JPS6130481B2 - - Google Patents

Info

Publication number
JPS6130481B2
JPS6130481B2 JP1406379A JP1406379A JPS6130481B2 JP S6130481 B2 JPS6130481 B2 JP S6130481B2 JP 1406379 A JP1406379 A JP 1406379A JP 1406379 A JP1406379 A JP 1406379A JP S6130481 B2 JPS6130481 B2 JP S6130481B2
Authority
JP
Japan
Prior art keywords
conductivity
circuit
output terminal
plugging
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1406379A
Other languages
Japanese (ja)
Other versions
JPS55106001A (en
Inventor
Taketoshi Kato
Takashi Torii
Masayoshi Niimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1406379A priority Critical patent/JPS55106001A/en
Publication of JPS55106001A publication Critical patent/JPS55106001A/en
Publication of JPS6130481B2 publication Critical patent/JPS6130481B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Description

【発明の詳細な説明】 本発明はフオークリフトトラツク等の電気車に
おいてプラツギング制御機能を有するものの電気
車制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric vehicle control device for electric vehicles such as forklift trucks having a plugging control function.

従来、フオークリフト等に使用される電気車制
御装置におけるアクセル踏込み角θに対するチヨ
ツパ導通率Dの特性は第1図に示す特性60より
も特性50の方が良好であるとされている。この
理由は低速でのアクセル調整範囲が広くとれるた
めである。そして、このような従来装置において
は、プラツギング制動時にアクセルで制動調整を
行う場合に第1図の特性61のような特性で制御
が行なわれていた。
Conventionally, it has been said that the characteristic 50 of the chopper conductivity D with respect to the accelerator depression angle θ in an electric vehicle control device used for a forklift or the like is better than the characteristic 60 shown in FIG. The reason for this is that the accelerator can be adjusted over a wide range at low speeds. In such a conventional device, when braking is adjusted using the accelerator during plugging braking, control is performed using a characteristic such as characteristic 61 in FIG. 1.

しかし、このような特性61では略領域62に
てチヨツパ導通率Dの変化が行なわれる為に、制
動トルク調整範囲が少ないという欠点がある。
However, in such a characteristic 61, since the chopper conductivity D changes approximately in a region 62, there is a drawback that the braking torque adjustment range is small.

本発明は上記の欠点を解消するために、力行時
には、アククセル手段の操作角に対する導通率可
変手段の導通率が、アクセル手段の操作角を大き
くするに従つて増加割合が大きくなるようにする
と共に、プラツギング制動時におけるアクセル手
段の操作角に略正比例して導通率可変手段の導通
率が直線状に大きくなるようにすることにより、
プラツギング操作時のアクセル手段の操作を容易
にし、かつ理想的に行なうことのできる電気車制
御装置を提供することを目的とするものである。
In order to solve the above-mentioned drawbacks, the present invention is configured so that, during power running, the conductivity of the conductivity variable means with respect to the operating angle of the accelerator means increases at a higher rate as the operating angle of the accelerator means increases. By making the conductivity of the conductivity variable means increase linearly in approximately direct proportion to the operating angle of the accelerator means during plugging braking,
It is an object of the present invention to provide an electric vehicle control device that allows easy and ideal operation of an accelerator means during plugging operation.

以下、本発明方法ならびにその装置の一実施例
を示す図面について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Below, drawings showing an embodiment of the method and apparatus of the present invention will be described.

第3図において、1は界磁巻線2と電機子3と
を有する電気車駆動用の直流電動機、4は導通率
可変手段となる特にサイリスタチヨツパ、5は4
が遮断時に電動機電流を流すフライホイールダイ
オード、6はプラツギング制動時に電機子3の巻
線に発生する発電電流を流すためのプラツギング
ダイオード、7はアクセル手段を構成する可変抵
抗器であり図示せぬアクセルペダルの踏み込みに
より可動接点8が固定接点9より10への移動す
る可変抵抗器であり、普通タイプのものとして市
販されているところの直線特性型、すなわち、操
作量に正比例して出力となる抵抗値が直線的にリ
ニヤに変化するものである。
In FIG. 3, 1 is a DC motor for driving an electric car having a field winding 2 and an armature 3, 4 is a thyristor chopper serving as a conductivity variable means, and 5 is a 4
is a flywheel diode that allows the motor current to flow when the motor is cut off, 6 is a plugging diode that allows the generated current generated in the winding of the armature 3 to flow during plugging braking, and 7 is a variable resistor that constitutes the accelerator means (not shown). It is a variable resistor in which the movable contact 8 moves from the fixed contact 9 to 10 when the accelerator pedal is depressed, and it has a linear characteristic type that is commercially available as a normal type, that is, the output is directly proportional to the amount of operation. The resistance value changes linearly.

8は前記可変抵抗器7の可動接点でアクセル手
段7の出力電圧が現われる。11は最大チヨツパ
導通率設定用の抵抗、12は最小チヨツパ導通率
設定用の抵抗である。13は定電流回路でその出
力に定電流を供給する。14はソフトスタートを
行なうための遅延用のコンデンサ、15はオペア
ンプでボルテージホロアと呼ばれているものであ
る。16,17は逆流防止用のダイオード、18
はこの種回路では周知の電圧制御発振器で入力電
圧に正比例して出力電圧の「1」、「0」状態の比
率を変化することができる。19はプラツギング
制動検出回路であり、公知のものを使用すること
ができる。
8 is a movable contact of the variable resistor 7, at which the output voltage of the accelerator means 7 appears. 11 is a resistor for setting the maximum chopper conductivity, and 12 is a resistor for setting the minimum chopper conductivity. 13 is a constant current circuit that supplies a constant current to its output. 14 is a delay capacitor for soft start, and 15 is an operational amplifier called a voltage follower. 16 and 17 are diodes for backflow prevention, 18
In this type of circuit, a well-known voltage controlled oscillator is capable of changing the ratio of the output voltage between "1" and "0" states in direct proportion to the input voltage. 19 is a plugging braking detection circuit, and a known circuit can be used.

20はスイツチング手段となる特にコンパレー
タであり、プラツギング制動検出回路がプラツギ
ング状態であることを検出した時に、該コンパレ
ータ20の入力端子(−)の電圧が入力端子
(+)の電圧より高くなり、内部でのスイツチン
グ状態が反転し、第1出力端子21と第2出力端
子22との電位が反転する。23は導通率制御信
号発生回路であり、周知のオンパルス発生回路2
4とオフパルス発生回路25よりなる。26,2
7はプラツギング制動回路を構成する主回路開閉
用コンタクタである。
20 is a comparator which serves as a switching means, and when the plugging braking detection circuit detects that the plugging state is present, the voltage at the input terminal (-) of the comparator 20 becomes higher than the voltage at the input terminal (+), and the internal The switching state at is reversed, and the potentials at the first output terminal 21 and the second output terminal 22 are reversed. 23 is a conductivity control signal generation circuit, which is a well-known on-pulse generation circuit 2.
4 and an off-pulse generating circuit 25. 26,2
7 is a main circuit opening/closing contactor constituting the plugging brake circuit.

又、30は低抵抗回路を構成する低抵抗器、3
1,32は高抵抗回路を構成する高抵抗器であ
り、34は該高抵抗回路の出力端子である。また
35はアクセル回路を示している。
Further, 30 is a low resistor constituting a low resistance circuit, 3
1 and 32 are high resistors forming a high resistance circuit, and 34 is an output terminal of the high resistance circuit. Further, 35 indicates an accelerator circuit.

次に上記構成について作動を説明する。 Next, the operation of the above configuration will be explained.

先ず、図示状態にある主回路開閉用コンタクタ
26,27のうちコンタクタ26の方を図示の常
閉状態から常開状態に切替える。そして、電圧制
御発振器18に同期してンパルス発生回路24お
よびオフパルス発生回路25によりチヨツパ4を
作動させると、48〔V〕の直流電源40より直
流電動機1に電力供給が行なわれる。
First, of the main circuit switching contactors 26 and 27 in the illustrated state, the contactor 26 is switched from the illustrated normally closed state to the normally open state. Then, when the chopper 4 is operated by the impulse generating circuit 24 and the off-pulse generating circuit 25 in synchronization with the voltage controlled oscillator 18, power is supplied to the DC motor 1 from the 48 [V] DC power supply 40.

この時、車両が力行状態であれば、プラツギン
グ検出回路19は動作せず、従つてコンパレータ
20の第1出力端子21が導通状態となつて、ア
ースの電位になり、第2出力端子22が遮断状態
となつている。この状態では、高抵抗器31,3
2とダイオード17の存在を無視することがで
き、可変抵抗器7の可動接点8の電位は略そのま
ま高抵抗器31を介してオペアンプ15の非反転
入力に印加されるため、このボルテージホロアの
出力端子となるコンデンサ14の非アース側45
は前記可動接点8の電位に略等しくなる。そして
このコンデンサ14の非アース側45の電位すな
わち電圧制御発振器18の入力電位は、アクセル
手段となる可変抵抗器7の可動接点8の位置によ
つてほぼ決定される。
At this time, if the vehicle is in the power running state, the plugging detection circuit 19 does not operate, and therefore the first output terminal 21 of the comparator 20 becomes conductive, reaching the ground potential, and the second output terminal 22 is cut off. It has become a state. In this state, the high resistors 31, 3
2 and the diode 17 can be ignored, and the potential of the movable contact 8 of the variable resistor 7 is applied almost unchanged to the non-inverting input of the operational amplifier 15 via the high resistor 31. Non-ground side 45 of capacitor 14 which becomes output terminal
is approximately equal to the potential of the movable contact 8. The potential of the non-ground side 45 of this capacitor 14, that is, the input potential of the voltage controlled oscillator 18, is approximately determined by the position of the movable contact 8 of the variable resistor 7, which serves as an accelerator means.

そして、可変抵抗器7として一般的な直線特性
のものを使用してあるが該可変抵抗器7の抵抗値
と低抵抗器30の抵抗値を適当に選ぶことにより
定常時すなわち力行時のアクセル踏み込み角θに
対するコンデンサ14の充電電圧、すなわち、チ
ヨツパ導通率Dは、第2図の特性50のように曲
線的に変化し、かつ踏み込み角〓が大きい時のチ
ヨツパ導通率Dの増加割合はきわめて大きくな
る。
Although a general linear characteristic is used as the variable resistor 7, by appropriately selecting the resistance value of the variable resistor 7 and the resistance value of the low resistor 30, the accelerator pedal depression during steady state, that is, during power running, can be controlled. The charging voltage of the capacitor 14 with respect to the angle θ, that is, the chopper conductivity D changes in a curved manner as shown in the characteristic 50 in FIG. Become.

なお、アクセル手段7を急激に踏み込んだ場合
は、コンデンサ14が踏み込まれたアクセル位置
に相等する電位まで定電流回路13により定電流
にて充電されるため、チヨツパ導通率Dは第4図
に示す如く、時間tの経過に対して直線的に上昇
し加速のフイーリングが良くなる。
Note that when the accelerator means 7 is suddenly depressed, the capacitor 14 is charged with a constant current by the constant current circuit 13 to a potential equivalent to the accelerator position at which the accelerator is depressed, so that the chopper conductivity D is shown in FIG. As shown, the acceleration increases linearly with the passage of time t, and the acceleration feeling improves.

次に、車両がプラツギング制動状態に入つた場
合について説明する。この場合はプラツギング検
出回路19が動作し、コンパレータ20が反転す
るために、第1出力端子21が遮断し第2出力端
子22が導通する。
Next, a case where the vehicle enters a plugging braking state will be described. In this case, the plugging detection circuit 19 operates and the comparator 20 is inverted, so that the first output terminal 21 is cut off and the second output terminal 22 is made conductive.

この時、高抵抗器31,32の抵抗値を分圧抵
抗器11,12および可変抵抗器7の抵抗値より
はるかに大きくしてあるから、可動接点8の電圧
はアクセル踏み込み角θに対して正比例して変化
しこの電位変化を高抵抗器31,32で分圧する
ため、ボルテージホロア15の入力となる高抵抗
回路31,32の出力端子34にはアクセル踏み
込み角θに対して直線的に変化する電圧が現われ
る。このために、電圧制御発振器18の入力電圧
のアクセル踏み込角θに対する変化も直線的とな
り、チヨツパ導通率Dの特性は第2図の特性55
に示すように直線状となる。
At this time, since the resistance values of the high resistors 31 and 32 are much larger than the resistance values of the voltage dividing resistors 11 and 12 and the variable resistor 7, the voltage of the movable contact 8 is proportional to the accelerator depression angle θ. Since the voltage changes in direct proportion and this potential change is divided by the high resistance resistors 31 and 32, the output terminals 34 of the high resistance circuits 31 and 32, which are input to the voltage follower 15, are connected linearly to the accelerator depression angle θ. A changing voltage appears. For this reason, the change in the input voltage of the voltage controlled oscillator 18 with respect to the accelerator depression angle θ also becomes linear, and the characteristic of the chopper conductivity D becomes the characteristic 55 in FIG.
It becomes a straight line as shown in .

そして、このように直線状の特性とすることに
より、プラツギング制動時の制動トルク制御をア
クセル操作角を適当に変化することにより容易に
行える。
By having such a linear characteristic, braking torque control during plugging braking can be easily performed by appropriately changing the accelerator operation angle.

以上述べたように本発明においては、プラツギ
ング制動回路によつて、非プラツギング状態にお
いては、直線特性型の可変抵抗器に低抵抗回路を
持続し、プラツギング状態においては、直線特性
型の可変抵抗器に高抵抗回路を持続するようにし
たから、一般的に市販されている直線持続性型の
可変抵抗器を使用できるため安価で経剤的であり
製造も容易にでき、さらに電気車の力行時におい
てはアクセル手段の操作角を大きくするに従つて
導通率可変手段の導通率増加割合が大きくなるよ
うにでき力行時の加減速操作が容易で運転感覚が
良く、かつプラツギング制動時にあつてはアクセ
ル手段の操作角に対する導通率変化特性を略直線
状としたから、なめらかな制動を容易に行なうこ
とができるという優れた効果がある。
As described above, in the present invention, the plugging braking circuit maintains a low resistance circuit in the linear characteristic type variable resistor in the non-plugging state, and maintains the low resistance circuit in the linear characteristic type variable resistor in the plugging state. Since the high-resistance circuit is made to last, it is possible to use a generally commercially available linear variable resistor, which is inexpensive, easy to use, and easy to manufacture.Furthermore, when electric cars are powered In this case, as the operation angle of the accelerator means is increased, the rate of increase in the conduction rate of the conduction rate variable means becomes larger.Acceleration and deceleration operations during power running are easy and the driving feeling is good. Since the conductivity change characteristic with respect to the operating angle of the means is made substantially linear, there is an excellent effect that smooth braking can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の特性を示す特性図、第2図
は本発明方法ならびに装置の一実施例における特
性を示す特性図、第3図は本発明方法ならびに装
置の一実施例を示す電気回路図、第4図は第3図
図示回路における経時的なチヨツパ導通率の変化
例を示す特性図である。 1…直流電動機、4…導通率可変手段、7…ア
クセル手段となる可変抵抗器、θ…操作角となる
踏み込み角、D…導通率、8…可動接点、20…
スイツチング手段、18,23…導通率制御信号
発生回路、21…第1出力端子、22…第2出力
端子、26,27…プラツギング制御回路を成す
コンタクタ、30…低抵抗回路、31,32…高
抵抗回路、34…高抵抗回路の出力端子、35…
アクセル回路。
Fig. 1 is a characteristic diagram showing the characteristics of the conventional device, Fig. 2 is a characteristic diagram showing the characteristics of an embodiment of the method and device of the present invention, and Fig. 3 is an electric circuit showing an embodiment of the method and device of the present invention. 4 are characteristic diagrams showing examples of changes in chopper conductivity over time in the circuit shown in FIG. 3. DESCRIPTION OF SYMBOLS 1...DC motor, 4...Conductivity variable means, 7...Variable resistor serving as accelerator means, θ...Depression angle serving as operation angle, D...Conductivity, 8...Movable contact, 20...
Switching means, 18, 23...Conductivity control signal generation circuit, 21...First output terminal, 22...Second output terminal, 26, 27...Contactor forming a plugging control circuit, 30...Low resistance circuit, 31, 32...High Resistance circuit, 34... Output terminal of high resistance circuit, 35...
accelerator circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電動機に印加する電圧を変化させて電気
車の走行スピードを調整する導通率可変手段と、
前記直流電動機にプラツギング制動を行わせるプ
ラツギング制動回路と、前記導通率可変手段に接
続され該導通率可変手段の導通率を制御する信号
を発生する導通率制御信号発生回路と、操作され
ることにより前記導通率制御信号発生回路を介し
て前記導通率可変手段の導通率を制御するアクセ
ル回路とを有し、該アクセル回路には、前記プラ
ツギング制動回路がプラツギング状態にあつた時
にスイツチング状態が反転し非プラツギング時に
は第1出力端子がオン状態にあり第2出力端子が
オフ状態にあるスイツチング手段と、操作される
ことにより可動接点に操作量の応じた出力電圧が
発生する直線特性型の可変抵抗器と、該可変抵抗
器の可動接点と前記スイツチング手段の第1出力
端子に接続された低抵抗回路と、前記可変抵抗器
の可動接点と前記スイツチング手段の第2出力端
子との間に接続された高抵抗回路であつて自身の
出力端子が前記導通率制御信号発生回路に接続さ
れたものとを備えたことを特徴とする電気車制御
装置。
1. conductivity variable means for adjusting the running speed of the electric vehicle by changing the voltage applied to the DC motor;
a plugging braking circuit that causes the DC motor to perform plugging braking; and a conductivity control signal generation circuit that is connected to the conductivity variable means and generates a signal that controls the conductivity of the conductivity variable means. an accelerator circuit that controls the conductivity of the conductivity variable means via the conductivity control signal generating circuit, and the accelerator circuit has a switching state that is inverted when the plugging braking circuit is in the plugging state. A switching means in which a first output terminal is in an on state and a second output terminal in an off state when not plugged, and a variable resistor of a linear characteristic type that, when operated, generates an output voltage at a movable contact according to the amount of operation. a low resistance circuit connected between the movable contact of the variable resistor and the first output terminal of the switching means; and a low resistance circuit connected between the movable contact of the variable resistor and the second output terminal of the switching means. An electric vehicle control device comprising: a high resistance circuit whose output terminal is connected to the conductivity control signal generation circuit.
JP1406379A 1979-02-08 1979-02-08 Method of and apparatus for controlling electric motor vehicle Granted JPS55106001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1406379A JPS55106001A (en) 1979-02-08 1979-02-08 Method of and apparatus for controlling electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1406379A JPS55106001A (en) 1979-02-08 1979-02-08 Method of and apparatus for controlling electric motor vehicle

Publications (2)

Publication Number Publication Date
JPS55106001A JPS55106001A (en) 1980-08-14
JPS6130481B2 true JPS6130481B2 (en) 1986-07-14

Family

ID=11850622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1406379A Granted JPS55106001A (en) 1979-02-08 1979-02-08 Method of and apparatus for controlling electric motor vehicle

Country Status (1)

Country Link
JP (1) JPS55106001A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783187A (en) * 1980-11-11 1982-05-24 Tokyo Juki Ind Co Ltd Driving control device of sewing machine

Also Published As

Publication number Publication date
JPS55106001A (en) 1980-08-14

Similar Documents

Publication Publication Date Title
US4479080A (en) Electrical braking control for DC motors
US3968414A (en) Bypass contactor control
US4114076A (en) Control system for a motor having a shunt field winding
US4427928A (en) Braking control apparatus for an electric motor operated vehicle
JPH07298514A (en) Controller for alternator in vehicle
US3936709A (en) Control circuits for electrically driven vehicles
JPS6215882B2 (en)
US3962612A (en) Control device for electric vehicle
JPS6130481B2 (en)
US3944899A (en) Control circuit for electrically driven vehicles
US3949284A (en) Control circuits for electrically driven vehicles
US4211965A (en) Device for controlling rotational speed of electric motor
US3944897A (en) Control circuits for electrically driven vehicles
JPS605684Y2 (en) Electric car control device
JP2523679Y2 (en) Braking control device in electric vehicle running speed control device
JPH04299005A (en) Motor vehicle controller
JPS5942522B2 (en) Motor control device for electric cars
JPS631523Y2 (en)
JPS5944841B2 (en) Electric vehicle plugging detection method and detection device
JPS6027245B2 (en) electric car control device
JPH0526882Y2 (en)
JPH01185104A (en) Motor controller for electric vehicle
JPS5951201B2 (en) electric car control device
JPH0368602B2 (en)
JPH0576102A (en) Forklift controller provided with regenerative brake function