JPS6130610A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPS6130610A
JPS6130610A JP14854284A JP14854284A JPS6130610A JP S6130610 A JPS6130610 A JP S6130610A JP 14854284 A JP14854284 A JP 14854284A JP 14854284 A JP14854284 A JP 14854284A JP S6130610 A JPS6130610 A JP S6130610A
Authority
JP
Japan
Prior art keywords
blast furnace
ore
furnace
pressure loss
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14854284A
Other languages
Japanese (ja)
Other versions
JPH0365402B2 (en
Inventor
Hideomi Yanaka
谷中 秀臣
Hirohisa Hotta
堀田 裕久
Masanori Nagano
長野 誠規
Hidetoshi Noda
野田 英俊
Kazuhiro Furukawa
古川 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14854284A priority Critical patent/JPS6130610A/en
Publication of JPS6130610A publication Critical patent/JPS6130610A/en
Publication of JPH0365402B2 publication Critical patent/JPH0365402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Abstract

PURPOSE:To improve the air permeability of a softening and melting zone in a blast furnace and to reduce pressure loss in the furnace by mixing a prescribed uncoked carbonaceous material with ore and charging the mixture into the blast furnace. CONSTITUTION:The uncoked carbonaceous material contg. <=5% volatile matter is mixed with iron ore to prepare a starting material for a blast furnace. This starting material is charged into a blast furnace, air is sent from a tuyere, and pig iron is discharged. By this method, the air permeability of a softening and melting zone in the blast furnace is improved, pressure loss in the furnace is reduced, and the conditions of the furnace are stabilized.

Description

【発明の詳細な説明】 本発明は高炉操業法の創案に係り、高炉内における通風
が均一で圧力損失が少なく炉況の安定した高炉操業を簡
易且つ低コストに実施し得る方法を提供しようとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the creation of a method for operating a blast furnace, and it is an object of the present invention to provide a method that enables simple and low-cost operation of a blast furnace with uniform ventilation, low pressure loss, and stable furnace conditions. It is something to do.

産業上の利用分野 高炉の操業方法。Industrial applications How to operate a blast furnace.

従来の技術 鉱石と共にコークスを用いて操業する高炉操業法は古く
から世界的に実施されて来たところであるが、このよう
な従来の高炉操業においては鉱石およびコークスの何れ
もを少なくとも500m以上の層厚とすべきものとされ
、この程度に達しない場合には高炉内において該装入物
が沈下し還元溶融する過程において鉱石層の溶融などに
伴い折角の層状装入状態が適切に維持されないこととな
り、層状装入状態を前提とした操業条件による安定操業
を得難くなるとの考慮によるものである。
Conventional technology Blast furnace operation methods that use coke together with ore have been practiced around the world for a long time. If this thickness is not reached, the layered charging condition will not be maintained properly due to the melting of the ore layer during the process of sinking and reduction melting of the charge in the blast furnace. This is due to the consideration that it will be difficult to obtain stable operation under operating conditions that assume a stratified charging state.

発明が解決しようとする問題点 ところが上記し7tような従来法による場合において該
高炉に対する熱風の吹込みに関して相当の圧力損失があ
ることは一般に仰られている通りであって、水柱数百目
にも達し、従って送風プロワ−などの運転電力費は美大
なものとならざるを得ないし、又斯うした装入物層内に
おいては部分的に通風し易い部分が発生すると集中的に
該部分から通気し送風の炉内均一化を得ることが容易で
なく、炉内での還元反応、ガス利用率、燃料比などの操
業条件についても必ずしも好ましい結果を得難く、操業
安定化に関してち゛充分となし難い。なお上記したよう
な高炉内装入炭材としては冶金用コークスとして相当長
時間に亘るコークス化処理を行ったものを用いるべきも
のとさnlこのためには前記炭材を一旦コークス化に適
した粒度に破砕し、このものをコークス炉に装入してコ
ークス化処理をなし、次いで焦出しされたものを冷却せ
しめてから再び破砕して高炉装入に適した粒度に整粒分
級することが必要で69、それらの処理はエネルギー的
および工数的の何れからしても美大であり、又そ扛らの
工程の間におけるロスも大きく歩留り的にも不利である
。特に上記したようなコークス化処理は作業環境的に好
ましいものでないことは周知の通シで、このため近時に
おいては前記した赤熱窯出しコークスの冷却の如きにつ
いても従来一般の注水冷却に代え乾式冷却技術などが採
用されるに到っているが、それふ にして作業環境は必ずしも充分となし得す、一方目的の
コークスを得るための作業行程必要時間ないし設備は巨
大化してコストアップは嵩まざ5得ない。これらのコー
クスを得るための処理費、コークス化過程における歩留
り低下などは上述した熱風吹込みのためのブロワ−運転
動力費などと共に結局は、高炉操業費、出銑コストとし
て影響せざるを得す、鉄鋼製産費高騰の重要因子たらざ
るを得ない。
Problems to be Solved by the Invention However, it is generally said that in the case of the conventional method such as the 7t described above, there is a considerable pressure loss due to the injection of hot air into the blast furnace, and the Therefore, the operating power cost of the blower blower, etc. must be extremely high, and if there is a part of the charge layer that is easily ventilated, that part will be concentrated. It is not easy to ventilate air from the inside of the furnace to make the air uniform inside the furnace, and it is also difficult to obtain favorable results regarding operating conditions such as the reduction reaction inside the furnace, gas utilization rate, and fuel ratio. It's difficult to do. The above-mentioned carbon material to be introduced into the blast furnace should be metallurgical coke that has been subjected to a coking process for a considerable period of time. It is necessary to crush this material into a coke oven and coke it, then cool the charred material, then crush it again and classify it to a particle size suitable for charging into a blast furnace. However, these processes are expensive both in terms of energy and man-hours, and the losses during these steps are also large, which is disadvantageous in terms of yield. In particular, it is well known that the above-mentioned coking process is not favorable in terms of the working environment, and for this reason, in recent years, dry-type cooling has been adopted instead of conventional water injection cooling for coke discharged from red-hot kilns. Although cooling technology has been adopted, the working environment is not necessarily sufficient, but the time required for the work process and the equipment required to obtain the desired coke are large, resulting in increased costs. I don't get a 5. The processing costs to obtain this coke and the reduction in yield during the coking process, along with the power costs for operating the blower for blowing hot air mentioned above, ultimately have an impact on blast furnace operating costs and tapping costs. This cannot but be an important factor in the rise in steel manufacturing costs.

「発明の構成」 問題点を解決するための手段 本発明は上記した工うな実情に鑑み検討を重ねて創案さ
れたものであって、鉄鉱石と炭材とを原料として高炉に
装入すると共に羽口から送風して出銑を図るに当り、揮
発分が5%以下のコークス化処理を受けない炭材を前記
鉄鉱石に混合して装入することを特徴とする高炉操業法
である。
``Structure of the Invention'' Means for Solving the Problems The present invention has been devised after repeated studies in view of the above-mentioned unfavorable circumstances. This blast furnace operating method is characterized in that, in order to tap iron by blowing air through the tuyeres, carbonaceous material having a volatile content of 5% or less and not subjected to coking treatment is mixed with the iron ore and charged.

作用 鉄鉱石と炭材とを混合して高炉内に装入することにより
高炉内の軟化溶融帯の通気状態が改善され、均一で圧力
損失の少ない高炉操業が可能となる。従って前記炭材と
して殊更にコークス化されたものを必要とせず、揮発分
5%以下の炭材全コークス化処理を経しめないで使用す
ることが可能となり、このようにしてコークス化処理を
経ない炭材の使用はコークス化のための督しく煩雑で、
環境的に好ましくない作業を不要にする。圧力損失の少
ない送風は該送風のための動力費を低減し、上記のよう
にコークス化を必要としない炭材の使用とも相俟って充
分な低コスト化、低エネルギー化をもたらす。前記炭材
は10111以下の小粒状態のものを採用することが可
能である。
By mixing iron ore and carbonaceous material and charging the mixture into the blast furnace, the ventilation condition of the softened and molten zone in the blast furnace is improved, making it possible to operate the blast furnace uniformly and with little pressure loss. Therefore, it is not necessary to specifically coke the carbonaceous material, and it becomes possible to use the carbonaceous material with a volatile content of 5% or less without undergoing a complete coking process. The use of carbonaceous materials is difficult and complicated for coking,
Eliminate the need for environmentally undesirable work. Air blowing with low pressure loss reduces the power cost for the air blowing, and together with the use of carbonaceous material that does not require coking as described above, it brings about sufficient cost and energy savings. The carbonaceous material may be in the form of small particles of 10111 or less.

実施例 上記したような本発明によるものを更に適宜添付図面を
参照し、具体的に説明すると、本発明者等は上記したよ
うな従来法に従い、51111以上の焼結鉱およびコー
クスを用い、鉱石(焼結鉱)を55Qw、コーク−”t
500muの各層厚として交互に炉頂から装入形成し、
羽口からの熱風吹込みで操業する場会について、その炉
内各温度帯域毎の圧力損失状況を仔細に測定した結果は
第1図の通りであって、1200℃までは50aH20
にも達しない僅かな圧力損失であるのに対し、この12
00℃を超えると急激に圧力損失が上昇し、1400℃
前後の帯域では400wH,Oを超えるようなピーク点
が示され、それ以上の温度帯域となると再び圧力損失が
減少し、1600℃程度では数十IIIH,0となる。
EXAMPLE To specifically explain the invention according to the above-mentioned invention with further appropriate reference to the attached drawings, the present inventors used sintered ore of 51111 or more and coke according to the above-mentioned conventional method. (sintered ore) 55Qw, coke-”t
Each layer thickness of 500 mu was charged and formed alternately from the top of the furnace.
Figure 1 shows the results of detailed measurements of the pressure loss in each temperature range in the furnace where hot air is blown from the tuyere.
This 12
When the temperature exceeds 00℃, the pressure loss increases rapidly, and the temperature rises to 1400℃.
A peak point exceeding 400wH,O is shown in the front and rear bands, and in the temperature range above that, the pressure loss decreases again, reaching several tens of IIIH,0 at about 1600°C.

勿論上記のような圧力損失についての具体的数値やピー
ク点位置などは用いられた鉱石の被還元率のような品質
等によってそれなりに異シ、例えiピーク点については
1200〜1420℃程度の範囲内に顕われ、該ピーク
点における圧力損失値としても300〜700wH,0
の範囲内となるとしても全般的な様相としては第1図に
示したような状態となるものである。然して上記のよう
に1200℃以上となることによって圧力損失が急激に
上昇する事由について検討してみると、上記のような温
度帯域となると鉱石の軟化溶融が発生すると共に鉱石層
の収縮現象を生じ、更には溶融メタル分がコークス層に
流下浸入することとなり、それらの何れによっても装入
層の粒子間で得られていた空yJが閉塞することによる
ものと認められる。又斯うした空隙閉塞は1500〜1
.600℃のような帯域となるとそのメタル分がコーク
ス層から流下分離さ汎てコークス層のみに近い状態とな
ることにょシ再び圧力損失は低下せしめられる。
Of course, the specific values and peak point positions for the pressure drop as mentioned above vary depending on the quality of the ore used, such as the reduction rate. The pressure loss value at the peak point is 300 to 700 wH, 0
Even if it falls within the range of , the general situation will be as shown in FIG. However, when we consider the reason why the pressure drop suddenly increases when the temperature exceeds 1200℃ as mentioned above, we find that in the above temperature range, the ore softens and melts, and the ore layer shrinks. Furthermore, the molten metal flowed down and penetrated into the coke layer, and it is recognized that both of these causes the voids yJ that had been obtained between the particles of the charging layer to become clogged. Moreover, such void occlusion is 1,500 to 1
.. When the temperature reaches a zone of 600° C., the metal component is separated from the coke layer in a downstream manner, and the coke layer becomes almost exclusively present, and the pressure loss is reduced again.

そこで上記のような圧力損失ピーク点を解消させること
について本発明者等は検討と推考を重ね、1例として鉱
石(焼結w、)とコークス金体積比で等しい割合として
混合したものを装入し第1図と同様に各温度帯域におけ
る圧力損失を測定した結果は第2図に示す通りであって
、1400℃前後における圧力損失ピーク点は略完全に
解消され、全温度帯域において数十wH,0以下となる
ことが確認され、その通気状態が均一化すると共に炉況
その他も安定且つ良好となることを知った。
Therefore, the inventors of the present invention have repeatedly studied and speculated on how to eliminate the above-mentioned pressure loss peak point, and as an example, they charged a mixture of ore (sintered w) and coke gold at an equal volume ratio. The pressure loss was measured in each temperature range in the same manner as in Fig. 1, and the results are shown in Fig. 2.The pressure loss peak point around 1400°C was almost completely eliminated, and the pressure loss was measured at several tens of wH in the entire temperature range. , 0 or less, and it was found that the ventilation condition became uniform and the furnace condition and other conditions became stable and good.

然して上記のようにして炉内通気条件を改櫂し、特に1
200℃以上のような高温の帯域における圧力損失(即
ち通気条件)が改善されるならば前記炭材として、コー
クス化処理したものを採用することが必ずしも要件をな
すものでないと推測さオt1 このような技術的関係か
らして上記のように鉄鉱石と炭材と全混合して装入する
手法に従いコークス化しない炭材の採用について仔細な
検討を重ね本発明を完成した。即ちこのような目的にお
いて用いられる炭材としてFi揮発分が高いと高炉内に
装入された該原料からこの揮発分が気散せしめられ、そ
扛が今日において一般化している高炉ガス清浄化系統の
機能を阻ゴする。然して斯かる揮発分の含有程度につい
て検討しf?:、結果に工れば前記炭材の配合量如何も
関係するとは言え、一般的に5%以下であるとそれが焼
結鉱などの鉱石と混合して利用されるものであることな
どからして高炉ガス中における揮散量が少なく、該高炉
ガス清浄化系における電気集塵機などの機能を損うこと
なしに実施し得るものであることが確認さ′nた。
However, by changing the ventilation conditions in the furnace as described above, especially 1.
It is assumed that it is not necessarily necessary to use a coked material as the carbon material if pressure loss (i.e. ventilation conditions) in a high temperature zone such as 200°C or higher is improved. In view of the above technical relationship, the present invention was completed after careful consideration of the use of a carbonaceous material that does not form coke, in accordance with the above-mentioned method of completely mixing and charging iron ore and carbonaceous material. In other words, if the carbonaceous material used for this purpose has a high Fi volatile content, this volatile content will be diffused from the raw material charged into the blast furnace, and this method is used in the blast furnace gas cleaning system that is common today. inhibit the function of However, the degree of content of such volatile matter has to be considered. Although the amount of the carbonaceous material blended depends on the result, generally speaking, if it is less than 5%, it is used by mixing it with ore such as sintered ore. It was confirmed that the amount of volatilization in the blast furnace gas was small and that it could be implemented without impairing the functions of the electrostatic precipitator in the blast furnace gas cleaning system.

前記した揮発分5%以下の炭材としてはベトナム産無煙
炭、北朝鮮産三神洞炭や木炭などがある。
Examples of the above-mentioned charcoal materials having a volatile content of 5% or less include anthracite from Vietnam, Samshindong charcoal from North Korea, and charcoal.

上記したような本発明によるものの具体的操業例につい
て説明すると以下の如くである。
A specific example of the operation of the apparatus according to the present invention as described above will be explained as follows.

操業例1 ベトナム産ホンゲイ炭(V、M=4.2%)の8〜25
鱈のものを炭材となし、一方鉄鉱石としては8〜251
01のブレンディング鉱と5〜50mの焼結鉱を用い、
このような炭材と鉄鉱石を鉱石/炭材比(0/C)’に
2.20として混合したものを高炉に装入し、羽口から
1100℃の熱風を2.5 kg/cdlの圧力で吹込
み操業した。
Operation example 1 Hongay coal from Vietnam (V, M = 4.2%) 8-25
Cod material is used as charcoal material, while iron ore is 8-251
Using 01 blending ore and 5-50m sintered ore,
A mixture of such carbonaceous material and iron ore with an ore/charcoal material ratio (0/C)' of 2.20 was charged into a blast furnace, and hot air at 1100°C was blown at 2.5 kg/cdl from the tuyere. Blow operation was carried out under pressure.

炉内における1300〜1400℃の温度帯域での圧力
損失ピーク点は60wH!0であって安定な高炉操業を
なすことができ、高炉ガスの回収系における揮発分を測
定した結果は40 PI)mであって電気集塵機などの
運転に支障のないことが確認された。又前記ホンゲイ炭
とコークスの配合割合を電比で2=1とした場合におい
ても高炉ガス回収系の揮発分は50 pl)mで同様に
安定した操業をなすことができた。
The pressure loss peak point in the temperature range of 1300 to 1400°C in the furnace is 60wH! It was confirmed that the volatile content in the blast furnace gas recovery system was 40 PI)m and that there was no problem with the operation of the electrostatic precipitator. Furthermore, even when the mixing ratio of Hongei coal and coke was set to 2=1 in electric ratio, the volatile content of the blast furnace gas recovery system was 50 pl)m, and stable operation could be achieved in the same way.

操業例2 北朝鮮産三神洞炭(V、M=2%)の8〜25■のもの
を炭材となし、一方鉄鉱石としては8〜251Elのブ
レンディング鉱と25〜75闘の焼結鉱を用い、このよ
うな炭材と鉄鉱石を鉱V炭材比(0/C)k2.20と
して混合したものを高炉に装入し羽口から1100℃の
熱風を2.5ky/cIltの圧力で吹込み操業した。
Operation example 2 Samshindong coal (V, M = 2%) from North Korea with 8 to 25 liters is used as coal material, while iron ore is blended ore with 8 to 251 EL and sintered ore with 25 to 75 EL. A mixture of carbonaceous material and iron ore with an ore V-charcoal material ratio (0/C) k2.20 was charged into a blast furnace, and hot air at 1100°C was blown through the tuyere at a pressure of 2.5ky/cIlt. Blow operation was carried out.

炉内における1 300〜1400℃の温度帯域での圧
力損失ピーク点は40+a+H20であって安定な高炉
操業をなすことができ、高炉ガスの回収系における揮発
分を測定した結果は351)I)mであって電気集塵機
などの運転に支障のないことは操業例1の場合と同様で
あった。
The pressure loss peak point in the temperature range of 1300 to 1400°C in the furnace is 40 + a + H20, which allows stable blast furnace operation, and the results of measuring the volatile content in the blast furnace gas recovery system are 351) I) m As in Operation Example 1, there was no problem with the operation of the electrostatic precipitator, etc.

操業例3 木炭(V、M = 0.2 % ) (D 8〜25 
trim )ものを炭材となし、一方鉄鉱石としては8
〜25鵡のブレンディング鉱と25〜75藺の焼結鉱を
用い、このような炭材と鉄鉱石金鉱石/炭材比(0/C
)t2.10として混合したものを高炉に装入し、羽口
から1100℃の熱風e2.2kl?/−の圧力で吹込
み操業した。
Operation example 3 Charcoal (V, M = 0.2%) (D 8-25
trim) as carbonaceous material, while iron ore is 8
Using ~25 tons of blended ore and 25 to 75 tons of sintered ore, such carbonaceous materials and iron ore gold ore/charcoal materials ratio (0/C
) The mixture as t2.10 is charged into a blast furnace, and hot air e2.2kl of 1100℃ is emitted from the tuyere. The blowing operation was carried out at a pressure of /-.

炉内における1300〜1400℃の温度帯域での圧力
損失ピーク点は70MH,Oであって安定な高炉操業を
なすことができ、高炉ガスの回収系における揮発分を測
定した結果は3o ppmであって電気集塵機などの運
転に支障のないことは操業例1.2の場付と同様であっ
て、即ちこの場合においてはコークスを全く使用しない
ものであったが好まL7い高炉操業が可能であることを
確認した。
The pressure loss peak point in the temperature range of 1300 to 1400°C in the furnace was 70 MH,O, allowing stable blast furnace operation, and the volatile content in the blast furnace gas recovery system was measured at 30 ppm. The fact that there is no problem in the operation of the electrostatic precipitator, etc. is the same as in operation example 1.2, that is, in this case, no coke was used at all, but a preferable blast furnace operation is possible. It was confirmed.

「発明の効果」 以上説明したような本発明によるとIは炭材と鉱石とを
混合して装入することにより高炉内における軟化溶融帯
の通気性状を改善し均一で圧力損失の少ない有利な高炉
操業を可能にし、然して上記炭材として殊更にコークス
たることを必要とせず、揮発分5%以下の炭材をコーク
ス化処理を経しめないで使用することにエリコークス化
処理のための著しく煩雑で、又作業環境的に好ましくな
い処理作業を不要化し、上記のように圧力損失の少ない
ことから送風のための動力費低減の如きとも相俟って充
分に低コスト、低エネルギー化された高炉操業全実現し
得るものであって、工業的にその効果の大きい発明であ
ることは明らかである。
``Effects of the Invention'' According to the present invention as explained above, I improves the ventilation properties of the softened molten zone in the blast furnace by charging a mixture of carbonaceous material and ore, which is advantageous in that it is uniform and has low pressure loss. It enables blast furnace operation, does not require coking as the above-mentioned carbonaceous material, and uses carbonaceous material with a volatile content of 5% or less without undergoing coking treatment, which is extremely complicated for Ericoke treatment. In addition, it eliminates the need for processing work that is unfavorable in terms of the working environment, and as mentioned above, the low pressure loss reduces the power cost for blowing air, making it a sufficiently low-cost, low-energy blast furnace. It is clear that this invention is capable of realizing all operations and is industrially highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すもので桑って、@1図
は従来の高炉操業における各温度帯域の圧力損失関係を
示した図表、第2図は本発明の炭材、鉱石混合装入の1
例について第1図と同様な関係を示す図表である。
The drawings show the technical content of the present invention; Figure 1 is a chart showing the pressure loss relationship in each temperature range in conventional blast furnace operation, and Figure 2 is a diagram showing the carbon material and ore mixing equipment of the present invention. Entering 1
FIG. 2 is a diagram showing relationships similar to FIG. 1 for examples; FIG.

Claims (1)

【特許請求の範囲】[Claims] 鉄鉱石と炭材とを原料として高炉に装入すると共に羽口
から送風して出銑を図るに当り、揮発分が5%以下のコ
ークス化処理を受けない炭材を前記鉄鉱石に混合して装
入することを特徴とする高炉操業法。
When charging iron ore and carbonaceous materials as raw materials into a blast furnace and tapping the iron by blowing air from the tuyeres, carbonaceous materials with a volatile content of 5% or less and which are not subjected to coking treatment are mixed with the iron ore. A blast furnace operating method characterized by charging.
JP14854284A 1984-07-19 1984-07-19 Method for operating blast furnace Granted JPS6130610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14854284A JPS6130610A (en) 1984-07-19 1984-07-19 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14854284A JPS6130610A (en) 1984-07-19 1984-07-19 Method for operating blast furnace

Publications (2)

Publication Number Publication Date
JPS6130610A true JPS6130610A (en) 1986-02-12
JPH0365402B2 JPH0365402B2 (en) 1991-10-11

Family

ID=15455099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14854284A Granted JPS6130610A (en) 1984-07-19 1984-07-19 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPS6130610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343816A (en) * 1993-06-03 1994-12-20 Nishikawa Sangyo Kk Hygroscopic sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343816A (en) * 1993-06-03 1994-12-20 Nishikawa Sangyo Kk Hygroscopic sheet

Also Published As

Publication number Publication date
JPH0365402B2 (en) 1991-10-11

Similar Documents

Publication Publication Date Title
US3765869A (en) Method of producing iron-ore pellets
WO2021219277A1 (en) Method for producing liquid pig iron from a dri product
CN105087864A (en) Method for directly producing titanium carbide from vanadium titano-magnetite
DE3306910A1 (en) METHOD FOR PRODUCING FERROSILIZIUM
JPS60255937A (en) Manufacture of cold-bound briquette
CN105039626A (en) Vanadium slag preparation method
US2944884A (en) Method of beneficiating reducing and briquetting iron ore
US2549994A (en) Production of ferromanganese
EP0249006B1 (en) Method for manufacturing chromium-bearing pig iron
CN115404339B (en) Method for developing and utilizing oolitic high-phosphorus iron ore
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
JPS6130610A (en) Method for operating blast furnace
US3428445A (en) Iron ore reduction
JPS60169543A (en) Manufacture of ferromanganese
US2934422A (en) Process for the production of ferrochromium products
US3215521A (en) Method for the direct reduction of iron ore pellets
US2674531A (en) Iron recovery
US1334004A (en) Process for the treating of titaniferous iron ore
US4443250A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing materials
US3068090A (en) Alkali metal salts and base additions in non-titaniferous ore reductions
US3393068A (en) Manufacture of ferro alloys containing silicon
JPS6342315A (en) Smelting-reduction of ore
US1428061A (en) Manufacture of iron and steel
US3037856A (en) Ferromanganese production
US2690390A (en) Method of reducing iron oxides