JPS613032A - Floc monitor system - Google Patents

Floc monitor system

Info

Publication number
JPS613032A
JPS613032A JP12372484A JP12372484A JPS613032A JP S613032 A JPS613032 A JP S613032A JP 12372484 A JP12372484 A JP 12372484A JP 12372484 A JP12372484 A JP 12372484A JP S613032 A JPS613032 A JP S613032A
Authority
JP
Japan
Prior art keywords
luminous intensity
image information
light
information
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12372484A
Other languages
Japanese (ja)
Other versions
JPH0517495B2 (en
Inventor
Akihiro Tanaka
昭裕 田中
Mikio Yoda
幹雄 依田
Shunji Mori
俊二 森
Kenji Baba
研二 馬場
Shoji Watanabe
昭二 渡辺
Shunsuke Nokita
舜介 野北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12372484A priority Critical patent/JPS613032A/en
Publication of JPS613032A publication Critical patent/JPS613032A/en
Publication of JPH0517495B2 publication Critical patent/JPH0517495B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To always obtain stable image information, by calculating luminous intensity on the basis of the image information of a luminous intensity measuring plate and feeding back said information to a projector controller. CONSTITUTION:A luminous intensity measuring plate 10 is arranged in a water-tight container 14 in the vicinity of an image information intake region 16 so as to enter the visual field of an industrial television camera 4. Light corresponding to the change in external light and the light projected from a projector are impinged to said plate 10. Herein, an order is sent to an image discrimination apparatus 9 from a control calculator 15 and image information is taken in the camera 4 to be transmitted to the apparatus 9 through an industrial television camera controller 5. Only the information of the plate 10 is extracted from the taken-in image information to be subjected to binarization processing and, on the operated result, luminous intensity is calculated on reference to the ''1'' (or ''0'') partial area-luminous intensity corresponding table stored in a luminous intensity characteristic storing memory 14. The calculated luminous intensity information is compared with the luminous intensity set value preliminarily stored in a luminous intensity set value memory 17 and a projector controller 8 controls the quantity of light projected from a projector 7 according to the order of the calculator 15. Therefore, stable image information is obtained always.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、浄水場の70ツク形成池(混和池ンにおける
フロック監視システムに係り、特に、画像処理技術を用
いてフロックの形成状況を把握するシステムに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a floc monitoring system in a 70-thick formation pond (mixing pond) of a water purification plant, and in particular, a system for monitoring floc formation using image processing technology. Regarding the system.

〔発明の背景〕[Background of the invention]

浄水場では、原水の濁質粒径が小さいので、これらを凝
集させて、凝集塊(フロック)とし、このフロックを沈
降ネせるプロセスになっている。
At water treatment plants, the suspended particles in the raw water are small in size, so the process is to agglomerate them into flocs, which are then allowed to settle.

このため、フロック形成池(混和池)におけるフロック
の監視が必要不可欠でおる。
For this reason, it is essential to monitor the flocs in the floc formation pond (mixing pond).

従来、フロックの監視は、浄水場の維持管理者が、−日
数口、目視により監視していた。目視に依存するため、
判断基準が主観的、かつ、定性的であり、監視結果が運
転操作に反映されにくい欠点があった。さらに、監視頻
度が不連続なため、凝集不良時の対策が後手になり、ト
ラブルが大きくなる欠点があった。
Conventionally, flocs have been visually monitored every few days by a water treatment plant maintenance manager. Because it depends on visual inspection,
The judgment criteria are subjective and qualitative, and the monitoring results have the disadvantage of being difficult to reflect in driving operations. Furthermore, since the frequency of monitoring is discontinuous, countermeasures against poor aggregation are delayed, resulting in increased trouble.

これに対して、最近は、第8図に示すように、工業用テ
レピカメルを用いて、フロック形成池内のフロック群を
監視する方法がある。その動作は工業用テレビカメラ4
をフロック形成池中に設置し、これにより入力した画像
情報を監視室などに設置されたモニタテレビ6でモニタ
するものでおる。しかし、この場合でも、監視法は人間
の視覚に依存するため、主観的、かつ、不連続的である
という欠点は同じである。5は工業用テレビカメラコン
トローラ、7は投光器、8は投光器コントローラである
On the other hand, as shown in FIG. 8, there has recently been a method of monitoring flocs in a floc-forming pond using an industrial telephoto meter. Its operation is industrial television camera 4
is installed in a floc formation pond, and the image information inputted thereby is monitored on a monitor television 6 installed in a monitoring room or the like. However, even in this case, since the monitoring method relies on human vision, it has the same disadvantages of being subjective and discontinuous. 5 is an industrial television camera controller, 7 is a floodlight, and 8 is a floodlight controller.

そこで、浄水処理場水質管理の信頼性を向上さ糞るため
、フロック形成状況の24時間連続定量的把握手段とし
て、第8図中、破線で示す9Vi工業用テレビカメラ4
て取り込んだ画像情報によりフロック形成状況を判断す
る画像認識装置である。
Therefore, in order to improve the reliability of water quality management at water treatment plants, a 9Vi industrial television camera 4 indicated by the broken line in Fig.
This is an image recognition device that determines the state of floc formation based on the image information captured.

本フロック監視装置の動作は、工業用テレビカメラ4に
より取り込んだフロック形成池1中のフロック3の画像
情報を画像認識装rl!9で、例えば、二値化処理後、
フロック部の面積計算などを行ないその計算結果により
フロック形成状況を判別する。
The operation of this floc monitoring device is based on the image information of the flocs 3 in the floc formation pond 1 captured by the industrial television camera 4, and the image recognition device rl! 9, for example, after binarization processing,
The area of the floc part is calculated, and the floc formation status is determined based on the calculation result.

画像認識装FL9により、精度良く、安定に画像認識す
る場合、工業用テレビカメラで画像11゛j報をいかに
一定の光条件下で取り込む〃・ということが重接なポイ
ントとなる。具体的にVi被認識物に當に同一の光量を
投射するかがポイントとなる。たとえば、光量が少なけ
れは、フロックを小さく認識してしまい、逆に光量が多
ければ同一形状てあっても大きく認識してしまう。
In order to accurately and stably recognize an image using the image recognition device FL9, an important point is how to capture the image 11j information with an industrial television camera under constant light conditions. Specifically, the key point is whether the same amount of light is projected onto the Vi recognition object. For example, if the amount of light is small, the flocs will be perceived as small, and if the amount of light is large, the flocs will be perceived as large even if they have the same shape.

また、一般に、浄水場の処理設備は、屋外に建設される
ことが多く、また、フロックを常時監視する目的で大気
解放されている。このため、フロック形成池に入射する
光量は、時間の経過と共に変化し、天候の変化などの影
響も受け、千差万別となる。
Furthermore, generally, the treatment equipment of a water purification plant is often constructed outdoors and is opened to the atmosphere for the purpose of constantly monitoring flocs. Therefore, the amount of light that enters the floc formation pond changes over time and is affected by changes in the weather, resulting in a wide range of variations.

よって、第8図に示したシステムでは、自然現象として
の照度変化の影響を排除することが困難であり、何らか
の方策が必要である。
Therefore, in the system shown in FIG. 8, it is difficult to eliminate the influence of changes in illuminance as a natural phenomenon, and some measure is required.

これに対処するため、たとえば、工業用テレビカメラ4
の近傍に照度計などを設置し、外光の照度情報を得、そ
の情報に基づいて投光器7の投光量を制御し、所定の光
量と外光の量との差分を補正することにより、所定の光
条件を作り出し、認1!llk鞘度の高い画像情報も得
られるが、一般に、これら計測装置をフロック監視シス
テムに組み入れるには、照度計出力を計算機で演算可能
とする信号に変換するインターフェース装置を必要とす
る。
To deal with this, for example, industrial television camera 4
By installing an illuminance meter or the like near the outside to obtain information on the illuminance of outside light, controlling the amount of light emitted by the projector 7 based on that information, and correcting the difference between the predetermined amount of light and the amount of outside light. Creates light conditions for 100% recognition! Although highly accurate image information can be obtained, in general, incorporating these measuring devices into a flock monitoring system requires an interface device that converts the illuminance meter output into a signal that can be calculated by a computer.

照度計をフロック形成池内に設置するため、水密対策を
要すなど高価なものとなり、かつ、フロック監視システ
ムとしての構成部品の増加につながす、イδ頼性低下、
メンテナンス等のランニングコストの増加などをもたら
す。
Since the illumination meter is installed inside the floc formation pond, it is expensive due to the need for watertight measures, and it also leads to an increase in the number of components for the floc monitoring system, which reduces reliability.
This results in increased running costs such as maintenance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、フロック形成状況を、−知の光条件の
もと、画像情報として安定して取り込むためのフロック
監視システムを提供するにある。
An object of the present invention is to provide a floc monitoring system for stably capturing the floc formation status as image information under known light conditions.

〔発明の概要〕[Summary of the invention]

本発明の要点は、浄水処理場のフロック形成池において
、フロック形成状況を画イを処理技術を用いて定量的に
把握するため、照度を制御可能な投光手段と、この手段
により投光されたフロック画像情報取込領域の11〜紋
を計測するために、この領域の近傍に設置された照度計
測用板と、画像情報取込手段により構成し、照度言1測
用板の映像情報を基に照度を算出し、そのU’i報を投
光器コントローラにフィードバックi〜、いかなる外光
条件であってもそれを補正することができ、画像認識装
置の持つ能力を有効に活用し、簡単なシステム構成て、
信頼性高く、常に、安定した光条件のもと、画像情報を
得るにある。
The main points of the present invention are to provide a light projecting means that can control the illuminance, and a light projecting means that can control the illuminance, in order to quantitatively grasp the state of floc formation in a floc formation pond of a water treatment plant using processing technology. In order to measure the patterns 11 to 11 in the flock image information acquisition area, the illuminance measurement board installed near this area and image information acquisition means are used to measure the image information of the illuminance measurement board 1. The illuminance is calculated based on the U'i information, and the U'i information is fed back to the floodlight controller, so it can be corrected no matter what the outside light conditions are. System configuration,
The objective is to obtain image information with high reliability and always under stable light conditions.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の詳細な説明する。第1図
は本発明の実施例、第2図は第1図中■矢視部の拡大図
である。1はフロック形成池、2はパドル、3はフロッ
ク、4は工業用テレビカメラ、5は工業用テレビカメラ
4を制御するコントローラ、6はモニタテレビ、7は投
光器、8は投光器70投光量を制御可能な投光器コント
ローラ、9は画像認識装置、10は照度計測用板、11
はイN測用窓ガラス、12は水密容器、13はバックス
クリーン、14は照度特性格納メモリ、15rまこれら
装置を制御する制御用計算機、16は画像情報取込領域
、17は照度設定値メモリ、18は外光、19は投光器
投射光である。
Hereinafter, the present invention will be described in detail based on the drawings. FIG. 1 is an embodiment of the present invention, and FIG. 2 is an enlarged view of the section shown by the arrow ▪ in FIG. 1 is a flock formation pond, 2 is a paddle, 3 is a flock, 4 is an industrial television camera, 5 is a controller that controls the industrial television camera 4, 6 is a monitor television, 7 is a floodlight, 8 is a floodlight 70 that controls the amount of light emitted. 9 is an image recognition device, 10 is an illuminance measurement board, 11 is a possible floodlight controller;
12 is a watertight container, 13 is a back screen, 14 is an illuminance characteristic storage memory, 15r is a control computer that controls these devices, 16 is an image information capture area, and 17 is an illuminance setting value memory. , 18 is external light, and 19 is light projected by a projector.

以下にフロック監視システムの動作を述べる。The operation of the floc monitoring system will be described below.

第2図に一例を示すような長方形の長辺方向に一端から
一端に向かって、明度が黒から白へと無段階に変化する
ように塗色された照度計測用板10が、破線で示した画
像情報取込領域16の近傍、水密容器12内に、工業用
テレビカメラ4の視野に入るように設置しである。そし
て、この照度計測機能10には、外光18(自然現象つ
まり昼夜差、時間差により叢化する光)の変化に応じた
光、および、投光器投射光19が当たる。そこで、制御
用計算機15より指令を出し、画像認識装置9に次の(
1)〜(6)の動作を行なわせる。
An illuminance measuring plate 10, an example of which is shown in FIG. 2, is painted so that the brightness changes steplessly from black to white from one end to the other in the long side direction of a rectangle, as shown by the broken line. It is installed in the watertight container 12 near the image information capture area 16 so as to be within the field of view of the industrial television camera 4. The illuminance measurement function 10 is illuminated by light according to changes in external light 18 (natural phenomena, that is, light that clusters due to day/night differences and time differences) and light projected from a projector 19. Therefore, the control computer 15 issues a command to the image recognition device 9 to perform the following (
Perform operations 1) to (6).

(1)、制御用計算機15より画像情報取込指令を画像
認識装置9へ送り、工業用テレビカメラ4で画像情報を
取り込み、工業用テレビカメラコントo−ラ51に介し
て、画像認識装置9に伝送する。
(1) Send an image information capture command from the control computer 15 to the image recognition device 9, capture the image information with the industrial television camera 4, and send it to the image recognition device 9 via the industrial television camera controller 51. to be transmitted.

この映像情報を取り込むと、第3図(a)に示すような
映像が得られる。つまり、外光18、投光器(2)取り
込んだ映像情報第3図(a)の内、照度計測用板10の
映像情報のみを抽出する。(bl(3)上記(2)で抽
出した映像情報に二値化処理(所定のしきい11す上り
高い輝度レベルにある映像情報部を”1″とし、低い輝
度レベルにある映像情報部を0″とする)を折力う。t
C)(4)二値化処理された映像情報の内゛1#(又は
”0”)部分の面積を演算する(具体的には画素数を演
算する)。(d) (5)上記(4)で演算した結果をもとに、照度特性格
納メモリ14にあらかじめ格納されている1#(又は“
0″)部分面積−照度対応表を参照することによ拡照度
を算出する。(e) こうして、任意の光榮件における照度が、画像認識装置
9の得意とする画像処理演算を行なうことにより、照度
計など特別な計測装置を用いることなく容易に計測でき
る。
When this video information is imported, a video as shown in FIG. 3(a) is obtained. That is, out of the outside light 18 and the video information taken in by the floodlight (2) shown in FIG. 3(a), only the video information of the illuminance measurement board 10 is extracted. (bl(3) Binary processing of the video information extracted in (2) above (a video information part at a high brightness level exceeding a predetermined threshold 11 is set to "1", and a video information part at a low brightness level is set to "1") 0'').
C) (4) Calculate the area of the "1#" (or "0") portion of the binarized video information (specifically, calculate the number of pixels). (d) (5) Based on the result calculated in (4) above, 1# (or “
0'') The expanded illuminance is calculated by referring to the partial area-illuminance correspondence table. (e) In this way, the illuminance in any light condition is calculated by performing the image processing operation that the image recognition device 9 is good at. It can be easily measured without using special measuring equipment such as an illumination meter.

(6)算出された照度情報は、制御用計算機15へ伝送
され、照度設定値メモリ17にあらかじめ格納されてい
る照度設定値に合致するかどうかが判断され、照度不足
なら投光量増加指令を、照度過大なら投光量減少指令を
、それぞれ、投光器コントローラ8へ伝送する。投光器
コントローラ8は、制御用計算機15の指令に従って、
投光器70投光量を制御する。
(6) The calculated illuminance information is transmitted to the control computer 15, and it is determined whether it matches the illuminance setting value stored in advance in the illuminance setting value memory 17. If the illuminance is insufficient, a command to increase the amount of light emitted is issued. If the illuminance is excessive, a command to reduce the amount of projected light is transmitted to the projector controller 8, respectively. The floodlight controller 8 follows the instructions from the control computer 15.
The light projector 70 controls the amount of light emitted.

こうして、前述の(1)〜(6)のステップを細度かく
り返すことにより、照度情報が照度設定値メモリ17内
の照度設定値に合致したら、制御用計算機15はフロッ
ク形成状況把握演算指令を画像認識装置9へ送り、第3
図(a)中にAで示した部分の画像情報を基に、フロッ
ク形成状況を判断(例えば、二値化処理後、フロック部
分の面積演算をする)する。
In this way, by repeating the above-mentioned steps (1) to (6) in detail, when the illuminance information matches the illuminance setting value in the illuminance setting value memory 17, the control computer 15 issues a floc formation situation understanding calculation command. is sent to the image recognition device 9, and the third
Based on the image information of the portion indicated by A in Figure (a), the state of floc formation is determined (for example, after the binarization process, the area of the floc portion is calculated).

このように、外光がいかなる条件のもとでも、特別な照
度計測手段(照度計など)を用いず、画像認識装置に照
度計測機能をも合わせ持たせて有効活用することにより
、照度情報を適確に信頼性高く計測でき、その情報をも
とに投光量を制御することにより、常に一定の光条件を
画像情報取込領域16に現出させ、安定したフロック画
像情報を取り込め、その画像情報に抽々の演算、例えば
、二値化処理後フロックの面積演算などを行ない、フロ
ックの形成状況を定量的に連続して把握することができ
る。
In this way, regardless of the external light conditions, illuminance information can be obtained without using special illuminance measurement means (such as an illuminance meter) and by effectively utilizing the image recognition device with an illuminance measurement function. By being able to measure accurately and reliably and controlling the amount of light emitted based on that information, constant light conditions always appear in the image information capture area 16, stable flock image information can be captured, and the image By performing random calculations on the information, such as calculating the area of the flocs after binarization processing, it is possible to quantitatively and continuously grasp the floc formation status.

なお、照度計測用板10として本実施例では長方形のも
の金剛いたが、その形状は特に規定されるものではない
Although the illuminance measurement plate 10 is rectangular in this embodiment, its shape is not particularly limited.

第4図は他の実施例′″Cある。画像情報を得ようとす
るフロックだけを際立たせるために設けたノ(ツクスク
リーン13上の一部に、第2図で説明した照度計測用塗
色22を施こしたものである。
FIG. 4 shows another embodiment '''C.A part of the screen 13 is coated with the illuminance measurement coating described in FIG. It is colored 22.

20けバックスクリーン13、観測窓ガラス11を同時
に掃引するワイパーであり、21はワイノく−20を駆
動するモーフである。
20 is a wiper that sweeps the back screen 13 and the observation window glass 11 at the same time, and 21 is a morph that drives the Wainoku-20.

第5図に本発明を濁度計へ応用した他の実施例を示す。FIG. 5 shows another embodiment in which the present invention is applied to a turbidity meter.

本実施例は、被検体の濁度に応じて変化する透過光量を
照度計測用板と画像認識装置によりとらえることにより
、被検体の濁度を計測しようとするものである。
This embodiment attempts to measure the turbidity of a subject by capturing the amount of transmitted light that changes depending on the turbidity of the subject using an illuminance measuring plate and an image recognition device.

図中、23は被検体を導く導管、24A、Bは透明板、
7は一定量の光を投射する投光器、25は平行光線反射
鏡、26は被検体を一定流量で導管23に送るポンプで
ある。第6図は、第5図中の■矢視図の拡大断面図であ
る。
In the figure, 23 is a conduit that guides the subject, 24A and B are transparent plates,
7 is a light projector that projects a certain amount of light; 25 is a parallel light reflecting mirror; and 26 is a pump that sends the subject to the conduit 23 at a constant flow rate. FIG. 6 is an enlarged sectional view taken in the direction of the arrow ■ in FIG. 5. FIG.

このような特徴をもつ画像処理装置すを応用した濁度計
の動作を説明する。
The operation of a turbidity meter using an image processing device having such characteristics will be explained.

被検体27はポンプ26により一冗流量で4看23に送
られる。導管23には透明板24A、Bが設けてあり、
透明板24Aには投光器7により投光され、平行光線反
射鏡25て反射し、平行光線となった光が投射されてい
る。この平行光線28は、透明板24Aを通り抜(jX
導管23内を流れる被検体中の粒子29などにより散乱
されるが、一部の散乱されず被検体を通溝した光30は
、透明板24Bを通過して照度計測用板10に当たる。
The subject 27 is sent by the pump 26 to the tube 23 at a constant flow rate. The conduit 23 is provided with transparent plates 24A and 24B,
Light is projected by the light projector 7, reflected by the parallel ray reflecting mirror 25, and turned into parallel rays onto the transparent plate 24A. This parallel light ray 28 passes through the transparent plate 24A (jX
Although it is scattered by particles 29 in the subject flowing through the conduit 23, a portion of the light 30 that is not scattered and passes through the subject passes through the transparent plate 24B and hits the illumination measurement plate 10.

つまり、被検体中の元金散乱する要因となる粒子数が多
ければ散乱される光量が多くなり、投光器7より投光さ
れた平行光線28の内、被検体中を通過して、照度計測
用板10に当だ2)4看23通過光30は減少し、逆に
、粒子しくが少なければ散乱される光量が少なくなり、
照度計測用板10に当たる導管23通過光30は増加す
る。こうして、被検体の濁度に応じた光が照度計測用板
10に投光されることになる。よって、この照度計測用
板10の画像情報を工業用テレビカメラ4て取り込み、
第3図で説明したのと同様な処理、つまり、取り込んだ
照度計測用板10の画像情報を画像認識装置9て二値化
処理後、″1″(又は“0#)部分の面積演算を行ない
、濁度特性格納メモリ31に格納されている“1”(又
は”0#)部分面積−照度対応表を参照することにより
被検体の濁度を算出する。
In other words, if the number of particles that cause the principal scattering in the specimen increases, the amount of scattered light will increase, and some of the parallel light rays 28 projected from the projector 7 will pass through the specimen and be used for illuminance measurement. The amount of light 30 that passes through the plate 10 decreases, and conversely, if there are fewer particles, the amount of light that is scattered will decrease.
The amount of light 30 passing through the conduit 23 and hitting the illuminance measuring plate 10 increases. In this way, light corresponding to the turbidity of the subject is projected onto the illuminance measuring plate 10. Therefore, the image information of this illuminance measurement board 10 is captured by the industrial television camera 4,
The same process as explained in FIG. Then, the turbidity of the subject is calculated by referring to the "1" (or "0#) partial area-illuminance correspondence table stored in the turbidity characteristic storage memory 31.

また、照度計測用板10を第7図32に示すように、光
透過スクリーン上に第3図で説明した塗色を施こすこと
により、第7図に示すような光透過方式照度計測システ
ムも可能である。
Furthermore, by coating the illuminance measurement plate 10 with the color explained in FIG. 3 on the light transmission screen as shown in FIG. 7, a light transmission type illuminance measurement system as shown in FIG. It is possible.

本実施例では、画像情報取込装置として工業用テレビカ
メラを用いたが、その他、例えば、ラインセンサ等画像
情報を取り込めるものなら何を用いても良い。
In this embodiment, an industrial television camera is used as the image information capture device, but any other device capable of capturing image information, such as a line sensor, may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、照度情報を投光量制御にフィードバッ
クすシ、)ことeCより、’7’+’;に、安定してフ
ロック画像情報を取り込むことができ、fQ l!j 
r!I’ tllllンステムをも構築することができ
る。
According to the present invention, since the illumination information is fed back to the light projection amount control, flock image information can be stably taken in from eC to '7'+', and fQ l! j
r! An I' tllll system can also be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は第1図の
■矢視図、第3図は本預明の動作説明図、第4図、第5
図は本発明の他の実施a°すのj’、rl明図、第6図
は第5図の■矢視断面図、第7μmF、L本発明の他の
実施例の説明図、第8図は従来例の説VIli図である
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a view in the direction of the ■ arrow in Fig. 1, Fig. 3 is an explanatory diagram of the operation of the present invention, Figs.
Figure 6 is a sectional view taken in the direction of arrow ■ of Figure 5, explanatory diagram of another embodiment of the present invention, Figure 8 The figure is a diagram VIli of a conventional example.

Claims (1)

【特許請求の範囲】[Claims] 1、浄水場フロック形成池内におけるフロック形成状況
を画像情報として取り込む装置において、投光量を制御
可能な投光手段と、この投光手段により投光された領域
近傍に設置され、明度が無段階に変化するように塗色さ
れた照度計測機構と、前記投光手段により投光された領
域と前記照度計測機構との画像情報取込手段と、前記画
像情報に種々演算を施こす画像処理手段とより構成した
ことを特徴とするフロック監視システム。
1. A device that captures the floc formation situation in a water treatment plant floc formation pond as image information, which includes a light projecting means that can control the amount of light emitted, and is installed near the area illuminated by this light projecting means, and the brightness is stepless. an illuminance measuring mechanism painted in a variable color; a means for capturing image information between the area illuminated by the light projecting means and the illuminance measuring mechanism; and an image processing means for performing various calculations on the image information. A floc monitoring system characterized by having a more structured structure.
JP12372484A 1984-06-18 1984-06-18 Floc monitor system Granted JPS613032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12372484A JPS613032A (en) 1984-06-18 1984-06-18 Floc monitor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12372484A JPS613032A (en) 1984-06-18 1984-06-18 Floc monitor system

Publications (2)

Publication Number Publication Date
JPS613032A true JPS613032A (en) 1986-01-09
JPH0517495B2 JPH0517495B2 (en) 1993-03-09

Family

ID=14867790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12372484A Granted JPS613032A (en) 1984-06-18 1984-06-18 Floc monitor system

Country Status (1)

Country Link
JP (1) JPS613032A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133020A (en) * 1987-11-18 1989-05-25 Meidensha Corp Device for observing suspended body in liquid
WO2017073737A1 (en) * 2015-10-28 2017-05-04 国立大学法人東京大学 Analysis device
JP6145728B1 (en) * 2016-04-04 2017-06-14 パナソニックIpマネジメント株式会社 Submerged inspection apparatus and submerged inspection method
WO2017175261A1 (en) * 2016-04-04 2017-10-12 パナソニックIpマネジメント株式会社 Turbidity detection apparatus, turbidity detection method, and submerged inspection apparatus
US10904415B2 (en) 2016-08-15 2021-01-26 Osaka University Electromagnetic wave phase/amplitude generation device, electromagnetic wave phase/amplitude generation method, and electromagnetic wave phase/amplitude generation program
CN112734735A (en) * 2021-01-15 2021-04-30 广州富港生活智能科技有限公司 Article authentication method, article authentication device, electronic apparatus, and storage medium
US11054363B2 (en) 2015-02-24 2021-07-06 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11788948B2 (en) 2018-06-13 2023-10-17 Thinkcyte, Inc. Cytometry system and method for processing one or more target cells from a plurality of label-free cells

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457525B1 (en) * 2013-05-06 2014-11-03 신무현 Device for correcting ingrown nail
KR101864874B1 (en) * 2016-10-06 2018-06-07 이재웅 Slurry pump control system and method using slurry concentration measurement

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133020A (en) * 1987-11-18 1989-05-25 Meidensha Corp Device for observing suspended body in liquid
US11054363B2 (en) 2015-02-24 2021-07-06 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11867610B2 (en) 2015-02-24 2024-01-09 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11579075B2 (en) 2015-02-24 2023-02-14 The University Of Tokyo Dynamic high-speed high-sensitivity imaging device and imaging method
US11542461B2 (en) 2015-10-28 2023-01-03 The University Of Tokyo Analysis device
US11098275B2 (en) 2015-10-28 2021-08-24 The University Of Tokyo Analysis device
US11861889B2 (en) 2015-10-28 2024-01-02 The University Of Tokyo Analysis device
WO2017073737A1 (en) * 2015-10-28 2017-05-04 国立大学法人東京大学 Analysis device
WO2017175261A1 (en) * 2016-04-04 2017-10-12 パナソニックIpマネジメント株式会社 Turbidity detection apparatus, turbidity detection method, and submerged inspection apparatus
JP6145728B1 (en) * 2016-04-04 2017-06-14 パナソニックIpマネジメント株式会社 Submerged inspection apparatus and submerged inspection method
US10904415B2 (en) 2016-08-15 2021-01-26 Osaka University Electromagnetic wave phase/amplitude generation device, electromagnetic wave phase/amplitude generation method, and electromagnetic wave phase/amplitude generation program
US11412118B2 (en) 2016-08-15 2022-08-09 Osaka University Electromagnetic wave phase/amplitude generation device, electromagnetic wave phase/amplitude generation method, and electromagnetic wave phase/amplitude generation program
US11788948B2 (en) 2018-06-13 2023-10-17 Thinkcyte, Inc. Cytometry system and method for processing one or more target cells from a plurality of label-free cells
CN112734735A (en) * 2021-01-15 2021-04-30 广州富港生活智能科技有限公司 Article authentication method, article authentication device, electronic apparatus, and storage medium

Also Published As

Publication number Publication date
JPH0517495B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
DE69530831T2 (en) Icing and snow detector system for surfaces that reflect specular light
CN110031477A (en) Bridge key component disease early warning system and method based on image monitoring data
US6747745B2 (en) Displacement sensor
US20070263206A1 (en) Apparatus and method for characterizing defects in a transparent substrate
JPS613032A (en) Floc monitor system
JP3319944B2 (en) Water quality monitoring device
CN109580642A (en) A kind of membrane material coated face defect analysis control system and its method
CN104101614B (en) A kind of detection method and device
JPS6279329A (en) Floc monitor apparatus
CN115604561A (en) Tunnel detection light source self-adaptive adjusting device and method
CN211652599U (en) Image acquisition system for acquiring standard images
JPH05146791A (en) Microbe recognizer
JPH0322935B2 (en)
CN203643361U (en) Highly reflective light metal surface visual inspection system based on cross-polarization
JPH0322936B2 (en)
CN205450550U (en) Laser projector color automatic control device
JPS6279330A (en) Apparatus for recognizing floc image in water purifying plant
JPS61250540A (en) Apparatus for confirming floc image in water purification plant
JPH0481140B2 (en)
JPH03169306A (en) Apparatus for controlling formation of floc
JPS6117939A (en) Flock monitor device
CN116071356B (en) Intelligent inspection platform and inspection method for defects of design drawing of design enterprise
CN117434032A (en) Water quality detection system, method, device and storage medium
JPH03175336A (en) Submerged monitor apparatus
JP2001064952A (en) Device and method of detecting snow jam