JPS6130067Y2 - - Google Patents

Info

Publication number
JPS6130067Y2
JPS6130067Y2 JP1981087876U JP8787681U JPS6130067Y2 JP S6130067 Y2 JPS6130067 Y2 JP S6130067Y2 JP 1981087876 U JP1981087876 U JP 1981087876U JP 8787681 U JP8787681 U JP 8787681U JP S6130067 Y2 JPS6130067 Y2 JP S6130067Y2
Authority
JP
Japan
Prior art keywords
heat
chamber
section
pipe
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981087876U
Other languages
Japanese (ja)
Other versions
JPS57199776U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981087876U priority Critical patent/JPS6130067Y2/ja
Publication of JPS57199776U publication Critical patent/JPS57199776U/ja
Application granted granted Critical
Publication of JPS6130067Y2 publication Critical patent/JPS6130067Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は工場等の排ガス、温排水等の顕熱を作
動流体の蒸発、凝縮によつて回収する熱交換装置
に関し、特にその受熱部(蒸発部)、放熱部(凝
縮部)が長く離れた位置に独立して存在する場合
のセパレート型熱交換装置における受熱部の給液
装置に関する。
[Detailed description of the invention] The present invention relates to a heat exchange device that recovers sensible heat from exhaust gas, heated wastewater, etc. from factories, etc. by evaporation and condensation of a working fluid, and in particular, the heat receiving part (evaporation part), heat radiation part ( The present invention relates to a liquid supply device for a heat receiving section in a separate heat exchange device in which a condensing section (condensing section) exists independently at a long distance.

作動流体を用いて熱交換あるいは熱伝搬を行う
装置として、同じ1本のパイプ内で作動流体の蒸
発、凝縮を行うようにしたヒートパイプの装置が
ある。この装置の代表的なものは、第1図に示す
如く、両端の密閉されたパイプまたは筒状容器3
0の内周部にウイツクと称する中空の多孔質物質
31を配置し、作動液を前記パイプ内に封入し、
この作動液の相変態およびその移動により熱伝搬
の機能を発揮させるようにしたものである。例え
ば図示のヒートパイプ装置でパイプ30の片側A
を受熱部、他方の片側Bを放熱部とすれば、受熱
部Aに加えられた外部顕熱によりこの部分の作動
液が蒸発し、蒸気となつて矢印で示す如く放熱部
Bへパイプ30の内部32を通つて圧力差で移動
して凝縮し、潜熱を放出する。同時にこの凝縮液
(作動液)はウイツク31を通つて矢印の如く受
熱部Aへ流れる。
As a device that performs heat exchange or heat propagation using a working fluid, there is a heat pipe device that evaporates and condenses the working fluid within the same pipe. A typical example of this device is a pipe or cylindrical container 3 with both ends sealed, as shown in Figure 1.
A hollow porous material 31 called a pipe is placed on the inner circumference of the pipe, and a working fluid is sealed in the pipe.
This phase transformation of the working fluid and its movement are used to exert the heat propagation function. For example, in the illustrated heat pipe device, one side A of the pipe 30
If B is the heat receiving part and the other side B is the heat radiating part, the working fluid in this part evaporates due to the external sensible heat added to the heat receiving part A, becomes steam, and flows through the pipe 30 to the heat radiating part B as shown by the arrow. The pressure differential moves through the interior 32 and condenses, releasing latent heat. At the same time, this condensed liquid (working liquid) flows through the wick 31 to the heat receiving part A as shown by the arrow.

このような従来のヒートパイプ装置では以下の
ような問題点がある。
Such conventional heat pipe devices have the following problems.

(イ)ドライアウト限界が存在する。ヒートパイプ
に一定以上の熱入力を加えた場合、受熱部のウイ
ツク内面が乾いて作動流体が液状で存在しなくな
り、正常な動作がなされなくなる。(ロ)パイプが完
全に密閉されているので、水素ガスなどの非凝縮
ガスが発生した場合の排除が不可能である。(ハ)蒸
発および凝縮が1本のパイプ内で行われるので、
その蒸発部と凝縮部の距離、即ちヒートパイプ自
身の長さに制限があり、排熱回収用としては通常
は6〜10m程度が限界である。これ以上長くなる
と、受熱部、放熱部の熱負荷が不均一となり、ま
たパイプ内を流れる作動液や蒸気の移動量が大き
くなつてヒートパイプの構成上あるいは性能上
種々の不具合が生じる。
(b) There is a dryout limit. If a heat input above a certain level is applied to the heat pipe, the inner surface of the heat receiving part dries out and the working fluid no longer exists in liquid form, making it impossible to operate normally. (b) Since the pipe is completely sealed, it is impossible to eliminate any non-condensable gas such as hydrogen gas generated. (c) Evaporation and condensation take place in one pipe, so
There is a limit to the distance between the evaporation section and the condensation section, that is, the length of the heat pipe itself, and for exhaust heat recovery, the limit is usually about 6 to 10 m. If the length is longer than this, the heat load on the heat receiving section and the heat dissipating section will become uneven, and the amount of movement of the working fluid or steam flowing inside the pipe will increase, causing various problems in the structure or performance of the heat pipe.

上述の欠点を解消するために、特開昭55−6177
号公報において、受熱部と放熱部とを別々の断熱
されたパイプで連結し、作動流体の蒸気が受熱部
から放熱部へ一方のパイプを通つて流れ、逆に凝
縮液が放熱部から受熱部へ他方のパイプを通つて
流れ、これによつて前記受熱部と前記放熱部の間
を作動流体が相変態しながら循環するようにした
セパレート型のヒートパイプ装置が提案されてい
る。この装置は蒸気と凝縮液の還流が良好で、受
熱部と放熱部とを長い距離離して配置してもヒー
トパイプの機能を有効に果たすことができる。
In order to eliminate the above-mentioned drawbacks, Japanese Patent Application Laid-Open No. 55-6177
In the publication, the heat receiving part and the heat radiating part are connected by separate insulated pipes, and the steam of the working fluid flows from the heat receiving part to the heat radiating part through one pipe, and condensed liquid flows from the heat radiating part to the heat receiving part. A separate type heat pipe device has been proposed in which the working fluid flows through the other pipe, thereby circulating the working fluid between the heat receiving section and the heat dissipating section while undergoing phase transformation. This device has good reflux of steam and condensate, and can effectively function as a heat pipe even if the heat receiving part and the heat radiating part are placed a long distance apart.

本考案は、上述したセパレート型ヒートパイプ
装置を更に改良し、その受熱部の蒸発管内壁に良
好な作動流体の濡れ壁を形成せしめ、これによつ
て作動流体の蒸発率を良好ならしめた受熱部の給
液装置を提供することを目的とする。
The present invention further improves the above-mentioned separate type heat pipe device, and forms a good wetted wall of the working fluid on the inner wall of the evaporation tube of the heat receiving part, thereby improving the evaporation rate of the working fluid. The purpose of this invention is to provide a liquid supply device for parts of the world.

本考案の適用され得るセパレート型熱交換装置
の具体例としては、受熱部および放熱部をそれぞ
れ3つの室に区画し、その中間区画部分に複数個
の連通管(蒸発管、凝縮管)を設けてそれぞれの
熱交換室とし、前記受熱部の上部区画部分を蒸気
室として該室を別体の配管(蒸気管、給液管、復
液管)によつて放熱部の上部区画部分の蒸気導入
室および下部区画部分の復液室に接続した構造を
有する。そして本考案は、前記蒸発管の上端外壁
からその内壁にかけて毛管作用をもつ部材を配置
したものである。
As a specific example of a separate type heat exchange device to which the present invention can be applied, the heat receiving section and the heat dissipating section are each divided into three chambers, and a plurality of communication pipes (evaporation pipes, condensation pipes) are provided in the middle section. The upper section of the heat receiving section is used as a steam chamber, and the steam is introduced into the upper section of the heat radiating section through separate piping (steam pipe, liquid supply pipe, liquid recovery pipe). It has a structure connected to the chamber and the liquid recovery chamber in the lower section. In the present invention, a member having a capillary action is arranged from the outer wall of the upper end of the evaporation tube to the inner wall thereof.

以下、本考案を図面を参照しながら、実施例に
ついて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第2図は本考案を適用したセパレート型熱交換
装置の全体構造を概略的に示した図である。1は
この熱交換装置の受熱部(蒸発部)、2は放熱部
(凝縮部)であつて、両者が離れた場所にあり、
これらの間が配管で連結されて全体として1つの
密閉された系路を構成している。この系路内を作
動流体が相変態して循環する。第3図は本考案に
係る受熱部の蒸気室の内部を上方からみた図、第
4図はその側面断面図である。まず、第2図のセ
パレート型熱交換装置の概要を説明する。
FIG. 2 is a diagram schematically showing the overall structure of a separate type heat exchanger to which the present invention is applied. 1 is a heat receiving part (evaporating part) of this heat exchange device, 2 is a heat radiating part (condensing part), and both are located in a separate place,
These are connected by piping to constitute one sealed system as a whole. The working fluid undergoes phase transformation and circulates within this system. FIG. 3 is a view from above of the inside of the steam chamber of the heat receiving section according to the present invention, and FIG. 4 is a side sectional view thereof. First, the outline of the separate type heat exchanger shown in FIG. 2 will be explained.

受熱部1はその筐体内が2枚の仕切板10,1
1によつて上部の蒸気室14と、下部の作動液残
留室16と、その中間の受熱部熱交換室15の3
つの室に区画されており、熱交換室15は外部の
熱源流体の通路33に配置してある。まず蒸気室
14は第2図、第3図および第4図に示す如く熱
交換室15との間の仕切板10に溢流板20が取
付けられ、この溢流板20と一方の蒸気室側壁と
の間が作動液溜部21となり、この部分に給液管
7が導入されている。蒸気室14の上部には後述
する如く放熱部2へ向つて流れる蒸気の吐出口1
4aが形成されている。熱交換室15は、蒸気室
仕切板10と作動液残溜室の仕切板11との間に
両端の開口した複数本の蒸発管8が取付けられ、
これによつて蒸気室14と作動液残溜室16とが
連通している。作動液残溜室16の底部には蒸発
せずに残つた作動液の取出口16aが設けられ、
また場合によつては該残溜室の側壁上部付近にも
蒸気取出口が形成される。
The heat receiving section 1 has two partition plates 10, 1 inside its housing.
1, the upper steam chamber 14, the lower working fluid residual chamber 16, and the intermediate heat receiving part heat exchange chamber 15.
The heat exchange chamber 15 is arranged in a passage 33 for an external heat source fluid. First, as shown in FIGS. 2, 3, and 4, an overflow plate 20 is attached to the partition plate 10 between the steam chamber 14 and the heat exchange chamber 15, and this overflow plate 20 and one side wall of the steam chamber A working fluid reservoir section 21 is formed between the two and the hydraulic fluid reservoir section 21, and the fluid supply pipe 7 is introduced into this section. At the upper part of the steam chamber 14, there is a discharge port 1 for steam flowing toward the heat radiating section 2, as described later.
4a is formed. In the heat exchange chamber 15, a plurality of evaporation tubes 8 having both ends open are installed between the steam chamber partition plate 10 and the working liquid residual chamber partition plate 11.
This allows the steam chamber 14 and the working fluid residual chamber 16 to communicate with each other. An outlet 16a is provided at the bottom of the hydraulic fluid residual chamber 16 to take out the hydraulic fluid that remains without being evaporated.
In some cases, a vapor outlet is also formed near the upper part of the side wall of the residual chamber.

放熱部2は、第2図に示す如く、受熱部1とほ
ぼ同様に2個の仕切板12,13によつてその筐
体が3つの室に区画され、上部が作動流体の蒸気
導入室17、中間部が外部の被加熱流体通路34
につながる放熱部熱交換室18、下部が作動流体
の復液室19となつている。この放熱部熱交換室
18には複数個の凝縮管9が設けられ、該凝縮管
の両端がそれぞれ上下の前記仕切板12,13を
貫通して蒸気導入室17および復液室19に開口
し、これによつてこの両室17,19が連通して
いる。さらに復液室19には非凝縮ガス排出管2
2が設けられ、この排出管から系内の水素ガス、
空気などの非凝縮ガスが排除される。
As shown in FIG. 2, the heat radiating section 2 has a housing divided into three chambers by two partition plates 12 and 13, similar to the heat receiving section 1, and the upper part is a steam introduction chamber 17 for the working fluid. , a heated fluid passage 34 whose intermediate portion is external
A heat exchange chamber 18 is connected to the heat dissipation section, and the lower part is a condensation chamber 19 for the working fluid. A plurality of condensing pipes 9 are provided in the heat radiating section heat exchange chamber 18, and both ends of the condensing pipes pass through the upper and lower partition plates 12 and 13, respectively, and open into the steam introduction chamber 17 and the condensing liquid chamber 19. , whereby both chambers 17 and 19 communicate with each other. Furthermore, the condensate chamber 19 has a non-condensable gas discharge pipe 2.
2 is provided, and hydrogen gas in the system is discharged from this exhaust pipe.
Non-condensable gases such as air are excluded.

受熱部と放熱部とを結んだ配管系路内にタンク
4から所定の作動液例えば水が導入される。作動
液はポンプ3によつて給液管7から受熱部1の蒸
気室14の作動液溜部21に供給され、ここに1
時帯溜した後、溢流板20の上端から均一な静流
となつて仕切板10上に流入し、後述する如く蒸
発管8に浸入してその管内壁に濡れ壁を形成す
る。ここで濡れ壁とは、管が作動液で充満されず
に管内壁が濡れている程度の状態を意味する。こ
のような濡れ壁を形成した状態で受熱部熱交換室
15を通過する外部熱源流体と熱交換を行い、濡
れ壁を形成する水は蒸発して蒸気となり蒸気室1
4の吐出口14aから圧力差で蒸気管5を通り放
熱部2の蒸気導入口17aから蒸気導入室17に
入る。放熱部2では、この蒸気が放熱部熱交換室
18の凝縮管9の全数を均等に流下し、その途中
で外部の被加熱流体と熱交換を行い、該蒸気はこ
れによつて凝縮し液状となる。この凝縮した作動
液は復液室19の底部の取出口19aから復液管
6を通り、ポンプ3および給液管7を介して再び
受熱部1の蒸気室14の作動液溜部に供給され、
これを繰返す。
A predetermined working fluid, such as water, is introduced from the tank 4 into the piping system connecting the heat receiving section and the heat radiating section. The working fluid is supplied by the pump 3 from the fluid supply pipe 7 to the working fluid reservoir 21 of the steam chamber 14 of the heat receiving section 1, where the 1
After being accumulated for a while, the water flows from the upper end of the overflow plate 20 onto the partition plate 10 as a uniform static flow, and as described later, enters the evaporation pipe 8 and forms a wet wall on the inner wall of the pipe. Here, the term "wet wall" means a state in which the pipe is not filled with hydraulic fluid and the inner wall of the pipe is wet. With such a wetted wall formed, heat is exchanged with the external heat source fluid passing through the heat receiving section heat exchange chamber 15, and the water forming the wetted wall evaporates and becomes steam.
The steam passes through the steam pipe 5 from the discharge port 14a of No. 4 and enters the steam introduction chamber 17 from the steam introduction port 17a of the heat radiating section 2 due to the pressure difference. In the heat radiating section 2, this steam flows down evenly through all the condensing tubes 9 of the heat radiating section heat exchange chamber 18, and on the way, it exchanges heat with the external heated fluid, thereby condensing the steam and turning it into a liquid. becomes. This condensed working liquid passes through the condensing liquid pipe 6 from the outlet 19a at the bottom of the condensing liquid chamber 19, and is again supplied to the working liquid reservoir section of the steam chamber 14 of the heat receiving section 1 via the pump 3 and the liquid supply pipe 7. ,
Repeat this.

この実施例では、第2図および第4図に示す如
く、各蒸発管8の上端は、前記蒸気室仕切板10
から上方へ突出しており、さらに筒状の金網35
が挿着されている。第5図はこの筒状金網を上方
から見た図であり、第6図は蒸発管8に挿着した
状態の縦断面図である。金網35は通常の100メ
ツシユ以下、好ましくは50メツシユ程度の網目を
もつ薄網である。その上端には複数個の切込み3
6が長手方向に入れられている。第6図に示すよ
うに、金網35の筒状部分35aが蒸発管8の内
壁に接するようにして蒸発管8内に挿入され、上
部の切込みの入つた部分35bが蒸発管8の上端
から外壁に向つて折返される。折返し部分35b
の長さはその端が仕切板10にとどく程度であ
る。このような細目の薄金網は毛管作用を有し、
したがつて前記溢流板20から仕切板10上に溜
まつた作動液37は金網35を伝つて蒸発管8内
に浸漬し、管内壁に良好な濡れ壁を形成する。蒸
発管内に挿入される金網の筒状部分35aの長さ
は、管8の全長もしくは途中までの適当な長さで
よい。なお、このような毛管作用をもたらす部材
としては上述の金網だけでなく、ガラスフアイバ
ー、布などの各種繊維体でもよく、また各蒸発管
の上端部分に焼結金属などの多孔質筒体を固着す
るか蒸発管自体を焼結金属で形成してもよい。い
ずれも蒸発管の外側で仕切板10上の作動液に触
れるようにする。繊維体の場合は蒸発管の端部の
みでもよいが、さらに蒸発管の内壁全体に被着さ
せると、より均一かつ良好な濡れ壁が形成され、
蒸発率を向上させることができる。なお、上述し
た筒状金網の場合は容易に蒸発管に挿着、取外し
することができ、外部の被熱交換流体の熱量ある
いは流量に応じて、作動液の供給量調節とともに
種々のメツシユのものに取換えることができる便
利さがある。作動液の供給量の調整は、このよう
に全蒸発管の全内壁に濡れ壁を形成し得る程度に
給液管7の流量調整によつて行われる。蒸発管8
で蒸発されずに残つた液は下部の作動液残溜室1
6に流れ落ちる。この作動液残溜室16に溜つた
作動液は取出口16aからポンプ3により戻り配
管23および給液管7を通つて再度蒸気室14の
作動液溜部21に供給され、また作動液溜室内の
上部に滞溜した蒸気は残溜室側方の蒸気管5′を
経て蒸気とともに蒸気管5から放熱部2へ流れ
る。これらの配管は外部に対して断熱されている
ことは勿論である。またタンク4は作動液の補給
にも使用される。
In this embodiment, as shown in FIGS. 2 and 4, the upper end of each evaporator tube 8 is connected to the vapor chamber partition plate 10.
A cylindrical wire mesh 35 protrudes upward from the
is inserted. FIG. 5 is a view of this cylindrical wire mesh viewed from above, and FIG. 6 is a longitudinal sectional view of the cylindrical wire mesh inserted into the evaporation tube 8. The wire mesh 35 is a normal thin mesh having a mesh size of 100 meshes or less, preferably about 50 meshes. There are multiple notches 3 on the top end.
6 is inserted in the longitudinal direction. As shown in FIG. 6, the cylindrical portion 35a of the wire mesh 35 is inserted into the evaporation tube 8 so as to be in contact with the inner wall of the evaporation tube 8, and the notched portion 35b at the top extends from the upper end of the evaporation tube 8 to the outer wall. It is turned back toward. Folded portion 35b
The length of is such that its end reaches the partition plate 10. Such fine thin wire mesh has capillary action,
Therefore, the working fluid 37 accumulated on the partition plate 10 from the overflow plate 20 passes through the wire mesh 35 and is immersed in the evaporation tube 8, forming a good wetted wall on the inner wall of the tube. The length of the cylindrical portion 35a of the wire mesh inserted into the evaporation tube may be the entire length of the tube 8 or an appropriate length halfway up the tube. In addition to the above-mentioned wire mesh, the member that brings about such a capillary action may be any type of fibrous material such as glass fiber or cloth, or a porous cylinder made of sintered metal or the like may be fixed to the upper end of each evaporation tube. Alternatively, the evaporator tube itself may be formed of sintered metal. In both cases, the working fluid on the partition plate 10 is brought into contact with the outside of the evaporation tube. In the case of fibrous material, it may be applied only to the end of the evaporation tube, but if it is applied to the entire inner wall of the evaporation tube, a more uniform and better wetted wall will be formed.
Evaporation rate can be improved. In addition, in the case of the above-mentioned cylindrical wire mesh, it can be easily inserted into and removed from the evaporation tube, and various meshes can be used to adjust the supply amount of working fluid according to the heat amount or flow rate of the external fluid to be heat exchanged. It has the convenience of being able to be replaced. The amount of working fluid supplied is adjusted by adjusting the flow rate of the liquid supply pipe 7 to such an extent that a wetted wall can be formed on all the inner walls of all the evaporation pipes. Evaporation tube 8
The liquid remaining without being evaporated is stored in the lower working liquid residual chamber 1.
It flows down to 6. The hydraulic fluid accumulated in the hydraulic fluid residual chamber 16 is supplied from the outlet 16a by the pump 3 through the return pipe 23 and the liquid supply pipe 7 to the hydraulic fluid reservoir section 21 of the steam chamber 14, and is again supplied to the hydraulic fluid reservoir section 21 of the steam chamber 14. The steam accumulated in the upper part of the chamber passes through the steam pipe 5' on the side of the residual chamber, and flows together with the steam from the steam pipe 5 to the heat radiation section 2. Of course, these pipes are insulated from the outside. The tank 4 is also used for replenishing hydraulic fluid.

上述の実施例は、受熱部1と放熱部2とがほぼ
同じ高さ位置あるいは放熱部2が高い位置にある
場合に作動液をポンプ3によつて強制循環させた
例である。このような強制循環を行うことによ
り、作動液の補給および循環が容易、円滑とな
り、熱交換の負荷変動に対して制御が容易に出
来、また受熱部と放熱部の設置形態に制約を受け
ずに円滑に運転できる利点がある。しかしなが
ら、本考案は、受熱部と放熱部の相互位置関係に
よつてはこのような強制循環を行うことなく、前
記放熱部の循液室19からの作動液を復液管6か
ら自然循環用バイパス管24を通して放熱部14
に導くようにしてもよい。なお、本考案は逆に放
熱部2が受熱部1より低い位置にある場合にも適
用可能である。
The above embodiment is an example in which the working fluid is forced to circulate by the pump 3 when the heat receiving part 1 and the heat radiating part 2 are at approximately the same height position or the heat radiating part 2 is at a high position. By performing this type of forced circulation, replenishment and circulation of the working fluid becomes easy and smooth, it is easy to control heat exchange load fluctuations, and there are no restrictions on the installation form of the heat receiving section and heat dissipating section. has the advantage of smooth operation. However, in the present invention, depending on the mutual positional relationship between the heat receiving part and the heat radiating part, such forced circulation is not performed, and the working fluid from the liquid circulation chamber 19 of the heat radiating part is naturally circulated from the liquid condensing pipe 6. Heat dissipation section 14 through bypass pipe 24
It may also be possible to lead to It should be noted that the present invention is also applicable to the case where the heat dissipating section 2 is located at a lower position than the heat receiving section 1.

以上の如く、本考案は受熱部と放熱部とをそれ
ぞれ別体、独立に構成し、これらを蒸気専用の配
管と凝縮液専用の配管で結び、受熱部と放熱部と
にそれぞれ複数本の伝熱管からなる熱交換室を形
成し、この部分で作動流体の蒸発、凝縮を行わせ
しめ受熱部から放熱部へ、放熱部から受熱部へと
別体の断熱配管を通して循環させるようにしたの
で、受熱部と放熱部の距離を大きく離しても実際
の排熱回収にあたつて蒸気と凝縮液の還流が良好
となり、熱負荷の変動に対しても安定した動作が
もたらされる。
As described above, the present invention configures the heat receiving part and the heat radiating part separately and independently, and connects them with piping dedicated to steam and piping dedicated to condensate, and a plurality of transmission lines are provided to each of the heat receiving part and the heat radiating part. A heat exchange chamber consisting of heat tubes is formed, and the working fluid is evaporated and condensed in this part and circulated from the heat receiving part to the heat radiating part and from the heat radiating part to the heat receiving part through separate insulated piping. Even if the distance between the heat dissipation section and the heat dissipation section is large, the return of steam and condensate is good during actual waste heat recovery, and stable operation is achieved even in the face of fluctuations in heat load.

次に、本考案の効果を、より具体的な例をもと
に説明する。
Next, the effects of the present invention will be explained based on a more specific example.

受熱部1における蒸発管および放熱部2におけ
る凝縮管をパイプ径7mm、長さ700mmで構成し、
夫々に49本づつ立設するとともに、受熱部と放熱
部との距離を100m離し、蒸発管に供給する作動
液を水として小型の燃焼炉の排熱回収に適用し
た。実施するにあたつては蒸発管内壁に濡れ壁を
形成するように100メツシユの金網を蒸発管の全
数に挿着し、給液管7から供給する作動液流量6
/minとしてポンプ3により強制循環させて行
つた。燃焼炉排ガスは、240℃のものを17Nm3
min.で受熱部の凝縮部15に通し、一方、放熱
部2には20℃の冷風を17Nm3/min.の割合で通し
たところ、給液量に対する蒸発量の割合、即ち蒸
発管の蒸発率は80〜100%を示す一方、受熱部熱
交換室を通つた排ガスは140℃に降下し、放熱部
熱交換室を通つた冷風は110℃に上昇させること
ができた。なお、このとき、放熱部の非凝縮ガス
排出管22からは0.1の空気が排され、熱交換
における効率を低下させることはなかつた。また
金網により、全蒸発管へ水を均等分配することが
でき、蒸発管内壁に良好な濡れ壁を形成できるの
で高い蒸発率が得られ、これによつてドライアウ
ト現象も生じることなく、受熱部と放熱部が100
mの遠距離にあつても円滑かつ高効率で熱回収を
行うことができた。なお、上述の実施例では作動
液に水を使用したが、熱交換によつて得られる被
加熱流体の要求温度に応じてフレオン、メタノー
ルなど適宜の作動液を用いることが可能である。
本考案に係る熱交換装置の受熱部は、単独あるい
はセパレート型ヒートパイプ装置に用いてボイ
ラ、熱風炉、加熱炉などの工業用燃焼炉や焼結鉱
冷却機の排熱回収、および一般の暖房用機器など
に適用して好適である。
The evaporation pipe in the heat receiving part 1 and the condensing pipe in the heat radiation part 2 are configured with a pipe diameter of 7 mm and a length of 700 mm,
49 tubes were installed in each tube, the distance between the heat receiving part and the heat radiating part was set 100 meters apart, and the working fluid supplied to the evaporation tubes was water, which was used to recover waste heat from a small combustion furnace. When carrying out the operation, 100 mesh wire meshes were inserted into all the evaporator tubes so as to form a wet wall on the inner wall of the evaporator tubes, and the working fluid flow rate 6 supplied from the liquid supply tube 7 was adjusted.
/min by forced circulation using pump 3. Combustion furnace exhaust gas is 17Nm 3 / 240℃
When cold air at 20°C was passed through the heat radiation section 2 at a rate of 17Nm 3 /min., it was found that the ratio of the amount of evaporation to the amount of supplied liquid The rate was 80-100%, while the exhaust gas passing through the heat exchange chamber of the heat receiving section could drop to 140℃, and the cold air passing through the heat exchange chamber of the heat dissipation section could rise to 110℃. At this time, 0.1 of air was exhausted from the non-condensable gas exhaust pipe 22 of the heat radiating section, and the efficiency in heat exchange was not reduced. In addition, the wire mesh allows water to be distributed evenly to all the evaporator tubes, forming a good wetted wall on the inner wall of the evaporator tube, resulting in a high evaporation rate. and the heat dissipation part is 100
Heat recovery could be carried out smoothly and with high efficiency even at a distance of 500 m. Although water was used as the working fluid in the above embodiments, it is possible to use any suitable working fluid such as freon or methanol depending on the required temperature of the heated fluid obtained by heat exchange.
The heat receiving part of the heat exchange device according to the present invention can be used alone or in a separate heat pipe device to recover waste heat from industrial combustion furnaces such as boilers, hot blast furnaces, and heating furnaces, and sinter coolers, and for general heating. It is suitable for application to industrial equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートパイプの一部分裁断した
斜視図、第2図は本考案を適用したセパレート型
熱交換装置の概略図、第3図は本考案の実施例に
係る受熱部蒸気室の平面図であつて第4図の−
線に沿つてみた図、第4図は受熱部の縦断面
図、第5図は本考案に適用される金網を上方から
みた図、第6図は金網を挿着した蒸発管の縦断面
図である。 1……受熱部(蒸発部)、2……放熱部(凝縮
部)、5……蒸気管、6……復液管、7……給液
管、8……蒸発管、9……凝縮管、10,11,
12,13……仕切板、14……蒸気室、15…
…受熱部熱交換室、16……作動液残溜室、17
……蒸気導入室、18……放熱部熱交換室、19
……復液室、33……外部熱源流体通路、34…
…外部被加熱流体通路、35……金網、36……
切込み、37……作動液。
Fig. 1 is a partially cutaway perspective view of a conventional heat pipe, Fig. 2 is a schematic diagram of a separate heat exchanger to which the present invention is applied, and Fig. 3 is a plan view of a heat receiving steam chamber according to an embodiment of the present invention. Figure 4 -
Figure 4 is a vertical cross-sectional view of the heat receiving part, Figure 5 is a view from above of the wire mesh applied to the present invention, and Figure 6 is a vertical cross-sectional view of the evaporation tube with the wire mesh inserted. It is. 1...Heat receiving section (evaporation section), 2...Heat radiation section (condensing section), 5...Steam pipe, 6...Liquid recovery pipe, 7...Liquid supply pipe, 8...Evaporation pipe, 9...Condensation tube, 10, 11,
12, 13... Partition plate, 14... Steam room, 15...
...Heat receiving part heat exchange chamber, 16...Working fluid residual chamber, 17
... Steam introduction room, 18 ... Heat radiation section heat exchange room, 19
...Recovery liquid chamber, 33...External heat source fluid passage, 34...
... External heated fluid passage, 35 ... Wire mesh, 36 ...
Depth of cut, 37...Hydraulic fluid.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 受熱部を上部の蒸気室と下部の作動液残留室と
外部熱源流体通路に連通した中間部の熱交換室と
に区画し、前記熱交換室に複数個の蒸発管を配置
して該蒸発管の端部をそれぞれ前記蒸気室および
作動液残留室に開口させ、前記蒸気室を別体の配
管によつて前記受熱部とは別体の放熱部に接続し
たセパレート型熱交換装置において、前記蒸発管
の上端を前記蒸気室内に突出せしめかつ該蒸発管
の上端外壁から内壁にわたつて毛管作用をもつ部
材を取付けたことを特徴とするセパレート型熱交
換装置における受熱部の給液装置。
The heat receiving section is divided into an upper steam chamber, a lower working fluid residual chamber, and an intermediate heat exchange chamber communicating with an external heat source fluid passage, and a plurality of evaporation tubes are disposed in the heat exchange chamber. In the separate type heat exchange device, the ends of the evaporator are opened to the steam chamber and the working fluid residual chamber, respectively, and the steam chamber is connected to a heat radiating section separate from the heat receiving section through separate piping. 1. A liquid supply device for a heat receiving section in a separate type heat exchanger, characterized in that the upper end of the tube projects into the steam chamber, and a member having a capillary action is attached from the outer wall of the upper end of the evaporation tube to the inner wall.
JP1981087876U 1981-06-15 1981-06-15 Expired JPS6130067Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981087876U JPS6130067Y2 (en) 1981-06-15 1981-06-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981087876U JPS6130067Y2 (en) 1981-06-15 1981-06-15

Publications (2)

Publication Number Publication Date
JPS57199776U JPS57199776U (en) 1982-12-18
JPS6130067Y2 true JPS6130067Y2 (en) 1986-09-03

Family

ID=29883070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981087876U Expired JPS6130067Y2 (en) 1981-06-15 1981-06-15

Country Status (1)

Country Link
JP (1) JPS6130067Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109647A (en) * 1976-03-12 1977-09-14 Hitachi Ltd Heat transmission equipment
JPS55140093A (en) * 1979-04-17 1980-11-01 Babcock Hitachi Kk Method and apparatus for removing noncondensable gas from heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109647A (en) * 1976-03-12 1977-09-14 Hitachi Ltd Heat transmission equipment
JPS55140093A (en) * 1979-04-17 1980-11-01 Babcock Hitachi Kk Method and apparatus for removing noncondensable gas from heat exchanger

Also Published As

Publication number Publication date
JPS57199776U (en) 1982-12-18

Similar Documents

Publication Publication Date Title
JPH0612370Y2 (en) Double tube heat pipe type heat exchanger
RU2433360C2 (en) Chemical heat pump operating with hybrid substance
US4510922A (en) Energy storage system having thermally stratified liquid
GB2099980A (en) Heat transfer panels
JPS6130067Y2 (en)
GB2149493A (en) Heat pipe heat transfer from an electrically heated store
KR102034777B1 (en) Loop Type Heat Pipe
JPS58198648A (en) Loop type heat pipe system solar heat water heater
US20040194916A1 (en) Heat exchanger for recollecting waste heat
PT92109A (en) DEHUMIDIFICATION INSTALLATION
JPS60103297A (en) Shell and tube type heat accumulation tank heat exchanger
JPH0535355B2 (en)
KR100437667B1 (en) condensing Gas boiler using uptrend combustion type for withdraw latent heat
JPH0447570Y2 (en)
JPS60290A (en) Heat transfer device
JPS6141888A (en) Heat pipe of loop type
RU2489665C1 (en) Noiseless heat-pipe cooling system
KR200228259Y1 (en) Boiler apparatus adopting heat pipes
JPH0424370Y2 (en)
JPS5827205Y2 (en) Steam boiler with thermal efficiency improvement device
KR200215784Y1 (en) Heating system for Boiler
JPS6014054A (en) Solar water heater
JPS5892733A (en) Floor heating appliance
JPH07103576A (en) Water heating device
JPS60188795A (en) Heat exchanger