JPH0365402B2 - - Google Patents

Info

Publication number
JPH0365402B2
JPH0365402B2 JP14854284A JP14854284A JPH0365402B2 JP H0365402 B2 JPH0365402 B2 JP H0365402B2 JP 14854284 A JP14854284 A JP 14854284A JP 14854284 A JP14854284 A JP 14854284A JP H0365402 B2 JPH0365402 B2 JP H0365402B2
Authority
JP
Japan
Prior art keywords
blast furnace
ore
pressure loss
coke
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14854284A
Other languages
Japanese (ja)
Other versions
JPS6130610A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14854284A priority Critical patent/JPS6130610A/en
Publication of JPS6130610A publication Critical patent/JPS6130610A/en
Publication of JPH0365402B2 publication Critical patent/JPH0365402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 「発明の目的」 本発明は高炉操業法の創案に係り、高炉内にお
ける通風が均一で圧力損失が少なく炉況の安定し
た高炉操業を簡単且つ低コストに実施し得る方法
を提供しようとするものである。
[Detailed Description of the Invention] "Object of the Invention" The present invention relates to the creation of a blast furnace operating method, which enables simple and low-cost operation of a blast furnace with uniform ventilation, low pressure loss, and stable furnace conditions. It is intended to provide a method.

産業上の利用分野 高炉の操業方法。Industrial applications How to operate a blast furnace.

従来の技術 鉱石と共にコークスを用いて操業する高炉操業
法は古くから世界的に実施されて来たところであ
るが、このような従来の高炉操業においては鉱石
およびコークスの何れもを少なくとも500mm以上
の層厚とすべきものとされ、この程度に達しない
場合には高炉内において該装入物が沈下し還元溶
融する過程において鉱石層の溶融などに伴い折角
の層状装入状態が適切に維持されないこととな
り、層状装入状態を前提とした操業条件による安
定操業を得難くなるとの考慮によるものである。
Conventional technology Blast furnace operation methods that use coke together with ore have been practiced around the world for a long time. If this thickness is not reached, the layered charging condition will not be maintained properly due to the melting of the ore layer during the process of sinking and reduction melting of the charge in the blast furnace. This is due to the consideration that it will be difficult to obtain stable operation under operating conditions that assume a stratified charging state.

発明が解決しようとする問題点 ところが上記したような従来方法による場合に
おいて該高炉に対する熱風の吹込みに関して相当
の圧力損失があることは一般に知られている通り
であつて、水柱数百mmにも達し、従つて送風ブロ
ワーなどの運転電力費は莫大なものとならざるを
え得ないし、又斯うした装入物層内においては部
分的に通風し易い部分が発生すると集中的に該部
分から通気し送風の炉内均一化を得ることが容易
ではなく、炉内での還元反応、ガス利用率、燃料
比などの操業条件についても必ずしも好ましい結
果を得難く、操業安定化に関しても充分となし難
い。なお上記したような高炉内装入炭材としては
治金用コークスとして相当長時間に亘るコークス
化処理を行つたものを用いるべきものとされ、こ
のためには前記炭材を一日コークス化に適した粒
度に破砕し、このものをコークス炉に装入してコ
ークス化処理をなし、次いで窯出しされたものを
冷却せしめてから再び破砕して高炉装入に適した
粒度に整粒分級することが必要であり、それらの
処理はエネルギー的および工数的の何れからして
も莫大であり、又それらの工程の間におけるロス
も大きく歩留り的にも不利である。特に上記した
ようなコークス化処理は作業環境的に好ましいも
のでないことは周知の通りで、このため近時にお
いては前記した赤熱窯出しコークスの冷却の如き
についても従来一般の注水冷却に代え乾式冷却技
術などが採用されるに到つているが、それにして
も作業環境は必ずしも充分となし得ず、一方目的
のコークスを得るための作業行程必要時間ないし
設備は巨大化してコストアツプは嵩まざるを得な
い。これらのコークスを得るための処理費、コー
クス化過程における歩留り低下などは上述した熱
風吹込みのためのプロワー運転動力費などと共に
結局は、高炉操業費、出銑コストとして影響せざ
るを得ず、鉄鋼製産費高騰の重要因子たらざるを
得ない。
Problems to be Solved by the Invention However, it is generally known that in the case of the conventional method as described above, there is a considerable pressure loss when hot air is blown into the blast furnace. Therefore, the operating power cost of the blower, etc. must be enormous, and if there is a part of the charge layer that is easily ventilated, the air will be concentrated away from that part. It is not easy to ventilate and uniformize the air flow inside the furnace, and it is also difficult to obtain favorable results regarding operating conditions such as the reduction reaction within the furnace, gas utilization rate, and fuel ratio, and there is also insufficient stabilization of operation. hard. It should be noted that the above-mentioned carbon material to be fed into the blast furnace should be metallurgical coke that has been subjected to a coking process for a considerable period of time. This product is crushed to a particle size suitable for charging into a blast furnace, then charged into a coke oven for coking treatment, and then taken out of the kiln, cooled, and then crushed again to size and classify to a particle size suitable for charging into a blast furnace. These processes are enormous in terms of both energy and man-hours, and losses during these steps are also large, which is disadvantageous in terms of yield. In particular, it is well known that the above-mentioned coking process is not favorable in terms of the working environment, and for this reason, in recent years, dry cooling has been adopted instead of conventional water injection cooling for cooling the coke discharged from the red-hot kiln. Although new technology has been adopted, the working environment is not always sufficient, and the time required for the work process and the equipment required to obtain the desired coke are becoming large, leading to increased costs. The processing costs to obtain these cokes, the yield loss during the coking process, etc., along with the blower operating power costs for blowing hot air mentioned above, ultimately have an impact on blast furnace operating costs and tapping costs. This cannot help but be an important factor in the rise in steel manufacturing costs.

「発明の構成」 問題点を解決するための手段 本発明は上記したような実情に鑑み検討を重ね
て創案されたものであつて、鉄鉱石と炭材とを原
料として高炉に装入すると共に羽口から送風して
出銑を図るに当り、揮発分が5%以下のコークス
化処理を受けない炭材を前記鉄鉱石に混合して装
入することを特徴とする高炉操業法である。
"Structure of the Invention" Means for Solving the Problems The present invention was devised after repeated studies in view of the above-mentioned circumstances. This blast furnace operating method is characterized in that, in order to tap iron by blowing air through the tuyeres, carbonaceous material having a volatile content of 5% or less and not subjected to coking treatment is mixed with the iron ore and charged.

作 用 鉄鉱石と炭材とを混合して高炉内に装入するこ
とにより高炉内の軟化溶融帯の通気状態が改善さ
れ、均一で圧力損失の少ない高炉操業が可能とな
る。従つて前記炭材として殊更にコークス化され
たものを必要とせず、揮発分5%以下の炭材をコ
ークス化処理を経しめないで使用することが可能
となり、このようにしてコークス化処理を経ない
炭材の使用はコークス化のための著しく煩雑で、
環境的に好ましくない作業を不用にする。圧力損
失の少ない送風は該送風のための動力費を低滅
し、上記のようにコーク化を必要としない炭材の
使用とも相俟つて充分な低コスト化、低エネルギ
ー化をもたらす。前記炭材は10mm以下の小粒状態
のものを採用することが可能である。
Effect By mixing iron ore and carbonaceous materials and charging them into the blast furnace, the ventilation condition of the softened and molten zone in the blast furnace is improved, making it possible to operate the blast furnace uniformly and with less pressure loss. Therefore, it is not necessary to specifically coke the carbonaceous material, and it is possible to use a carbonaceous material with a volatile content of 5% or less without undergoing coking treatment. The use of unprocessed carbonaceous materials for coking is extremely complicated;
Eliminate environmentally undesirable tasks. Air blowing with low pressure loss reduces the power cost for the air blowing, and together with the use of carbonaceous material that does not require coking as described above, it brings about sufficient cost and energy savings. The carbonaceous material may be in the form of small particles of 10 mm or less.

実施例 上記したような本発明によるものを更に適宜添
付図面を参照し、具体的に説明すると、本発明者
等は上記したような従来法に従い、5mm以上の焼
結鉱およびコークスを用い、鉱石(焼結鉱)を
650mm、コークスを500mmの各層厚として交互に炉
頂から装入形成し、羽口からの熱風吹込みで操業
する場合について、その炉内各温度帯域毎の圧力
損失状況を仔細に測定した結果は第1図の通りで
あつて、1200℃までは50mmH2Oにも達しない僅
かな圧力損失であるのに対し、この1200℃を越え
ると急激に圧力損失が上昇し、1400℃前後の帯域
では400mmH2Oを越えるようなピーク点が示さ
れ、それ以上の温度帯域となると再び圧力損失が
減少し、1600℃程度では数十mmH2Oとなる。勿
論上記のような圧力損失についての具体的数値や
ピーク点位置などは用いられた鉱石の被還元率の
ような品質等によつてそれになりに異り、例えば
ピーク点については1200〜1420℃程度の範囲内に
顕われ、該ピーク点における圧力損失値としても
300〜700mmH2Oの範囲内となるとしても全般的
な様相としては第1図に示したような状態となる
ものである。然して上記のように1200℃以上とな
ることによつて圧力損失が急激に上昇する事由に
ついて検討してみると、上記のような温度帯域と
なると鉱石の軟化溶融が発生すると共に鉱石層の
収縮現象を生じ、更には溶融メタル分がコークス
層に流下浸入することとなり、それらの何れによ
つても装入層の粒子間で得られていた空隙が閉塞
することによるものと認められる。又斯うした空
隙閉塞は1500〜1600℃のような帯域となるとその
メタル分がコークス層から流下分離されてコーク
ス層のみに近い状態となることにより再び圧力損
失は低下せしめられる。
EXAMPLES To specifically explain the invention according to the above-mentioned invention with further appropriate reference to the attached drawings, the present inventors used sintered ore and coke of 5 mm or more in accordance with the above-mentioned conventional method. (sintered ore)
The results of detailed measurements of pressure loss in each temperature range in the furnace are as follows: 650 mm and 500 mm of coke are alternately charged from the top of the furnace and operated with hot air blowing from the tuyeres. As shown in Figure 1, up to 1200℃, the pressure loss is slight, not even reaching 50mmH 2 O, but beyond this 1200℃, the pressure loss increases rapidly, and in the band around 1400℃. A peak point exceeding 400 mmH 2 O is shown, and in the temperature range above that, the pressure loss decreases again, reaching several tens of mmH 2 O at about 1600°C. Of course, the specific values and peak point position of the pressure drop mentioned above vary depending on the quality of the ore used, such as the reduction rate.For example, the peak point is about 1200 to 1420℃. It appears within the range of , and the pressure loss value at the peak point is also
Even if the temperature is within the range of 300 to 700 mmH 2 O, the general situation will be as shown in FIG. 1. However, when we consider the reason why the pressure drop suddenly increases when the temperature exceeds 1200℃ as mentioned above, we find that in the above temperature range, the ore softens and melts, and the ore layer shrinks. In addition, the molten metal flowed down and penetrated into the coke layer, and it is recognized that this is due to the fact that the voids between the particles in the charged layer are clogged. In addition, when such void clogging occurs in a temperature range of 1500 DEG to 1600 DEG C., the metal component is separated from the coke layer by flowing down and the coke layer becomes almost exclusively present, thereby reducing the pressure loss again.

そこで上記のような圧力損失ピーク点を解消さ
せることについて本発明者等は検討と推考を重
ね、1例として鉱石(焼結鉱)とコークスを体積
比で等しい割合として混合したものを装入し第1
図と同様に各温度帯域における圧力損失を測定し
た結果は第2図に示す通りであつて、1400℃前後
における圧力損失ピーク点は簡完全に解消され、
全温度帯域において数十mmH2O以下となること
が確認され、その通気状態が均一化すると共に炉
況その他も安定且つ良好となることを知つた。
Therefore, the inventors of the present invention have repeatedly studied and speculated on how to eliminate the above-mentioned pressure loss peak point, and as an example, they charged a mixture of ore (sintered ore) and coke in equal volume ratios. 1st
The pressure loss was measured in each temperature range in the same manner as shown in the figure, and the results are shown in Figure 2.The pressure loss peak point around 1400℃ was easily and completely eliminated.
It was confirmed that the temperature was several tens of mmH 2 O or less in the entire temperature range, and it was found that the ventilation condition became uniform and the furnace condition and other conditions became stable and good.

然して上記のようにして炉内通気条件を改善
し、特に1200℃以上のような高温の帯域における
圧力損失(即ち通気条件)が改善されるならば前
記炭材として、コークス化処理したものを採用す
ることが必ずしも要件をなすものでないと推測さ
れ、このような技術的関係からして上記のように
鉄鉱石と炭材とを混合して装入する手法に従いコ
ークス化しない炭材の採用について仔細な検討を
重ね本発明を完成した。即ちこのような目的にお
いて用いられる炭材としては揮発分が高いと高炉
内に装入された該原料からこの揮発分が気散せし
められ、それが今日において一般化している高炉
ガス清浄化系統の機能を阻害する。然して斯かる
揮発分の含有程度について検討した結果によれば
前記炭材の配合量如何も関係するとは言え、一般
的に5%以下であるとそれが焼結鉱などの鉱石と
混合して利用されるものであることなどからして
高炉ガス中における揮散量が少なく、該高炉ガス
清浄化系における電気集塵機などの機能を損うこ
となしに実施し得るものであることが確認され
た。
However, if the ventilation conditions in the furnace can be improved as described above, and the pressure loss (i.e. ventilation conditions) can be improved, especially in a high temperature zone such as 1200°C or higher, then a coking treated carbon material can be used as the carbon material. It is presumed that it is not necessarily a requirement to do so, and based on these technical relationships, details regarding the adoption of carbonaceous material that does not turn into coke according to the above-mentioned method of mixing and charging iron ore and carbonaceous material are being considered. After extensive study, the present invention was completed. In other words, if the carbonaceous material used for this purpose has a high volatile content, this volatile content will be evaporated from the raw material charged into the blast furnace, and this will cause problems in the blast furnace gas cleaning system that is common today. impede function. However, the results of examining the content of such volatile matter show that although it is related to the amount of the carbonaceous material blended, in general, if it is less than 5%, it is difficult to mix it with ores such as sintered ore and use it. It was confirmed that the amount of volatilization in the blast furnace gas is small, and that it can be implemented without impairing the functions of the electrostatic precipitator in the blast furnace gas purification system.

前記した揮発分5%以下の炭材としてはベトナ
ム産無煙炭、北朝鮮産三神洞炭や木炭などがあ
る。
Examples of the above-mentioned charcoal materials having a volatile content of 5% or less include anthracite from Vietnam, Samshindong charcoal from North Korea, and charcoal.

上記したような本発明によるものの具体的操業
例についで説明すると以下の如くである。
A specific example of the operation of the apparatus according to the present invention as described above will be explained below.

操業例 1 ベトナム産ホンゲイ炭(V.M=4.2%)の8〜
25mmのものを炭材となし、一方鉄鉱石としては8
〜25mmのブレンデイング鉱と5〜50mmの焼結鉱を
用い、このような炭材と鉄鉱石を鉱石/炭材比
(O/C)を2.20として混合したものを高炉に装
入し、羽口から1100℃の熱風を2.5Kg/cm3の圧力
で吹込み操業した。
Operation example 1 Hongay coal from Vietnam (VM = 4.2%) 8~
25 mm is used as carbon material, while iron ore is 8
Using blending ore of ~25 mm and sintered ore of 5 to 50 mm, a mixture of such carbonaceous material and iron ore with an ore/charcoal material ratio (O/C) of 2.20 was charged into a blast furnace and Operation was carried out by blowing hot air at 1100°C from the mouth at a pressure of 2.5 kg/cm 3 .

炉内における1300〜1400℃の温風帯域での圧力
損失ピーク点は60mmH2Oであつて安定な高炉操
業をなすことができ、高炉ガスの回収系における
揮発分を測定した結果は40ppmであつて電気集塵
機などの運転に支障のないことが確認された。又
前記ボンゲイ炭とコークスの配合割合を嵩比で
2:1とした場合においても高炉ガス回収系の揮
発分は50ppmで同様に安定した操業をなすことが
できた。
The pressure loss peak point in the hot air zone of 1300 to 1400°C in the furnace is 60 mmH 2 O, allowing stable blast furnace operation, and the volatile content in the blast furnace gas recovery system was measured at 40 ppm. It was confirmed that there was no problem with the operation of electrostatic precipitators, etc. Further, even when the mixing ratio of Bongei coal and coke was 2:1 in bulk ratio, stable operation could be achieved with the volatile content of the blast furnace gas recovery system being 50 ppm.

操業例 2 北朝鮮産三神洞炭(V.M=2%)の8〜25mm
のものを炭材となし、一方鉄鉱石としては8〜25
mmのブレンデイング鉱と25〜75mmの焼結鉱を用
い、このような炭材と鉄鉱石を鉱石/炭材比
(O/C)を2.20として混合したものを高炉に装
入し、羽口から1100℃の熱風を2.5Kg/cm3の圧力
で吹込み操業した。
Operation example 2 Samshindong coal from North Korea (VM = 2%) 8-25mm
8 to 25 as iron ore.
Using blended ore of mm and sintered ore of 25 to 75 mm, a mixture of such carbonaceous material and iron ore with an ore/carbonaceous ratio (O/C) of 2.20 was charged into a blast furnace, and the tuyere The reactor was operated by blowing hot air at 1100°C at a pressure of 2.5 kg/cm 3 .

炉内における1300〜1400℃の温風帯域での圧力
損失ピーク点は60mmH2Oであつて安定な高炉操
業をなすことができ、高炉ガスの回収系における
揮発分を測定した結果は35ppmであつて電気集塵
機などの運転に支障のないことは操業例1の場合
と同様であつた。
The pressure loss peak point in the hot air zone of 1300 to 1400℃ inside the furnace is 60 mmH 2 O, allowing stable blast furnace operation, and the volatile content in the blast furnace gas recovery system was measured at 35 ppm. As in Operation Example 1, there was no problem in the operation of the electrostatic precipitator, etc.

操業例 3 木炭(V.M=0.2%)の8〜25mmのものを炭材
となし、一方鉄鉱石としては8〜25mmのブレンデ
イング鉱と25〜75mmの焼結鉱を用い、このような
炭材と鉄鉱石を鉱石/炭材比(O/C)を2.10と
して混合したものを高炉に装入し、羽口から1100
℃の熱風を2.2Kg/cm3の圧力で吹込み操業した。
Operation example 3 The charcoal material is 8-25 mm of charcoal (VM = 0.2%), while the iron ore is blended ore of 8-25 mm and sintered ore of 25-75 mm. A mixture of iron ore and iron ore with an ore/charcoal ratio (O/C) of 2.10 was charged into a blast furnace, and 1100
It was operated by blowing hot air at a temperature of 2.2 kg/cm 3 at a pressure of 2.2 kg/cm 3 .

炉内における1300〜1400℃の温風帯域での圧力
損失ピーク点は70mmH2Oであつて安定な高炉操
業をなすことができ、高炉ガスの回収系における
揮発分を測定した結果は30ppmであつて電気集塵
機などの運転に支障のないことは操業例1、2の
場合と同様であつて、即ちこの場合においてはコ
ークスを全く使用しないものであつたが好ましい
高炉操業が可能であることを確認した。
The pressure loss peak point in the hot air zone of 1300 to 1400°C in the furnace is 70 mmH 2 O, allowing stable blast furnace operation, and the volatile content in the blast furnace gas recovery system was measured at 30 ppm. It was confirmed that there was no problem in the operation of the electrostatic precipitator, etc., as in the case of operation examples 1 and 2. In other words, in this case, although no coke was used at all, it was confirmed that a preferable blast furnace operation was possible. did.

「発明の効果」 以上を説明したような本発明によるときは炭材
と鉱石とを混合して装入することにより高炉内に
おける軟化溶融帯の通気性状を改善し均一で圧力
損失の少ない有利な高炉操業を可能にし、然して
上記炭材として殊更にコークスたることを必要と
せず、揮発分5%以下の炭材をコークス化処理を
経しめないで使用することによりコークス化処理
のための著しく煩雑で、又作業環境的に好ましく
ない処理作業を不要化し、上記のように圧力損失
の少ないことから送風のための動力費低減の如き
とも相俟つて充分に低コスト、低エネルギー化さ
れた高炉操業を実現し得るものであつて、工業的
にその効果の大きい発明であることは明らかであ
る。
"Effects of the Invention" According to the present invention as described above, by charging a mixture of carbonaceous material and ore, the ventilation properties of the softened and molten zone in the blast furnace are improved, and an advantageous effect with uniformity and low pressure loss is achieved. It enables blast furnace operation, does not particularly require coking as the above-mentioned carbonaceous material, and uses a carbonaceous material with a volatile content of 5% or less without undergoing coking treatment, making the coking process extremely complicated. In addition, it eliminates the need for processing work that is unfavorable in terms of the working environment, and as mentioned above, the low pressure loss reduces the power cost for blowing air, making it possible to operate a blast furnace at sufficiently low costs and with low energy consumption. It is clear that this invention is capable of realizing the following and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであつ
て、第1図は従来の高炉操業における各温度帯域
の圧力損失関係を示した図表、第2図は本発明の
炭材、鉱石混合装入の1例について第1図と同様
な関係を示す図表である。
The drawings show the technical content of the present invention. Figure 1 is a chart showing the pressure loss relationship in each temperature zone in conventional blast furnace operation, and Figure 2 is a diagram showing the mixed charging of carbonaceous material and ore of the present invention. 2 is a chart showing the same relationship as in FIG. 1 for one example of FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄鉱石と炭材とを原料として高炉に装入する
と共に羽口から送風して出銑を図るに当り、揮発
分が5%以下のコークス化処理を受けない炭材を
前記鉄鉱石に混合して装入することを特徴とする
高炉操業法。
1. When charging iron ore and carbonaceous materials as raw materials into a blast furnace and tapping the iron by blowing air from the tuyeres, carbonaceous materials with a volatile content of 5% or less and not subjected to coking treatment are mixed with the iron ore. A blast furnace operating method characterized by charging.
JP14854284A 1984-07-19 1984-07-19 Method for operating blast furnace Granted JPS6130610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14854284A JPS6130610A (en) 1984-07-19 1984-07-19 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14854284A JPS6130610A (en) 1984-07-19 1984-07-19 Method for operating blast furnace

Publications (2)

Publication Number Publication Date
JPS6130610A JPS6130610A (en) 1986-02-12
JPH0365402B2 true JPH0365402B2 (en) 1991-10-11

Family

ID=15455099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14854284A Granted JPS6130610A (en) 1984-07-19 1984-07-19 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPS6130610A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343816A (en) * 1993-06-03 1994-12-20 Nishikawa Sangyo Kk Hygroscopic sheet

Also Published As

Publication number Publication date
JPS6130610A (en) 1986-02-12

Similar Documents

Publication Publication Date Title
AU2003261814B2 (en) Method for producing titanium oxide containing slag
CN102057060B (en) Process and device for producing pig iron or liquid steel precursors
JPS6029430A (en) Method for recovering zn and pb from iron and steel dust
CN109306407B (en) Device and method for treating and utilizing metallurgical zinc-containing dust
WO2012002338A1 (en) Process for producing molten steel using particulate metallic iron
US3262771A (en) Recovery of steel and zinc from waste materials
CN102534194A (en) Method for producing ferronickel from laterite-nickel ore
JP5428534B2 (en) Pig iron production method using high zinc content iron ore
JP3482838B2 (en) Operating method of mobile hearth furnace
CN105039626B (en) A kind of vanadium slag preparation method
US3311465A (en) Iron-containing flux material for steel making process
EP1445336B1 (en) Method for producing metallic iron
JP2000054039A (en) Metal lead recovering method from lead-containing material
CN110629054B (en) Preparation device of manganese-rich slag
JPS60169543A (en) Manufacture of ferromanganese
JPH10147806A (en) Production of high quality reduced iron from ironmaking dust
US4102676A (en) Method for recovering lead from battery mud
JPH0365402B2 (en)
CN104611497A (en) Method for directly reducing nickel-bearing pig iron from laterite-nickel ore in thermal-storage nickel-iron tunnel kiln
US4443250A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing materials
CN110724839A (en) Preparation method of manganese-rich slag
JP3732024B2 (en) Method for producing reduced iron pellets
US2266816A (en) Manufacture of high grade iron and steel
JPH09268332A (en) Apparatus for recognition zinc oxide from iron making dust
JP7293910B2 (en) Method for smelting oxide ore