JPS6130122B2 - - Google Patents
Info
- Publication number
- JPS6130122B2 JPS6130122B2 JP900782A JP900782A JPS6130122B2 JP S6130122 B2 JPS6130122 B2 JP S6130122B2 JP 900782 A JP900782 A JP 900782A JP 900782 A JP900782 A JP 900782A JP S6130122 B2 JPS6130122 B2 JP S6130122B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- turbine
- temperature
- heating
- bore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000010438 heat treatment Methods 0.000 claims description 34
- 238000009826 distribution Methods 0.000 claims description 23
- 230000008646 thermal stress Effects 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 238000012546 transfer Methods 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000012530 fluid Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
【発明の詳細な説明】
本発明はタービン及びその運転方法に係り、特
にタービンロータに発生する応力を軽減すること
のできるタービン及びその運転方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbine and an operating method thereof, and more particularly to a turbine and an operating method thereof that can reduce stress generated in a turbine rotor.
タービンは、その起動・停止時あるいは負荷変
更時に熱応力を発生し、タービン損傷あるいはタ
ービン寿命低下の重大な要因となつている。熱応
力発生を抑止制限するための種々の対策が立てら
れてはいるが結局のところ、タービンの速度ある
いは負荷についての変化率を制限し慎重に運転す
ること以外に有効な方法の無いのが実情である。 Turbines generate thermal stress when starting, stopping, or changing load, which is a significant factor in damaging the turbine or shortening its lifespan. Although various measures have been taken to suppress and limit the occurrence of thermal stress, the reality is that there is no effective method other than to limit the rate of change in turbine speed or load and operate the turbine carefully. It is.
ところが最近の電力系統においては、原子力発
電所あるいは大容量火力発電所を基底負荷運転
し、中規模火力発電所を積極的に負荷変更運転す
る傾向にある。例えば負荷要求に従つて毎時負荷
変更され、週単位で起動停止され、あるいは毎日
起動停止される。係る運用とされるために、ター
ビンを緩変化率でしか運転できないことが電力系
統を経済負荷運転するうえで大きな障害となつて
いる。また供給電力を急増させたい場合などを考
えると、これに高速応答できないために電力系統
の安定度を悪くする恐れがある。 However, in recent power systems, there is a tendency to operate nuclear power plants or large-capacity thermal power plants at base load, and to actively operate medium-scale thermal power plants with load changes. For example, the load is changed hourly, started and stopped weekly, or started and stopped every day according to load requests. Due to this operation, the turbine can only be operated at a slow rate of change, which is a major obstacle in operating the power system under economic load. Furthermore, when considering the case where it is desired to rapidly increase the amount of power supplied, there is a risk that the stability of the power system will be deteriorated due to the inability to respond quickly.
以上のことから本発明においては、急変化率で
運転しても熱応力発生の少ないタービン及びその
運転方法を提供することを目的とする。 In view of the above, an object of the present invention is to provide a turbine that generates less thermal stress even when operated at a rapid rate of change, and a method for operating the turbine.
タービンはロータ材強度確保のために中心部が
中空とされており、中空部側のロータ内表面温度
は蒸気により加熱冷却されるロータ外表面からの
熱伝達で定まる。このためロータ外表面と内表面
との間に多大の温度差を生じ熱応力が発生する。 The turbine is hollow in the center to ensure the strength of the rotor material, and the temperature of the inner surface of the rotor on the hollow side is determined by heat transfer from the outer surface of the rotor, which is heated and cooled by steam. This creates a large temperature difference between the outer and inner surfaces of the rotor and generates thermal stress.
本発明ではこのことに着目し、ロータ中空部
(以下ロータボアという)からもロータを加熱冷
却することで、ロータの温度分布を極力均一とし
発生熱応力を微少なものとしている。 The present invention focuses on this and heats and cools the rotor also from the rotor hollow portion (hereinafter referred to as rotor bore), thereby making the temperature distribution of the rotor as uniform as possible and minimizing the generated thermal stress.
第1図は周知のタービンの縦断面を示してお
り、ロータ24はケーシング23内に収納されて
いる。そしてロータ24の中心部は中空とされロ
ータボア22を形成している。第3図は本発明の
根本原理を説明するための図で、第1図のタービ
ンのX−X′断面における温度分布を示してい
る。このX−X′断面の位置は、例えば発生熱応
力が最も大なるタービン第1段後である。周知の
タービンにおいては、ロータ外表面がタービン駆
動蒸気にさらされており、ロータボアには不活性
ガスが封入されている。このため、ロータをその
径方向にn分割したときの各部温度についてみる
と、過渡運転状態では27のような温度分布とな
る。つまり、高温蒸気との接触によりロータ外表
面温度が定まりロータ内の各分割部温度はロータ
外表面からの熱伝達により決定されるために、ロ
ータ内表面と外表面とでは温度差を生じる。温度
差が大なるほど熱応力も大きく、従来装置ではロ
ータ外表面からのみ加熱(タービン起動あるいは
負荷増加時)あるいは冷却(タービン停止あるい
は負荷減少時)されるために温度差が大きくなり
易い。 FIG. 1 shows a longitudinal section of a known turbine, in which a rotor 24 is housed in a casing 23. The center of the rotor 24 is hollow and forms a rotor bore 22. FIG. 3 is a diagram for explaining the fundamental principle of the present invention, and shows the temperature distribution in the cross section of the turbine shown in FIG. 1 along the line X-X'. The position of this X-X' cross section is, for example, after the first stage of the turbine where the generated thermal stress is greatest. In known turbines, the outer surface of the rotor is exposed to turbine drive steam, and the rotor bore is filled with an inert gas. Therefore, when looking at the temperature of each part when the rotor is divided into n parts in the radial direction, the temperature distribution becomes 27 in the transient operating state. In other words, the rotor outer surface temperature is determined by contact with high-temperature steam, and the temperature of each divided portion within the rotor is determined by heat transfer from the rotor outer surface, so that a temperature difference occurs between the rotor inner surface and outer surface. The larger the temperature difference, the larger the thermal stress, and in conventional equipment, the temperature difference tends to become large because only the outer surface of the rotor is heated (when the turbine is started or the load is increased) or cooled (when the turbine is stopped or the load is decreased).
本発明では、温度差を小さくし熱応力を微小な
ものとするために、ロータボア側からも加熱す
る。第3図において特性28は、ロータボア22
側からのみ加熱するときの温度分布を示してお
り、ロータ外表面温度はロータ内表面からの熱伝
達により定まる。しかるに両側から同時に加熱す
るときには点線で示す29のごとき温度分布とな
り、ロータ外表面からのみ加熱する従来方式より
も温度分布を均一化でき発生熱応力を軽減でき
る。 In the present invention, in order to reduce the temperature difference and minimize thermal stress, heating is also performed from the rotor bore side. In FIG. 3, the characteristic 28 is the rotor bore 22
It shows the temperature distribution when heating only from the side, and the rotor outer surface temperature is determined by heat transfer from the rotor inner surface. However, when heating from both sides simultaneously, the temperature distribution becomes as shown by the dotted line 29, and the temperature distribution can be made more uniform and the generated thermal stress can be reduced compared to the conventional method of heating only from the outer surface of the rotor.
本発明の「ロータボアからの加熱」を実現する
手法としては種々のものが考え得るが、ここでは
その一例としてロータボアに高温流体を導入する
流体加熱方式について説明する。これは例えば第
1図に示すようにタービンのロータボアの一方端
25より高温流体を導入し、他方端26より排出
するものである。高温流体としては蒸気・空気・
水・ヘリウム・水素・ナトリウムなどロータ金属
に対して化学的に安定で熱伝達率の高い流体が好
適である。第5図はタービンの駆動用蒸気の一部
をロータボア加熱用に使用する例を示しており、
タービン駆動用蒸気を加減弁31、温度調節器1
9を介してロータボア22に導く。30はタービ
ン入口弁である。 Although various methods can be considered for realizing the "heating from the rotor bore" of the present invention, a fluid heating method in which high temperature fluid is introduced into the rotor bore will be described as an example. For example, as shown in FIG. 1, high-temperature fluid is introduced from one end 25 of the rotor bore of the turbine and discharged from the other end 26. Steam, air,
Fluids such as water, helium, hydrogen, and sodium that are chemically stable to the rotor metal and have high heat transfer coefficients are suitable. Figure 5 shows an example where part of the steam for driving the turbine is used for heating the rotor bore.
Control valve 31 and temperature regulator 1 control steam for driving the turbine.
9 to the rotor bore 22. 30 is a turbine inlet valve.
ロータボアからの加熱の際の加熱エネルギー量
は適宜可変調整される必要がある。前記流体加熱
方式の場合に加熱エネルギーを可変調整するため
の有効な方式としては流体温度調節方式及び流体
流量調節方式がある。前者の方式は、望ましくは
第5図において調節弁31を用いて流体流量を一
定としながら温度調節器19により流体温度を制
御し加熱エネルギーを変更するのがよく、後者の
方式は、これと全く逆に流体温度を一定に保持し
ながら流体流量を適宜変更するのがよい。 The amount of heating energy for heating from the rotor bore needs to be variably adjusted as appropriate. In the case of the fluid heating method, effective methods for variably adjusting the heating energy include a fluid temperature adjustment method and a fluid flow rate adjustment method. The former method preferably uses the regulating valve 31 in FIG. 5 to keep the fluid flow rate constant while controlling the fluid temperature and changing the heating energy using the temperature regulator 19, whereas the latter method is completely different from this. On the contrary, it is preferable to appropriately change the fluid flow rate while keeping the fluid temperature constant.
発生熱応力の軽減という効果は、ロータボアか
ら加熱することが達成されるが、より望ましくは
タービン運転状態に応じてボア加熱エネルギー量
を制御するのがよい。本発明では、ロータ応力も
しくはロータ内温度分布を求め、これに応じてボ
ア加熱エネルギー量を制御する。ここで、ロータ
応力は直接計測することもできる。別手段によれ
ばロータ内の温度分布より求められるものであ
り、ロータ内の温度分布はロータ外表面からの伝
熱とロータ内表面からの伝熱を求めることによつ
て知ることができる。 The effect of reducing the generated thermal stress can be achieved by heating from the rotor bore, but it is more desirable to control the amount of bore heating energy depending on the turbine operating state. In the present invention, the rotor stress or rotor internal temperature distribution is determined and the amount of bore heating energy is controlled accordingly. Here, the rotor stress can also be directly measured. Another method is to determine the temperature distribution within the rotor, and the temperature distribution within the rotor can be determined by determining the heat transfer from the outer surface of the rotor and the heat transfer from the inner surface of the rotor.
次に本発明の実施例を説明する。第2図は本発
明の1実施例を示すブロツク線図である。第2図
において、1は主蒸気温度検出器、2は主蒸気圧
力検出器、3は主蒸気流量検出器、4はボア内流
入蒸気温度検出器、5はボア内流入蒸気圧力検出
器、6はボア内流入蒸気流量を示し、7は主蒸気
温度信号、8は主蒸気圧力信号、9は主蒸気流量
信号、10はボア内流入蒸気温度信号、11はボ
ア内流入蒸気圧力信号、12はボア内流入蒸気流
量信号を示す。また、13はロータ内部の温度分
布推定装置、14はロータ内部の平均温度、15
は熱応力推定装置、16はロータ表面の熱応力、
21はボア内側の熱応力、17はボア内許容温度
推定装置、18はボア内許容温度、19はボア内
温度調節装置、20はボア流入蒸気温度を示す。
尚、この実施例は第5図のように蒸気加熱する例
を示しているが、これはその他の加熱方式の場合
にも同様思想で採用し得るものである。 Next, examples of the present invention will be described. FIG. 2 is a block diagram showing one embodiment of the present invention. In FIG. 2, 1 is a main steam temperature detector, 2 is a main steam pressure detector, 3 is a main steam flow rate detector, 4 is a bore inflow steam temperature detector, 5 is a bore inflow steam pressure detector, 6 indicates the inflow steam flow rate in the bore, 7 is the main steam temperature signal, 8 is the main steam pressure signal, 9 is the main steam flow rate signal, 10 is the inflow steam temperature signal in the bore, 11 is the inflow steam pressure signal in the bore, and 12 is the inflow steam pressure signal in the bore. The inflow steam flow rate signal in the bore is shown. Further, 13 is a temperature distribution estimation device inside the rotor, 14 is an average temperature inside the rotor, and 15 is an average temperature inside the rotor.
is a thermal stress estimator, 16 is a thermal stress on the rotor surface,
Reference numeral 21 indicates thermal stress inside the bore, 17 indicates a bore allowable temperature estimation device, 18 indicates a bore allowable temperature, 19 indicates a bore inner temperature adjustment device, and 20 indicates a bore inflow steam temperature.
Although this embodiment shows an example in which steam heating is used as shown in FIG. 5, this idea can be adopted in the case of other heating methods as well.
第4図は第2図装置の考え方を示すフロー図で
あり、まずロータ外表面からの伝熱とロータ内表
面からの伝熱を知る。このうち、前者の伝熱につ
いてはすでに種々の方式のものが知られている。
例えば、タービン衝撃室の温度を実測しこれをタ
ービン第1段後蒸気温度とみなして第1段後付近
のロータ外表面金属温度を推定し、あるいはケー
シング内壁温度を実測してこれからロータ外表面
金属温度を推定する。更にこれらの別方式として
タービン入口蒸気条件から第1段後蒸気温度を推
定する方式について第6図に示す。この推定は第
2図のロータ温度分布推定装置13で実施され、
主蒸気温度信号7、主蒸気圧力信号8、負荷実測
信号(主蒸気流量信号9が代用し得る。)32、
第2図には図示しないが負荷変化率設定信号33
を用いて行なう。まず、ブロツク34では主蒸気
温度信号7および主蒸気圧力信号8から蒸気表を
用いて主蒸気エンタルピ35を求める。ブロツク
36ではこのエンタルピと負荷実測値信号32と
負荷変化率設定信号33とからタービン第1段落
後の蒸気温度を求める。エンタルピと負荷と蒸気
温度の関係はシミユレーシヨンや過去のデータの
解析によつて予め求め記憶しておく。 FIG. 4 is a flowchart showing the concept of the apparatus shown in FIG. 2. First, we understand heat transfer from the outer surface of the rotor and heat transfer from the inner surface of the rotor. Among these, various methods of heat transfer are already known.
For example, the temperature of the turbine shock chamber is actually measured and this is regarded as the steam temperature after the first stage of the turbine to estimate the rotor outer surface metal temperature near the first stage, or the casing inner wall temperature is actually measured and the rotor outer surface metal temperature is estimated. Estimate temperature. Furthermore, as another method, a method for estimating the post-first stage steam temperature from the turbine inlet steam conditions is shown in FIG. This estimation is carried out by the rotor temperature distribution estimation device 13 shown in FIG.
Main steam temperature signal 7, main steam pressure signal 8, load actual measurement signal (main steam flow rate signal 9 can be substituted) 32,
Although not shown in FIG. 2, the load change rate setting signal 33
Do this using First, in block 34, the main steam enthalpy 35 is determined from the main steam temperature signal 7 and the main steam pressure signal 8 using a steam table. In block 36, the steam temperature after the first stage of the turbine is determined from this enthalpy, the actual load value signal 32, and the load change rate setting signal 33. The relationship between enthalpy, load, and steam temperature is determined and memorized in advance through simulation or analysis of past data.
他方、ロータボアからの伝熱についてみると、
従来このことを考慮したものは無いが、例えば第
6図の考えを応用して同様思想で実施可能であ
る。ボアに流入する前の蒸気温度信号10と蒸気
圧力信号11とからボアに流入する蒸気の有する
エンタルピを求め、ボアに流入する蒸気流量信号
12と推定したエンタルピから第1段後付近のボ
アの蒸気温度を求める。第1段後付近の蒸気温度
がわかれば、蒸気からロータ金属への伝熱係数を
考慮することでロータの内表面とロータ外表面の
金属温度が知られる。そして、ロータを第3図の
ようなn等分されたリングと考え各リング間での
熱伝達を考慮することにより、ロータ内表面から
伝熱されるときの温度分布28と、ロータ外表面
から伝熱されるときの温度分布27が求められ
る。又、温度分布27と28とを併せて考えるこ
とにより両側から加熱されるときの総合的ロータ
内部温度分布特性29が知られる。そして、この
温度分布よりロータ内平均温度を求め、熱応力推
定装置15ではロータ内平均温度とロータ外表面
温度とロータ内表面温度とから、ロータ外表面応
力とロータ内表面応力とを求める。 On the other hand, looking at heat transfer from the rotor bore,
Although there is no conventional method that takes this into consideration, it is possible to implement the same idea by applying the idea shown in FIG. 6, for example. The enthalpy of the steam flowing into the bore is determined from the steam temperature signal 10 and the steam pressure signal 11 before flowing into the bore, and the steam in the bore near the rear of the first stage is determined from the steam flow rate signal 12 flowing into the bore and the estimated enthalpy. Find the temperature. If the steam temperature near the rear of the first stage is known, the metal temperatures of the inner surface of the rotor and the outer surface of the rotor can be known by considering the heat transfer coefficient from the steam to the rotor metal. By considering the rotor as a ring divided into n equal parts as shown in Figure 3 and considering the heat transfer between each ring, we can calculate the temperature distribution 28 when heat is transferred from the inner surface of the rotor and the temperature distribution when heat is transferred from the outer surface of the rotor. The temperature distribution 27 when heated is determined. Furthermore, by considering the temperature distributions 27 and 28 together, the overall rotor internal temperature distribution characteristic 29 when heated from both sides is known. Then, the rotor internal average temperature is determined from this temperature distribution, and the rotor external surface stress and rotor internal surface stress are determined from the rotor internal average temperature, the rotor external surface temperature, and the rotor internal surface temperature in the thermal stress estimating device 15.
ボア内許容温度推定装置17では前記計算した
応力値が所定制限値以下となるために必要なロー
タ内表面温度を求める。温度調節装置19では装
置19で求めたロータ内表面温度となるようにボ
ア流入する蒸気温度を制御する。 The bore allowable temperature estimating device 17 determines the rotor inner surface temperature necessary for the calculated stress value to be equal to or less than a predetermined limit value. The temperature control device 19 controls the temperature of the steam flowing into the bore so that the rotor inner surface temperature determined by the device 19 is achieved.
この本発明については種々の変形例を採用し得
る。例えばロータボアからの加熱の具体手段とし
ては、高温流体による以外の種々の周知の加熱方
式とできる。あるいは熱応力、温度分布について
は周知の手法により、直接に計測しもしくは他の
要因から推定できるのであり本発明はこれらの手
法を特に限定するものではない。 Various modifications can be made to the present invention. For example, as specific means for heating from the rotor bore, various well-known heating methods other than using high-temperature fluid can be used. Alternatively, thermal stress and temperature distribution can be directly measured or estimated from other factors using well-known methods, and the present invention is not particularly limited to these methods.
以上詳細に述べたように、ロータボア側からも
加熱することにより、発生熱応力を小さくするこ
とができこの結果タービンの急速起動停止を可能
とする。ロータボアからの加熱に際しては加熱量
を適切に調節するのがよく、制御の観点としては
ロータ内温度分布を極力均一とし、発生熱応力を
小さくする方向のものとする必要がある。ロータ
内温度分布あるいは発生熱応力の推定に際しては
ロータボアからの伝熱を考慮することが有効であ
る。 As described in detail above, by heating from the rotor bore side as well, the generated thermal stress can be reduced, and as a result, the turbine can be started and stopped quickly. When heating from the rotor bore, it is best to appropriately adjust the amount of heating, and from the viewpoint of control, it is necessary to make the temperature distribution inside the rotor as uniform as possible and to reduce the generated thermal stress. When estimating the temperature distribution within the rotor or the generated thermal stress, it is effective to consider heat transfer from the rotor bore.
第1図はタービン断面図、第2図は本発明の1
実施例を示すブロツク線図、第3図はロータの断
面と温度分布、第4図は実施例のフローチヤート
を示す図面、第5図はボア構造図、第6図は蒸気
温度推定のための説明図である。
1……主蒸気温度検出器、2……主蒸気圧力検
出器、3……主蒸気流量検出器、4……ボア内流
入温度検出器、5……ボア内流入圧力検出器、6
……ボア内流入流量検出器、7……主蒸気温度信
号、8……主蒸気圧力信号、9……主蒸気流量信
号、10……ボア内流入温度信号、11……ボア
内流入圧力信号、12……ボア内流入流量信号、
13……ロータ内部の温度分布推定装置、14…
…ロータ内部平均温度、15……熱応力推定装
置、16……ロータ表面熱応力、17……ボア内
許容温度推定装置、18……ボア内許容温度、1
9……ボア内温度調節装置、20……ボア内流入
蒸気温度、21……ボア部熱応力。
Fig. 1 is a sectional view of the turbine, and Fig. 2 is a sectional view of the turbine.
A block diagram showing the embodiment, Fig. 3 is a cross section of the rotor and temperature distribution, Fig. 4 is a flowchart of the embodiment, Fig. 5 is a bore structure diagram, and Fig. 6 is a diagram for estimating steam temperature. It is an explanatory diagram. 1... Main steam temperature detector, 2... Main steam pressure detector, 3... Main steam flow rate detector, 4... Bore inflow temperature detector, 5... Bore inflow pressure detector, 6
... Bore inflow flow rate detector, 7 ... Main steam temperature signal, 8 ... Main steam pressure signal, 9 ... Main steam flow rate signal, 10 ... Bore inflow temperature signal, 11 ... Bore inflow pressure signal , 12...Bore inflow flow rate signal,
13...Temperature distribution estimation device inside the rotor, 14...
... Rotor internal average temperature, 15 ... Thermal stress estimation device, 16 ... Rotor surface thermal stress, 17 ... Bore allowable temperature estimation device, 18 ... Bore allowable temperature, 1
9... Bore temperature adjustment device, 20... Bore inflow steam temperature, 21... Bore portion thermal stress.
Claims (1)
手段を備え、タービンの昇速時と負荷制御時にロ
ータ外表面からの熱伝達とロータ内表面からの熱
伝達とからタービンロータ周方向における熱伝達
状態を考慮して前記加熱手段による加熱量を制御
することを特徴とするタービンの運転方法。 2 タービンロータをそのボア部側から加熱する
手段を備え、タービンの昇速時と負荷制御時にタ
ービンロータ周方向の温度分布に応じて前記加熱
手段による加熱量を制御することを特徴とするタ
ービンの運転方法。 3 タービンロータをそのボア部側から加熱する
手段を備え、タービンの昇速時と負荷制御時にタ
ービンロータ周方向の熱応力に応じて前記加熱手
段による加熱量を制御することを特徴とするター
ビンの運転方法。 4 タービンロータをそのボア部側から加熱する
手段を備え、タービンの昇速時と負荷制御時にタ
ービンロータ内表面金属温度もしくはタービンボ
ア温度の目標値に従つて前記加熱手段による加熱
量を制御することを特徴とするタービンの運転方
法。[Scope of Claims] 1. A means for heating the turbine rotor from its bore side is provided, and heat transfer from the outer surface of the rotor and heat transfer from the inner surface of the rotor occurs during speed-up and load control of the turbine. A method for operating a turbine, comprising controlling the amount of heating by the heating means in consideration of the state of heat transfer in the direction. 2. A turbine comprising means for heating the turbine rotor from its bore side, and controlling the amount of heating by the heating means according to the temperature distribution in the circumferential direction of the turbine rotor during speed increase and load control of the turbine. how to drive. 3. A turbine comprising means for heating the turbine rotor from its bore side, and controlling the amount of heating by the heating means according to thermal stress in the circumferential direction of the turbine rotor during speed increase and load control of the turbine. how to drive. 4. A means for heating the turbine rotor from its bore side is provided, and the amount of heating by the heating means is controlled in accordance with a target value of the turbine rotor inner surface metal temperature or turbine bore temperature during turbine speed increase and load control. A method of operating a turbine characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP900782A JPS57165604A (en) | 1982-01-25 | 1982-01-25 | Method of operating turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP900782A JPS57165604A (en) | 1982-01-25 | 1982-01-25 | Method of operating turbine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2802775A Division JPS51104102A (en) | 1975-03-10 | 1975-03-10 | TAABINROOTANETSUORYOKUSEIGYOSOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57165604A JPS57165604A (en) | 1982-10-12 |
JPS6130122B2 true JPS6130122B2 (en) | 1986-07-11 |
Family
ID=11708592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP900782A Granted JPS57165604A (en) | 1982-01-25 | 1982-01-25 | Method of operating turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57165604A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005121024A (en) * | 2003-10-16 | 2005-05-12 | General Electric Co <Ge> | Method and device for controlling steam turbine inlet flow for limiting thermal stress of shell and rotor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2756117B2 (en) * | 1987-11-25 | 1998-05-25 | 株式会社日立製作所 | Gas turbine rotor |
-
1982
- 1982-01-25 JP JP900782A patent/JPS57165604A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005121024A (en) * | 2003-10-16 | 2005-05-12 | General Electric Co <Ge> | Method and device for controlling steam turbine inlet flow for limiting thermal stress of shell and rotor |
JP4684614B2 (en) * | 2003-10-16 | 2011-05-18 | ゼネラル・エレクトリック・カンパニイ | Method and apparatus for controlling steam turbine inlet flow to limit shell and rotor thermal stresses |
Also Published As
Publication number | Publication date |
---|---|
JPS57165604A (en) | 1982-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0128593B1 (en) | Method of controlling operation of thermoelectric power station | |
JP3868188B2 (en) | Gas discharge laser with gas temperature control | |
Metzger et al. | Impingement cooling of concave surfaces with lines of circular air jets | |
US5572985A (en) | Recirculating system with by-pass valve | |
EP0481150B1 (en) | Synthesized feedback for gas turbine clearance control | |
US20060178784A1 (en) | Method and apparatus for latent temperature control for a device under test | |
US10301974B2 (en) | Activation control apparatus for steam turbine | |
EP0093118A4 (en) | Hrsg damper control. | |
JP2010501823A (en) | System and method for adjusting heat transfer to a fluid by adjusting the flow of the fluid | |
KR100612177B1 (en) | Feedforward control for absorption chiller | |
JPS6130122B2 (en) | ||
US7164703B2 (en) | Temperature control systems for excimer lasers | |
US6522990B1 (en) | Methods and apparatus for reducing temperature overshoot | |
JP2000284832A (en) | Temperature controller and valve control part of the same | |
JP2000161084A (en) | Fuel heating device | |
CN114251716A (en) | Method and system for determining adjusting parameters of adjusting valve of heat supply pipe network | |
JPS6235573B2 (en) | ||
JP2583719B2 (en) | Gas controlled output stabilized gas laser system | |
JP3059754B2 (en) | Method of adjusting cooling air flow rate for turbine case of gas turbine engine | |
KR102318164B1 (en) | Apparatus and method for automatically tuning a fluid temperature PID controller with constraints on the physical characteristics of the process | |
JP2535740B2 (en) | Speed control method of underwater vehicle | |
JPH02173598A (en) | Control method for fast breeder reactor plant | |
JP3422735B2 (en) | Cooling water supply device | |
SU778388A1 (en) | Method for starting-up steam turbine | |
CA1049287A (en) | Hot water generator and method for shock testing fabricated piping components |