耐熱プラス
チックのようなものでも良′v10 本発明を適用するために羽口先端部での流速をマツハ1
以上に維持するには送風圧を2晰佃以上とすることが好
ましい。何故ならば従来の転炉のように送風圧が0.6
〜1.21cg2血で羽口管流速が標準状態で60〜1
40 Nrrv/sθCのときの羽口直径、本数では風
量が多すぎるので一般に羽口直径を細くするか、羽口本
数を減らすことになるため送風抵抗に打勝つためには送
風圧を高くしておくことが好ましい。
Transparent body 12 attached to the cap 7 of the tuyere box
The material is not limited to heat-resistant glass, but may be made of any material that can withstand temperature and blowing pressure and has good transparency, such as quartz, crystal, or heat-resistant plastic. Matsuha 1 flow rate
In order to maintain this level, it is preferable to set the air blowing pressure to 2 or more. This is because the blowing pressure is 0.6 like in a conventional converter.
~1.21cg2 blood and tuyere flow rate is 60-1 under standard conditions
40 Nrrv/sθC, the air flow rate is too high with the tuyere diameter and number of tuyeres, so generally the tuyere diameter must be made thinner or the number of tuyeres must be reduced.In order to overcome the air blowing resistance, the air blowing pressure must be increased. It is preferable to leave it there.

(作用〕 本発明によって転炉炉内の溶体温度が連続的に測定でき
るようになったので、その温度は例え真の温度を示さな
くとも、少なくても相対温度の変化を知ることができ、
これを用いて冷開の装入量をコントロールして溶体温度
の変動を極力少なくすることができる。
(Function) The present invention has made it possible to continuously measure the temperature of the solution inside the converter furnace, so even if the temperature does not indicate the true temperature, it is possible to at least know the change in relative temperature.
Using this, it is possible to control the charging amount for cold opening and minimize fluctuations in the solution temperature.

転炉内の反応は発熱反応であるため、熱が過剰となり一
般にはスクラップや煙灰などを操業中に炉口から装入す
るなどして溶湯を適当な温度範囲に維持するようにして
いる0溶湯の温度が上がりすぎると煉瓦損傷が烈しくな
り、また温度が下がりすぎると、皺と媛の分離が悪くな
ったり溶体の飛散が多くなって好ましくない。しかしな
がらこれまでは温度の連続的測定が不可能あるいは困難
であり、従って溶湯温度の大幅な変動は避けられなかっ
たが、例えば温度測定をしている羽口以外の羽口を経由
して送風中に懸濁させて粉状の煙灰を溶湯温度の変動を
与えないようにその量をコントロールしながら吹込むこ
とができる。
Since the reaction in the converter is an exothermic reaction, there is excess heat, and generally scraps, smoke, etc. are charged from the furnace opening during operation to maintain the molten metal within an appropriate temperature range. If the temperature is too high, the bricks will be severely damaged, and if the temperature is too low, the separation of the wrinkles and the cracks will be poor and the solution will be scattered more, which is undesirable. However, until now it has been impossible or difficult to measure the temperature continuously, and large fluctuations in the temperature of the molten metal have been unavoidable. Powdered smoke ash can be blown into the molten metal while controlling its amount to avoid fluctuations in the temperature of the molten metal.

(実施例〕 鍍処理量6t/回のps転炉(煉瓦内寸法1.5mφX
1.7mL)に内径21 m/mの羽口4本を設け、0
u53.5重量%の鍍a、Otを装入し1酸素濃度34
%の酸素富化空気を1750 Nm /Hの割合で送風
した0羽口先端部1の流速は351 N+r4/sθC
(マツハ1.03)となった。溶剤として珪酸鉱を添加
し造鍛期を2回に分けて送風し、その送風時間は65分
であった。
(Example) PS converter with a plating capacity of 6 t/time (brick internal dimension 1.5 mφ
1.7 mL) with four tuyeres with an inner diameter of 21 m/m, and
U53.5% by weight of a and Ot were charged and the oxygen concentration was 34.
% oxygen-enriched air was blown at a rate of 1750 Nm/H, the flow velocity at the tip of the tuyere 1 was 351 N+r4/sθC
(Matsuha 1.03). Silicate ore was added as a solvent and the forging period was divided into two times and air was blown for 65 minutes.

緩流し後造鋼期の送風を行ない粉状の自溶炉煙灰(Ou
28.6%、87.8%、Fe 7.5%、SiO5,
7%)550に9を冷開として5〜80ky1分の割合
で羽口キャップ部が透明体で閉じられていない3本の羽
口を経由して造銅期送風開始後3〜42分の間に溶体温
度が予め設定したパターンになるように吹込んだ。その
ときの輻射高温計の指示の変動を第4図に示す。この造
銅期は60分で終了した。
After slow flowing, air is blown during the steelmaking stage to produce powdered flash smelting furnace smoke (Ou
28.6%, 87.8%, Fe 7.5%, SiO5,
7%) 550 to 9 cold open, blowing air at a rate of 5 to 80 ky for 1 minute through three tuyere whose tuyere caps are transparent and not closed for 3 to 42 minutes after the start of air blowing during the copper making period. The temperature of the solution was blown into a predetermined pattern. Figure 4 shows the fluctuations in the radiation pyrometer reading at that time. This copper making period ended in 60 minutes.

〔比較例〕[Comparative example]

実施例と同一の転炉で0u54.1重量%の皺6.1 
tを装入し、同様に送風して造媛期を終了し、次いで造
銅期には同じ組成の自溶炉煙灰をペレット状とじ造銅期
の送風開始後3分後に200 kg、1o分後に100
 g 、 20分後に200 kg合計500 kgの
冷開を炉口を経由して装入し、羽口からは輻射高温計に
より温度を測定したその結果を同じく第4図に示す。
0u54.1wt% wrinkles 6.1 in the same converter as in the example
200 kg, 10 minutes after the start of air blowing in the copper making period, 3 minutes after the start of air blowing in the copper making period. 100 later
After 20 minutes, 200 kg (500 kg in total) of cold open air was charged through the furnace mouth, and the temperature was measured from the tuyere using a radiation pyrometer. The results are also shown in FIG.

(発明の効果〕 第4図から明らかなように従来のように炉口から間欠的
に冷開を装入する場合には炉内溶体の温度変化は著しい
が、本発明によって測定した溶湯温度を単に測定のみに
止めずに前述のような冷開の適切な装入量にフィードバ
ックするなどに応用することにより転炉の溶湯温度の一
定化が得られるなど、その利用範囲は大なるものがある
(Effects of the Invention) As is clear from Fig. 4, when the cold opening is charged intermittently from the furnace mouth as in the conventional method, the temperature of the melt in the furnace changes significantly. It has a wide range of uses, not just for measurement, but also for providing feedback to the appropriate charging amount for cold opening as mentioned above, making it possible to stabilize the temperature of the molten metal in the converter. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による銅転炉の溶体温度測定法を実施す
るための銅転炉の羽口の断面図、第2図は従来の銅転炉
の羽口の断面図、第3図は第2図の羽口のパンチング時
の状態を示した断面図、第4図は本発明測定法を利用し
て操業を行なったとき及び従来操業時の溶体温度の制御
状態を示した図である。 1・・羽口ボックス、2・・送風管、3・・羽口管、1
.・・転炉炉体、5・・耐火煉瓦、6・・鋼球、7・・
キャップ、8・・転炉溶体・ 9・・パンチングロッド、10・・ポケット部、11・
・間隙、12・・透明体、13・・輻射高温計。
Fig. 1 is a cross-sectional view of a tuyere of a copper converter for carrying out the method of measuring the solution temperature of a copper converter according to the present invention, Fig. 2 is a cross-sectional view of a tuyere of a conventional copper converter, and Fig. 3 is a cross-sectional view of a tuyere of a conventional copper converter. Fig. 2 is a cross-sectional view showing the state of the tuyere during punching, and Fig. 4 is a diagram showing the solution temperature control state when operating using the measuring method of the present invention and during conventional operation. . 1.Tuyere box, 2.Blow pipe, 3.Tuyere pipe, 1
..・・Converter furnace body, 5.・Refractory bricks, 6.・Steel balls, 7.・
Cap, 8. Converter melt, 9. Punching rod, 10. Pocket part, 11.
・Gap, 12...Transparent body, 13...Radiation pyrometer.

Claims (1)

【特許請求の範囲】[Claims] (1)銅転炉の羽口の少なくとも一部を、該羽口の炉外
側端部を透明体で閉じ、溶体中に吹き込む気体の羽口先
端での流速を、標準状態流速(Nm/sec)で、マツ
ハ1以上として羽口に送風し、前記透明体を介して炉内
溶体温度を非接触型温度計で測定することを特徴とする
銅転炉の溶体温度測定法。
(1) At least a part of the tuyere of the copper converter is closed at the outside end of the tuyere with a transparent material, and the flow rate at the tip of the tuyere of the gas blown into the solution is set to the standard state flow rate (Nm/sec). ), a method for measuring the temperature of a solution in a copper converter, characterized in that the temperature of the solution in the furnace is measured with a non-contact thermometer by blowing air into the tuyere with a Matsuha of 1 or more, and through the transparent body.
JP59150076A 1984-07-19 1984-07-19 Method for measuring temperature of molten body in copper converter Granted JPS6130638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59150076A JPS6130638A (en) 1984-07-19 1984-07-19 Method for measuring temperature of molten body in copper converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59150076A JPS6130638A (en) 1984-07-19 1984-07-19 Method for measuring temperature of molten body in copper converter

Publications (2)

Publication Number Publication Date
JPS6130638A true JPS6130638A (en) 1986-02-12
JPH0520489B2 JPH0520489B2 (en) 1993-03-19

Family

ID=15488991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59150076A Granted JPS6130638A (en) 1984-07-19 1984-07-19 Method for measuring temperature of molten body in copper converter

Country Status (1)

Country Link
JP (1) JPS6130638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290721A (en) * 1988-05-16 1989-11-22 Mitsubishi Metal Corp Method for continuous smelting of sulfide metal ore
US5180228A (en) * 1989-09-18 1993-01-19 Asahi Glass Company Ltd. Radiation thermometer for molten iron and method for measuring the temperature of molten iron

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752639A (en) * 1980-09-16 1982-03-29 Gen Scientific Corp Power generator
JPS5886385A (en) * 1981-11-19 1983-05-23 大同特殊鋼株式会社 Device and method of preventing cloud and dew condensation of peep window in heating furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752639A (en) * 1980-09-16 1982-03-29 Gen Scientific Corp Power generator
JPS5886385A (en) * 1981-11-19 1983-05-23 大同特殊鋼株式会社 Device and method of preventing cloud and dew condensation of peep window in heating furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290721A (en) * 1988-05-16 1989-11-22 Mitsubishi Metal Corp Method for continuous smelting of sulfide metal ore
US5180228A (en) * 1989-09-18 1993-01-19 Asahi Glass Company Ltd. Radiation thermometer for molten iron and method for measuring the temperature of molten iron

Also Published As

Publication number Publication date
JPH0520489B2 (en) 1993-03-19

Similar Documents

Publication Publication Date Title
US3080755A (en) Metallurgical process control
US3161499A (en) Metallurgical process control
US3997335A (en) Method of optimum burning of carbon monoxide in a converter
JPS6130638A (en) Method for measuring temperature of molten body in copper converter
CA1243839A (en) Method for preventing dust depositions or build-ups in off-gas channels of electrothermal smelting furnaces
US4416443A (en) Process and apparatus for detection of the stoppage of a tuyere for blowing a gas through the bottom of a refining converter
US3652262A (en) Refining of pig iron
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
RU2241186C1 (en) Method for controlling and automatic control of stability of forming of slag lining in wall-adjacent layer of furnace
JPS62124209A (en) Method for measuring interior of furnace
JP3033263B2 (en) Hot metal production furnace and hot metal production method
JPS62224611A (en) Metallurgical furnace having tap hole
JP2000227278A (en) Measuring apparatus of combustion zone
KR0146794B1 (en) Furnace coke diameter managing method
JP2002013881A (en) Slag level detecting method and method for controlling lance based on it
JPH0762464A (en) Temperature measuring instrument for molten material in converter
JPS61139610A (en) Method for carrying out low silicon operation of blast furnace
GB1419363A (en) Metal refining
Visuri OULU 2014 University of Oulu Faculty of Technology Process Metallurgy Group
Steiler et al. Physical chemistry of slag-metal-gas reactions in the blast furnace
JPS61153214A (en) Method for operation of blowing powder into blast furnace
JPH05239522A (en) Production of molten iron
Kreuz Measuring Probe
JPS62224612A (en) Cooler for melt reduction furnace
KR20050095159A (en) An apparatus for measuring temperature of inner side of a melter-gasifier and temperature measuring method using the same