JPS6130302A - Cnc lathe for precision lead machining - Google Patents

Cnc lathe for precision lead machining

Info

Publication number
JPS6130302A
JPS6130302A JP13619284A JP13619284A JPS6130302A JP S6130302 A JPS6130302 A JP S6130302A JP 13619284 A JP13619284 A JP 13619284A JP 13619284 A JP13619284 A JP 13619284A JP S6130302 A JPS6130302 A JP S6130302A
Authority
JP
Japan
Prior art keywords
machining
servo motor
slide
main shaft
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13619284A
Other languages
Japanese (ja)
Inventor
Taro Takahashi
太郎 高橋
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13619284A priority Critical patent/JPS6130302A/en
Publication of JPS6130302A publication Critical patent/JPS6130302A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/02Driving main working members
    • B23Q5/04Driving main working members rotary shafts, e.g. working-spindles
    • B23Q5/12Mechanical drives with means for varying the speed ratio
    • B23Q5/14Mechanical drives with means for varying the speed ratio step-by-step

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turning (AREA)

Abstract

PURPOSE:To highly improve the cutting accuracy and the machine speed of the captioned lathe by so constituting it as to perform lead machining of a workpiece by numerically controlling each of servo motors for a Z axis, an X axis, a main spindle, and machining. CONSTITUTION:The captioned lathe is constituted in such a way that a spindle 8 holding a workpiece 1 and rotated by a spindle motor 7 is arranged to a machine body 6. Then, when the machining of the portion 3 to be machined of a travelled surface is completed, the machining of the portion 5 to be macined of a lead surface is perfoemed. In this machining, same as with the machining of the portion 3, a spindle servo motor 18, the rotation of the main spindle 8 through a worm reduction gear, an X axis servo motor 11, a machining servo motor 21, and a Z axis servo motor 9 for positioning are numerically controlled and a machining slide 22 is guided to slide. And three axes numerically controlled machining of the portion 5 to be machined having four lead grooves is performed by a cutting tool 25 for the machining of the lead surface. Thus, the cutting accuracy of the lathe can be more highly improved and the operationability can also be expected.

Description

【発明の詳細な説明】 本発明は、精密リード加工CNC旋盤に関する。[Detailed description of the invention] The present invention relates to a precision lead machining CNC lathe.

この種、精密リード加工はたとえばVTRのテープ走行
ガイドの役目をする固定シリンダの外周面に加工される
This type of precision lead processing is performed, for example, on the outer peripheral surface of a fixed cylinder that serves as a tape running guide for a VTR.

したがって、そのリード加工面はテープの損傷を防止し
、かつ滑りすぎないように高精度の加工が要求される。
Therefore, the lead processing surface must be processed with high precision to prevent damage to the tape and to prevent excessive slippage.

第4図はこの固定シリンダの斜視図、第5図は縦断面図
、第6図はリード展開図、第7図は部分拡大図を示して
いる。
FIG. 4 is a perspective view of this fixed cylinder, FIG. 5 is a vertical cross-sectional view, FIG. 6 is a lead development view, and FIG. 7 is a partially enlarged view.

この第5図の如く、ワーク(1)、すなわち固定シリン
ダはリード加工部(a)の他にもちろん外周囲り、内周
囲り等の一般加工部(b)の旋削加工が行われる。
As shown in FIG. 5, the workpiece (1), that is, the fixed cylinder, is subjected to turning work on not only the lead machining part (a) but also general machining parts (b) such as the outer periphery and the inner periphery.

また、リード加工にあたっては、同軸度、平行度2表面
積度はもちろんのこと、特に第6図の如く、θ変位置の
距離(ロ)及び270度位変位置90度変位置でのリー
ド(駒の直進性が要求される。
In addition, when machining leads, not only coaxiality, parallelism, surface area, but also the distance of the θ displacement position (b) and the lead at the 270 degree displacement position and the 90 degree displacement position (of the piece), as shown in Figure 6. Straightness is required.

また、上記リード加工部(a)は同時加工が困難なため
、第7図の如く、テープ(2)の走行する走行面加工部
(3)とテープ(2)をガイドし、リード源(4)を有
するリード面加工部(5)とに分けて加工される。
In addition, since it is difficult to process the lead processing part (a) at the same time, as shown in FIG. ) and a lead surface processing section (5).

従来、これらのリード加工はカム倣い式旋盤によって加
工されている。
Conventionally, these leads have been processed using a cam copying lathe.

このカム倣い式旋盤の構成は、主軸にマスクカムを装着
し、マスクカムとカムフォロワとの倣い作用で刃物台を
倣い運動し、マスクカムの形状に倣わせて固定シリンダ
にリード加工を行うようにしたものである。
The configuration of this cam copying type lathe is such that a mask cam is attached to the main shaft, and the tool rest is moved to copy by the copying action of the mask cam and cam follower, and lead machining is performed on a fixed cylinder by following the shape of the mask cam. be.

しかしながら、この倣い旋盤には精度向上1′−一定の
限度がある。
However, this profiling lathe has a certain limit to accuracy improvement 1'.

すなわち、その基本的、aI械的構造上、マスクカム及
び必然的にカムフォロワをその構成の一部とするため、
マスクカムの加工精度に一定の限度が生じ、かつ倣い速
度を高くするとマスクカムとカムフォロワとの間での跳
躍現象が生じ易く、追従性が低下し、しかも相互の摩耗
現象も生じ易く、それだけ精度は望めない。
That is, due to its basic mechanical structure, the mask cam and necessarily the cam follower are part of its configuration.
There is a certain limit to the machining accuracy of the mask cam, and if the scanning speed is increased, a jump phenomenon tends to occur between the mask cam and the cam follower, which reduces the followability and also tends to cause mutual abrasion, which makes it difficult to expect high accuracy. do not have.

また、マスクカムの製作にあっても加工上の制約から複
数回のカム修正を必要とし、かつ倣い運動伝達部分の存
在によって2重スライド機構等の複雑化が生じる。
In addition, in manufacturing a mask cam, multiple cam corrections are required due to processing constraints, and the presence of a copying motion transmission portion complicates a double slide mechanism and the like.

しかも、特に固定シリンダのサイズ変更には、そのマス
クカムを取替えなければならないことから順応性、融通
性が低い。
Furthermore, especially when changing the size of the fixed cylinder, the mask cam must be replaced, resulting in low adaptability and flexibility.

これらのことから、完全数値制御式の高精度めリード加
工旋盤が強く要望されている。
For these reasons, there is a strong demand for a fully numerically controlled high-precision lead machining lathe.

本発明は、こ終らの点に鑑み、上記不都合を解消するこ
とのできる精密リード加工CNC旋盤な提供しようとす
るものである。
In view of these points, the present invention aims to provide a precision lead machining CNC lathe that can eliminate the above-mentioned disadvantages.

以下、本発明を添付図面につき説明する。The invention will now be explained with reference to the accompanying drawings.

本旋盤は、機体(6)にワーク(1)を把持して主軸上
−タ(7) Eよって回転駆動される主軸(8)を配設
し。
This lathe is equipped with a main shaft (8) that grips a workpiece (1) on a machine body (6) and is rotationally driven by a main shaft (7) E.

該機体(6)の前方に2軸サーボモータ(9)により該
主軸(8)の軸線方向に案内摺動される2軸スライドα
1を配設し、該2軸スライドQl)にXi/dJf−ボ
モータaυにより該主軸(8)の半径方向に案内摺動さ
れるX軸スライドミノを配設し、該X軸スライドa3に
刃物台(13を配設し、該刃物台(L3に刃物a荀を取
付けた旋盤において、上記主軸(8)にメインギヤ(I
sを配設し、上記機体(6)にシフトシリンダσeによ
って往復摺動されるシフトスライドα乃を配設し、該シ
フトスライドαDに主軸サーボモータ翰によりフオーム
減速機構(Llを介して回転駆動されるシフトギヤ(イ
)を配設し、該シフトギヤ(イ)を該シフトスライド(
I?)の往復摺動によって該メインギヤ(L均に噛合離
反可能に構成し、かつ上記X軸スライド(Lつに加工サ
ーボモータI21)によって上記主軸(8)の軸線方向
に案内摺動される加工スライド翰を配設し、該加工スラ
イド(ハ)にリード加工用刃物台(ハ)を配設し、該リ
ード加工用刃物台0.1に走行面加工用刃物(財)とリ
ード面加工用刃物(ハ)を取付(す、前記シフトギヤ翰
を前記メインギヤαωに噛合し、前記2軸ナーポモータ
(9)。
A two-axis slide α guided and slid in the axial direction of the main shaft (8) by a two-axis servo motor (9) in front of the body (6).
1, an X-axis slide minnow guided and slid in the radial direction of the main shaft (8) by a Xi/dJf-bo motor aυ is installed on the two-axis slide Ql), and a cutter is placed on the X-axis slide a3. In a lathe in which a stand (13) is installed and a cutter a is attached to the tool stand (L3), the main gear (I) is attached to the main shaft (8).
A shift slide α is provided on the body (6), which is slid back and forth by a shift cylinder σe. A shift gear (A) is provided, and the shift gear (A) is connected to the shift slide (A).
I? ) is configured to be able to engage and disengage equally from the main gear (L), and is guided and slid in the axial direction of the main shaft (8) by the X-axis slide (L processing servo motor I21). A blade is installed, a lead processing tool post (C) is provided on the processing slide (C), and a running surface processing tool (goods) and a lead surface processing tool are installed on the lead processing tool post 0.1. (c) Attach the shift gear frame to the main gear αω, and attach the two-shaft napo motor (9).

前記X軸サーボモータαυ、主軸す−ボモータα樽。The X-axis servo motor αυ and the main shaft servo motor α barrel.

加工サーボモータ01)をそれぞれ数値制御し、ワーク
(1)をリード加工することを特徴とする精密リード加
工CNC旋盤である。
This is a precision lead machining CNC lathe characterized by numerically controlling the machining servo motors 01) to perform lead machining on the workpiece (1).

本実施例につき更に具体的に説明する。This example will be explained in more detail.

第1図は全体構成囚を示している。Figure 1 shows the overall structure.

この実施例では、主軸(8)を主軸モータ(7)からプ
ーリ翰甑  ベルト(ハ)で回転駆動している。
In this embodiment, the main shaft (8) is rotationally driven by a main shaft motor (7) using a pulley and a belt (c).

また、各スライドα1四(ハ)は各モータ(9) (1
1) (21)によってボールねじ機構でスライド移動
される。
Also, each slide α14 (c) is connected to each motor (9) (1
1) It is slid by a ball screw mechanism (21).

また、本実施例の主軸モータ(7)は3000(r・p
 −m )程度の可変速モータが使用され、主軸チーボ
モータα樽は500 (r−p−m)程度のサーボモー
タが使用されている。
In addition, the main shaft motor (7) of this embodiment has a power of 3000 (r.p.
A variable speed motor of the order of -m) is used, and a servo motor of the order of 500 (rpm) is used for the main shaft chibo motor α barrel.

また、前記刃物(141は前記一般加工部(b)の切削
用刃物である。
Further, the knife (141) is a cutting knife of the general processing section (b).

また、本実施例では2軸サーボモータ(9)とX軸サー
ボモータ圓とを第1NC制御回路で制御し、主軸サーボ
モータ端と加工サーボモータ。υとを第2NC制御回路
で制御し、各回路にMail能を組込み、外部信号との
連けい等を可能にしている。
Further, in this embodiment, the two-axis servo motor (9) and the X-axis servo motor circle are controlled by the first NC control circuit, and the main axis servo motor end and the processing servo motor are controlled by the first NC control circuit. υ is controlled by a second NC control circuit, and a mail function is built into each circuit to enable connection with external signals.

また、この実施例では、前記主軸(8)を機体(6)に
回転自在に軸受し、その先端部にチャック部端を取付け
、このチャック部端をドローパーの押引動作で開閉し、
ワーク(1)を把持するように構成され、さらに、機体
(6)側部に前記シフトスライド(L?)を主軸(8)
の軸線方向に摺動自在に配設し、かつ側部内部に前記シ
フトシリンダαeを構成し、このロンドCDを前記シフ
トスライド17)の取付板p3に連結し、シフトスライ
ド(17)の上部に主軸サーボモータ(2)を取付け、
シフトスライド住η内にウオーム減速機構a蝉を内装し
、ウオーム縦軸−をギヤ(至)關で主軸サーボモータ(
2)と連動し、ウオーム圓とフオームホイールCDを噛
合し、フオーム横軸(至)に前記シフトギヤ■を固定し
て4いる。
Further, in this embodiment, the main shaft (8) is rotatably supported on the body (6), a chuck end is attached to the tip thereof, and the chuck end is opened and closed by the push/pull action of a drawer.
It is configured to grip the workpiece (1), and furthermore, the shift slide (L?) is attached to the main shaft (8) on the side of the machine body (6).
The shift cylinder αe is arranged inside the side part so as to be slidable in the axial direction of the shift cylinder αe, and this Rondo CD is connected to the mounting plate p3 of the shift slide 17). Install the main shaft servo motor (2),
A worm reduction mechanism is installed inside the shift slide housing, and the worm vertical shaft is connected to the main shaft servo motor (
2), the worm circle and the form wheel CD are engaged with each other, and the shift gear (2) is fixed to the horizontal axis of the form (4).

本実施例は上記構成であるから、先ずワーク(1)たる
固定シリンダの一般加工部(b)の加工が行われる。
Since this embodiment has the above-mentioned configuration, first, the general machining section (b) of the fixed cylinder, which is the workpiece (1), is machined.

この一般加工部(b)の加工は主軸モータ(7) &:
よる主軸(8)の回転と、2軸サーボモータ(9)・X
軸サーボモータ圓を数値制御し、その2軸スライドaQ
・X軸スライド@を案内摺動し、刃物α4によって高速
で行われる。
The machining of this general machining section (b) is performed using the spindle motor (7) &:
The rotation of the main shaft (8) and the two-axis servo motor (9)
The axis servo motor circle is numerically controlled, and its two-axis slide aQ
・The X-axis slide @ is guided and slid at high speed by the blade α4.

一般加工部(b)の加工がおわると、リード加工部(a
)の加工が行われる。
When the machining of the general machining part (b) is finished, the lead machining part (a) is finished.
) processing is performed.

このリード加工部(a)は前記のように走行面加工部(
3)の加工とリード溝(4)を有するリード面加工部(
5)とに分けて加工される。
This lead processing part (a) is the running surface processing part (
3) and the lead surface processing part (4) having the lead groove (4).
5) Processed separately.

本実施例では、まず走行面加工部(3)の加工が行  
 ・われる。
In this example, first, the running surface processing section (3) is processed.
・I get caught.

この走行面加工部(3)の加工前に前記シフトシリンダ
a旬が作動し、シフトスライドa′Dを摺動し、Vフト
ギャ四をメインギヤα鴎に噛合し、前記主軸モータ(力
を無負荷にし、その主軸サーボモータ(18によって主
軸(8)をフオーム減速機構−を介して低速回転するよ
うに駆動を切替える。
Before machining the running surface machining section (3), the shift cylinder a'D is activated, slides the shift slide a'D, engages the V gear 4 with the main gear α, and the main shaft motor (no load is applied) Then, the drive is switched so that the main shaft (8) is rotated at a low speed by the main shaft servo motor (18) via the form reduction mechanism.

したがって、走行面加工部(3)の加工は、主軸チーボ
モータ圓による主軸(8)の回転と、2軸サーボモータ
(9)・加工サーボモータ(2υ及び位置決めとしてX
軸サーボモータ住υを数値制御し、加工スライド(24
を主軸(8)の回転に同期して案内摺動しつつ2軸スラ
イドC11)を案内摺動して送りを与え、走行面加工用
刃物(2)によって順送り加工され、走行面加工部(3
)の3軸数値制御加工が行われる。
Therefore, the machining of the running surface machining section (3) involves the rotation of the main shaft (8) by the main shaft Chivo motor circle, the two-axis servo motor (9), and the processing servo motor (2υ and positioning
The axis servo motor is numerically controlled and the machining slide (24
While guided and sliding in synchronization with the rotation of the main shaft (8), the two-axis slide C11) is guided and slid to give feed, and the running surface machining part (3) is progressively machined by the running surface machining cutter (2).
) 3-axis numerical control machining is performed.

この走行面加工部(3)の加工がおわるとリード面加工
部(5)の加工が行われる。
When the running surface processing section (3) is finished, the lead surface processing section (5) is processed.

このリード面加工部(5)の加工は、走行面加工部(3
)の加工と同様、主軸サーボモータαQ、ウオーム減速
機構霞(;よる主軸(8)の回転と、X軸サーボモータ
I・加工サーポモータシυ及び位置決めとして2軸サー
ボモータ(9)を数値制御し、加工スライドCI!々を
主軸(8)の回転に同期して案内摺動し、X軸スライド
(Lりを案内摺動して送りを与え、リード面加工用刃物
(ハ)でリード溝(4)を有するリード面加工部(5)
の3軸数値制御加工が行われる。
The machining of this lead surface machining section (5) is carried out in the running surface machining section (3).
), the rotation of the main shaft (8) by the main shaft servo motor αQ, the worm reduction mechanism Kasumi (;), the X-axis servo motor I, the processing servo motor υ, and the two-axis servo motor (9) for positioning are numerically controlled. The machining slides CI! are guided and slid in synchronization with the rotation of the main shaft (8), the X-axis slide (L) is guided and slid, and the lead surface processing cutter (c) is used to guide and slide the lead groove (4). ) with lead surface processing part (5)
3-axis numerical control machining is performed.

これでワーク(1)の一般加工部(b)及びリード加工
部(a)の加工がおわることになる。
This completes the machining of the general machining section (b) and lead machining section (a) of the workpiece (1).

尚、上記加工手順中、リード加工部(a)の加工がおわ
ったのち、引続l)て一般加工部(b)の加工が行われ
ることもあり、また一般加工部世)の加工とリード加工
部(a)の加工を逆手順で加工することもある。
In addition, during the above processing procedure, after the machining of the lead machining part (a) is completed, the machining of the general machining part (b) may be performed subsequently, and also the machining of the general machining part 2) and the lead machining. Part (a) may be processed in the reverse order.

本発明は上述の如く、機体(6)にワーク(1)を把持
して主軸モータ(7)によって回転駆動される主軸(8
)を配設し、該機体(6)の前方に2軸サーボモータ(
9)により該主軸(8)の軸線方向に案内摺動される2
軸スライド四を配設し、該2軸スライド四にX軸夛−ボ
モータaυにより該主軸(8)の半径方向に案内摺動さ
れるX軸スライド(L4を配設し、該X軸スライドaり
に刃物台(13)を配設し、該刃物台a騰に刃物α尋を
取付けた旋盤において、上記主軸(8)にメインギヤα
句を配役し、上記機体(6)ζ;シフトシリンダaeに
よって往復摺動されるシフトスライド1?)を配設し、
該シフトスライドαηに主軸サーボモータQ8により回
転駆動されるシフトギヤ翰を配設し、該Vフトギャ翰を
該シフトスライド(171の往復摺動によってメインギ
ヤaSに噛合離反可能に構成し、かつ上記X軸スライド
…二加エサーボモータ圓t−よって上記主軸(8)の軸
線方向に案内摺動される加エスラ゛イド四をを配設し、
該加工スライドQ31!−ド加工用刃物台(ハ)を配設
し、該リード加工用刃物台」二走行面加工用刃物(財)
とリード面加工用刃物(ハ)を取付け、前記シフトギヤ
翰を前記メインキャa5&=噛合し、前記2軸サーボモ
ータ(9)、前記X軸サーボモータI、主軸チーボモー
タ端、加工サーボモータシυをそれぞれ数値制御し、ワ
ーク(1)をリード加工するよ引:構成したから、該主
軸(8)をシフ)Vリンダαeによる主軸モータ(7)
又は主軸サーボモータ(1sの選択によって回転駆動で
き、した力1っチ一般加工部(b)の加工は高速の主軸
モータ(7)で回転駆動し、リード加工部(a)の加工
は低速の主軸サーボモータCI8で回転駆動することが
でき、力λつリード加工部(a)の加工は加工夛−ポモ
ータ圓により案内摺動される加工スライドレυとの複合
運動によって、その走行面加工用刃物(財)及びリード
面加工用刃物(ハ)によって数値制御加工ができ、特に
、主軸f−マボモータ霞の回転はフオーム減速機構−を
介して主軸(8)に伝達されるので主軸(8ンは低速回
転すると共に回転トルクが向上し、このことから、主軸
サーボモータ(18と加工スライド(ハ)との同期性、
追従性が向上し、高精度な精密リード加工ができると共
に、マスクカム式の倣い型式でないから、その前記種々
の弊害が解消できて一層高精度化でき、かつ高速化も期
待でき、しかもプログラム変更によってワークのサイズ
変更に対する融通性も著しく向上できる。  。
As described above, the main shaft (8) grips the workpiece (1) on the machine body (6) and is rotationally driven by the main shaft motor (7).
), and a two-axis servo motor (
9) guided and slid in the axial direction of the main shaft (8) 2
An X-axis slide (L4) which is guided and slid in the radial direction of the main shaft (8) by an X-axis motor aυ is disposed on the two-axis slide 4, and the X-axis slide a In a lathe in which a turret (13) is disposed on the turret and a cutter α is attached to the turret a, the main gear α is attached to the main shaft (8).
The above body (6) ζ; shift slide 1 that is reciprocated by the shift cylinder ae; ),
A shift gear wing rotationally driven by a main shaft servo motor Q8 is disposed on the shift slide αη, and the V gear wing is configured to be able to engage and disengage from the main gear aS by reciprocating sliding of the shift slide (171), and Slide... A machining slide 4 is provided which is guided and slid in the axial direction of the main shaft (8) by a double machining servo motor circle t-,
The processing slide Q31! - A turret for lead machining (c) is installed, and the turret for lead machining is provided.
and the lead surface machining cutter (c) are attached, the shift gear blade is engaged with the main gear a5&=, and the two-axis servo motor (9), the X-axis servo motor I, the main shaft chivo motor end, and the machining servo motor υ are each numerically controlled. Then, to perform lead machining on the workpiece (1), shift the main shaft (8) to the main shaft motor (7) using the V cylinder αe.
Alternatively, the main shaft servo motor (which can be rotated by selecting 1s) is used.The machining of the general machining section (b) is performed by the high-speed main shaft motor (7), and the machining of the lead machining section (a) is performed by the low-speed rotary motor. It can be rotationally driven by the main shaft servo motor CI8, and the machining of the lead machining section (a) with a force of λ is performed by a compound movement with the machining slide rail υ guided and slid by the machining motor circle. Numerically controlled machining is possible with the cutter (goods) and the lead surface machining cutter (c), and in particular, the rotation of the spindle f (Mabomotor Kasumi) is transmitted to the spindle (8) via the form reduction mechanism. As it rotates at a low speed, the rotational torque improves, and from this, the synchronization between the spindle servo motor (18) and the machining slide (c),
In addition to improved followability and high-precision precision lead machining, since it is not a mask cam type copying model, the various disadvantages mentioned above can be eliminated, and even higher precision and speed can be expected.Moreover, by changing the program Flexibility in changing the size of the workpiece can also be significantly improved. .

以上、所期の目的を充分達成することができる。As described above, the intended purpose can be fully achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は全体構
成図、第2図はその要部の縦断面図、第3図はシフトス
ライド部の縦断面図、第4図はその固定シリンダの斜視
図、第5図はその縦断面図、第6図はそのリード展開図
、第7図はその部分拡大図である。 (1)・・ワーク、(6)・・機体、(7戸・主軸モー
タ、(8)・・主軸、(9)・・2軸サーボモニタ、(
FIZ軸スライド、μυ・・X軸サーボモータ、α4・
・X軸スライド、(L3・・刃物台、I・・刃物、α四
・・メインギヤ、(Ll19・・シフトシリンダ、1η
0・シフトスライド、α〜・・主軸サーボモータ、舖・
・フオーム減速機構、翰・・シフトギヤ、■υ・・加エ
サーボモータ、働・・加工スライド、(ハ)・・リード
加工用刃物台、(財)・・定行面加工用刃物台、(ハ)
・・リード面加工用刃物。 昭和59年6月29日 出願人  高  橋  太  部 発明者  高  橋  太  部 同     高   橋        徹7z澗 7り甜
The drawings show one embodiment of the present invention; FIG. 1 is an overall configuration diagram, FIG. 2 is a vertical sectional view of the main part, FIG. 3 is a vertical sectional view of the shift slide part, and FIG. FIG. 5 is a perspective view of the fixed cylinder, FIG. 5 is a longitudinal cross-sectional view thereof, FIG. 6 is a developed view of its leads, and FIG. 7 is a partially enlarged view thereof. (1) Workpiece, (6) Machine body, (7 units/main shaft motor, (8) Main shaft, (9) 2-axis servo monitor, (
FIZ axis slide, μυ・・X axis servo motor, α4・
・X-axis slide, (L3...Turret, I...Cutter, α4...Main gear, (Ll19...Shift cylinder, 1η
0・Shift slide, α~・Main shaft servo motor, or・
・Form reduction mechanism, kiln...shift gear, ■υ...machining servo motor, working...machining slide, (c)...turret for lead machining, (Foundation)...turret for regular surface machining, (c)
...Knife for processing lead surfaces. June 29, 1980 Applicant: Toru Takahashi Inventor: Toru Takahashi

Claims (1)

【特許請求の範囲】[Claims] 機体にワークを把持して主軸モータによって回転駆動さ
れる主軸を配設し、該機体の前方にZ軸サーボモータに
より該主軸の軸線方向に案内摺動されるZ軸スライドを
配設し、該Z軸スライドにX軸サーボモータにより該主
軸の半径方向に案内摺動されるX軸スライドを配設し、
該X軸スライドに刃物台を配設し、該刃物台に刃物を取
付けた旋盤において、上記主軸にメインギヤを配設し、
上記機体にシフトシリンダによって往復摺動されるシフ
トスライドを配設し、該シフトスライドに主軸サーボモ
ータによりウォーム減速機構を介して回転駆動されるシ
フトギヤを配設し、該シフトギヤを該シフトスライドの
往復摺動によって該メインギヤに噛合離反可能に構成し
、かつ上記X軸スライドに加工サーボモータによって上
記主軸の軸線方向に案内摺動される加工スライドを配設
し、該加工スライドにリード加工用刃物台を配設し、該
リード加工用刃物台に走行面加工用刃物を取付け、前記
シフトギヤを前記メインギヤに噛合し、前記Z軸サーボ
モータ、前記X軸サーボモータ、主軸サーボモータ、加
工サーボモータをそれぞれ数値制御し、ワークをリード
加工することを特徴とする精密リード加工CNC旋盤。
A main shaft that grips a workpiece and is rotationally driven by a main shaft motor is disposed on the machine body, and a Z-axis slide that is guided and slid in the axial direction of the main shaft by a Z-axis servo motor is disposed in front of the machine body. An X-axis slide that is guided and slid in the radial direction of the main shaft by an X-axis servo motor is disposed on the Z-axis slide,
In a lathe in which a tool post is arranged on the X-axis slide and a cutter is attached to the tool post, a main gear is arranged on the main shaft,
A shift slide that is slid back and forth by a shift cylinder is disposed in the above-mentioned body, a shift gear that is rotationally driven by a main shaft servo motor via a worm reduction mechanism is disposed on the shift slide, and the shift gear is moved back and forth by the shift slide. A machining slide is configured to be able to engage and disengage from the main gear by sliding, and is provided with a machining slide that is guided and slid in the axial direction of the main shaft by a machining servo motor on the X-axis slide, and a lead machining tool rest is provided on the machining slide. A cutting tool for machining the running surface is installed on the tool post for lead machining, the shift gear is meshed with the main gear, and the Z-axis servo motor, the X-axis servo motor, the main shaft servo motor, and the machining servo motor are respectively operated. A precision lead machining CNC lathe characterized by numerical control and lead machining of workpieces.
JP13619284A 1984-06-29 1984-06-29 Cnc lathe for precision lead machining Pending JPS6130302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13619284A JPS6130302A (en) 1984-06-29 1984-06-29 Cnc lathe for precision lead machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13619284A JPS6130302A (en) 1984-06-29 1984-06-29 Cnc lathe for precision lead machining

Publications (1)

Publication Number Publication Date
JPS6130302A true JPS6130302A (en) 1986-02-12

Family

ID=15169491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13619284A Pending JPS6130302A (en) 1984-06-29 1984-06-29 Cnc lathe for precision lead machining

Country Status (1)

Country Link
JP (1) JPS6130302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014459A (en) * 2015-08-03 2015-11-04 黄山凯新技术咨询有限公司 Hydraulic gear shifting device used for numerically-controlled machine tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513437A (en) * 1974-06-28 1976-01-12 Hitachi Ltd
JPS59110503A (en) * 1982-12-14 1984-06-26 Toyoda Mach Works Ltd Machining device for turning operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513437A (en) * 1974-06-28 1976-01-12 Hitachi Ltd
JPS59110503A (en) * 1982-12-14 1984-06-26 Toyoda Mach Works Ltd Machining device for turning operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014459A (en) * 2015-08-03 2015-11-04 黄山凯新技术咨询有限公司 Hydraulic gear shifting device used for numerically-controlled machine tool

Similar Documents

Publication Publication Date Title
US6868304B2 (en) Multi-function machine tool and machining method in multi-function machine tool
US3880025A (en) Machine tool for the machining of shafts
CN114226868B (en) Gear grinding machine tool for forming grinding wheel
JPH0794094B2 (en) Machine Tools
JPH0755405B2 (en) Cutting tools and cutter heads for milling machines
US5751586A (en) CNC machine tool
EP2311599B1 (en) Five-axis milling machine
JPS6354485B2 (en)
JPH01159126A (en) Skiving machine
US5309800A (en) Nonaxisymmetric shape cutting lathe
JPS6347033A (en) High-speed machining device
CN211804787U (en) Numerical control lathe
KR101157326B1 (en) Cross tool holder to adjust angle
JPS6130302A (en) Cnc lathe for precision lead machining
JPH0871803A (en) Edge preparing device
JP2807823B2 (en) Work machining equipment for 2-spindle opposed CNC lathe
JPS61288907A (en) Drilling robot
JPS60123201A (en) Computer-numerical controlled lathe for precision lead machining
US5516240A (en) Device for milling
JP2551886B2 (en) Electrode thread cutting machine
JPH09500333A (en) CNC automatic lathe work machining method and CNC automatic lathe
JP2642628B2 (en) Machining method for long workpieces in multitasking machine tools
JPH0691479A (en) Machining method of noncircular work
JPH0713925Y2 (en) Tool holder for taper hole machining
JPH0253162B2 (en)