JPS6129981Y2 - - Google Patents

Info

Publication number
JPS6129981Y2
JPS6129981Y2 JP1985066101U JP6610185U JPS6129981Y2 JP S6129981 Y2 JPS6129981 Y2 JP S6129981Y2 JP 1985066101 U JP1985066101 U JP 1985066101U JP 6610185 U JP6610185 U JP 6610185U JP S6129981 Y2 JPS6129981 Y2 JP S6129981Y2
Authority
JP
Japan
Prior art keywords
wave
floating
incident
funnel
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985066101U
Other languages
Japanese (ja)
Other versions
JPS611672U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985066101U priority Critical patent/JPS611672U/en
Publication of JPS611672U publication Critical patent/JPS611672U/en
Application granted granted Critical
Publication of JPS6129981Y2 publication Critical patent/JPS6129981Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【考案の詳細な説明】 本考案は波面上に浮遊する物体に取付け、入射
する波のエネルギを効率よく吸収して電気エネル
ギに変換させるようにした浮防波堤を兼ねた浮遊
式波力発電装置に関するものである。
[Detailed description of the invention] The present invention relates to a floating wave power generation device that doubles as a floating breakwater and is attached to an object floating on a wave surface to efficiently absorb the energy of incident waves and convert it into electrical energy. It is something.

従来の波力発電装置は第1図に示すように、漏
斗状の構造物Aを逆さにして岸壁8に取付け、波
浪がおし寄せて漏斗内の水位が上下することによ
り、漏斗の上端から空気が出入し、その空気の流
れで空気タービン4を駆動し、発電機5により発
電する機構となつている。
As shown in Figure 1, in the conventional wave power generation device, a funnel-shaped structure A is installed upside down on a quay 8, and as the water level inside the funnel rises and falls as waves approach it, the water level rises and falls from the top of the funnel. Air enters and exits, the air flow drives an air turbine 4, and a generator 5 generates electricity.

この波力発電装置では、漏斗の下面を水面上に
露出させないため、漏斗の下端Bは水面下に充分
潜つている必要があるので、漏斗内の水面が上下
する振幅は、入射波のB点におけるサブサーフエ
スの振幅に支持され、入射波の振幅に比して相当
小さくなると考えられる。前記のサブサーフエス
とは、たとえば、深い海の表面に正弦状の2次元
波が起つている場合を考えると、波のない状態で
水面下深さZの位置にあつた平面は、振幅exp
(−2xZ/λ)(λ=波長)であるような正弦状の波
面 を形成している。この波面をサブサーフエスと呼
んでいる。サブサーフエスの振幅はZが大きくな
る程、すなわち深い所ほど小さくなつている。
In this wave power generation device, the bottom end B of the funnel must be sufficiently submerged under the water surface in order to prevent the bottom surface of the funnel from being exposed above the water surface. Therefore, the amplitude of the rise and fall of the water surface in the funnel is the same as the point B of the incident wave. This is supported by the amplitude of the subsurf S at , and is considered to be considerably smaller than the amplitude of the incident wave. For example, if we consider a case where a sinusoidal two-dimensional wave is occurring on the surface of a deep ocean, a plane located at a depth Z below the water surface in the absence of waves has an amplitude exp.
A sinusoidal wavefront is formed such that (-2xZ/λ) (λ=wavelength). This wavefront is called subsurf S. The amplitude of subsurf S becomes smaller as Z becomes larger, that is, as the depth increases.

また、漏斗の下端Bは水面下に充分潜つている
必要があるので、水面付近の大きな変動圧力を漏
斗が受けることになり、構造強度上極めて不利で
ある。
Furthermore, since the lower end B of the funnel must be sufficiently submerged under the water surface, the funnel will be subject to large fluctuating pressure near the water surface, which is extremely disadvantageous in terms of structural strength.

前述するような、従来の波力発電装置のもつ欠
点を克服するため、本考案者は先に実願昭49−
111614号(実開昭51−39143号)によつてその改
善案を提案した。第2図に示すものは、前記改善
案の実施例の1つである。
In order to overcome the drawbacks of conventional wave power generation devices as mentioned above, the present inventor first applied for
An improvement plan was proposed in No. 111614 (Utility Model Application No. 51-39143). What is shown in FIG. 2 is one embodiment of the improvement plan.

第2図において、吃水の浅い浮動体1は支軸2
を中心として回転可能なように取付けられてい
る。空気押板6は前記浮動体1と剛体をもつて一
部を係着し、前記浮動体1と同じく支軸2を中心
に回動するようになし、空気ポンプ3を押す役割
を持つている。エアーダスト7は空気ポンプ3か
らの気流を空気タービン4に導き、発電機5を駆
動し発電する。浮動体1と岸壁8とを繋着するチ
エイン9は前記浮動体1の波動による変位をある
限度以下に抑制し、空気ポンプ3の破壊を防止す
る役目をする。
In Fig. 2, the shallow floating body 1 of the water is
It is installed so that it can rotate around the center. The air push plate 6 has a rigid body and is partially engaged with the floating body 1, and is configured to rotate around the support shaft 2 like the floating body 1, and has the role of pushing the air pump 3. . The air dust 7 guides the airflow from the air pump 3 to the air turbine 4, drives the generator 5, and generates electricity. The chain 9 connecting the floating body 1 and the quay 8 serves to suppress the displacement of the floating body 1 due to wave motion to below a certain limit, and to prevent the air pump 3 from being destroyed.

水面に波動が起ると、浮動体1は支軸2を支点
として往復運動をなし、空気ポンプ3を押してエ
アーダクト7に往復する気流を送り出す。このよ
うにして作られた往復気流を空気タービン4に送
り込み、発電機5を駆動させて発電する。
When waves occur on the water surface, the floating body 1 makes a reciprocating motion about the support shaft 2, pushes the air pump 3, and sends out a reciprocating airflow to the air duct 7. The reciprocating airflow thus created is sent to the air turbine 4, which drives the generator 5 to generate electricity.

上述した第1図及び第2図に例示する波力発電
装置は、いずれも海岸または大型の浮遊構造物に
直接取付けられるものである。従つて、前記波力
発電装置を据付けるためには、海岸の状態などに
制約を受け、全ての海岸に適用するのは不可能で
あつた。また浮遊式の波浪発電装置で効率の高い
ものを得ることは非常に困難であつた。
The wave power generation devices illustrated in FIGS. 1 and 2 described above are both directly attached to a coast or a large floating structure. Therefore, in order to install the wave power generation device, there are restrictions such as the condition of the coast, and it has been impossible to apply it to all coasts. Furthermore, it has been extremely difficult to obtain a highly efficient floating wave power generation device.

消波装置についていえば、港湾内の水面を平穏
に保つためには防波堤によつて外海の波を遮断す
る方法がとられている。しかし、現在一般に施工
されている防波堤は、外海の波を遮断して湾内を
平穏にすることが出来るが、湾内の水と外海の清
浄な水との交換を制限するようになる結果、湾内
の水質は汚染され、工業用水としても適当でな
く、衛生上も好ましくない。また、かきの養殖、
のりの裁培及び養魚等の水産業にも悪影響を与え
ることになる。波のエネルギは水面付近に集中し
ており、潮流等の流速分布には集中傾向が小さい
から、水面に浮遊する型式で消波効率の高い消波
装置を製作できれば内外の水は消波装置の下方を
通つて自由に出入りし湾内の水質が悪化する恐れ
はほとんどなくなる。
Regarding wave-dissipating devices, in order to keep the water surface within a harbor calm, breakwaters are used to block waves from the open sea. However, although the currently commonly constructed breakwaters can block waves from the open sea and keep the bay calm, they also limit the exchange of water within the bay with clean water from the open sea. The water quality is contaminated and is not suitable for industrial use, nor is it sanitary. Also, oyster farming,
It will also have a negative impact on the fisheries industry, such as seaweed cultivation and fish farming. The energy of waves is concentrated near the water surface, and the concentration tendency is small in the flow velocity distribution of tidal currents, etc., so if a wave dissipating device that floats on the water surface and has high wave dissipation efficiency can be manufactured, the water inside and outside the wave dissipating device will be absorbed. It passes freely in and out of the bay, eliminating almost any risk of deteriorating the water quality in the bay.

本考案は上記従来例の欠点を解消することを目
的としたもので、入射波の波長λに比べて充分に
長い一対の浮遊体を、浮遊体間の中心間距離をS
とするときλ/S=1.4〜2.5となる関係で互に連
結し、同浮遊体の間に広口開口部を海中に没した
逆漏斗状部材を固定し、上記浮遊体上で上記逆漏
斗状部材の狭口出口部に往復気流を一方向流れに
規制する弁を介して空気タービンを配設してな
り、浮遊体に入射して来る波のエネルギを浮遊体
によつて効率よく吸収して消波効果を持たせると
ともに、吸収されたエネルギを電気エネルギに変
換するようにした浮遊式波力発電装置を提供しよ
うとするものである。
The purpose of the present invention is to eliminate the drawbacks of the conventional example described above, and the purpose is to create a pair of floating bodies that is sufficiently long compared to the wavelength λ of the incident wave, and to set the center-to-center distance between the floating bodies to S.
When λ/S=1.4 to 2.5, an inverted funnel-shaped member with a wide opening submerged in the sea is fixed between the floating bodies, and the inverted funnel-shaped member is placed on the floating body. An air turbine is installed at the narrow outlet of the member via a valve that regulates the reciprocating airflow into a one-way flow, and the floating body efficiently absorbs the energy of waves incident on the floating body. The present invention aims to provide a floating wave power generation device which has a wave-dissipating effect and which converts absorbed energy into electrical energy.

本考案の新規とする所は、まず、波力発電装置
を浮遊体にしたこと、すなわち、装置を波面上に
浮遊する物体に取付け、入射する波のエネルギを
効率よく吸収して電気エネルギに変換させ得るよ
うにしたことである。
The novelty of this invention is that the wave power generation device is made into a floating body.In other words, the device is attached to an object floating on the wave surface, and the energy of the incident waves is efficiently absorbed and converted into electrical energy. This was done in such a way that it was possible to do so.

また、上述したように、浮遊体によつて入射波
のエネルギを効率良く吸収することによつて、透
過波のエネルギを減少させて消波効果を持たせた
ことである。
Furthermore, as described above, by efficiently absorbing the energy of the incident wave by the floating body, the energy of the transmitted wave is reduced, thereby providing a wave-dissipating effect.

具体的には、横波中におかれた双胴体の双胴間
の水面と双胴体の相対運動は、ある特定の周波数
に対して非常に大きくなることを利用した点であ
る。
Specifically, this method takes advantage of the fact that the relative motion between the twin hulls and the water surface of the twin hulls placed in a transverse wave becomes extremely large for a certain frequency.

次に本考案の基本的考え方について述べる。 Next, the basic idea of the present invention will be described.

入射波が何らかの浮遊体に当る場合、入射波の
エネルギは、反射波および透過波のエネルギと浮
遊体の所で吸収されるエネルギの和に等しい。い
ま、効率の良い波力発電装置によつて、入射波の
エネルギを効率良く吸収してしまえば、その浮遊
体を通過する透過波のエネルギは少なくなり、し
たがつて、透過波の波高は、入射波の波高にくら
べて著しく低い波高となる。すなわち、浮遊状態
における効率の良い波力発電装置は、消波効率の
良い浮防波堤となり得るものである。
When an incident wave hits some floating body, the energy of the incident wave is equal to the energy of the reflected and transmitted waves plus the energy absorbed at the floating body. Now, if the energy of the incident wave is efficiently absorbed by an efficient wave power generation device, the energy of the transmitted wave passing through the floating body will be reduced, and therefore the wave height of the transmitted wave will be: The wave height is significantly lower than that of the incident wave. In other words, an efficient wave power generation device in a floating state can serve as a floating breakwater with good wave dissipation efficiency.

第3図は双胴体にある波長(λ)の波が入射し
て来た場合の双胴の間の相対水位の振幅を計測す
る状況を示す斜視図である。
FIG. 3 is a perspective view showing a situation in which the amplitude of the relative water level between the twin bodies is measured when a wave of a certain wavelength (λ) is incident on the twin bodies.

第3図において、符号10は一対の細長い円柱
状の浮遊体(以下円柱と略記)を示す。この円柱
の長さは入射する波に関する現象を2次元的に扱
える程度に充分長いものとする。11は各円柱上
端に固定された支持盤、12は前記支持板11に
固定された支持台、13は一対の円柱上端を前後
において連結する一対の連結材である。上記一対
の円柱10、支持盤11、支持台12および連結
材13により双胴体が形成されている。14は前
記連結材13の2箇所に取付けられた一対の水位
計、Sは円柱10間の中心間距離、λは双胴体に
白抜矢印の方向から入射する波の波長、W,Lは
静止状態の水平面を示す。
In FIG. 3, reference numeral 10 indicates a pair of elongated cylindrical floating bodies (hereinafter abbreviated as cylinders). The length of this cylinder is made long enough to handle phenomena related to incident waves two-dimensionally. 11 is a support plate fixed to the upper end of each cylinder, 12 is a support stand fixed to the support plate 11, and 13 is a pair of connecting members that connect the upper ends of the pair of cylinders in the front and back. A twin body is formed by the pair of cylinders 10, the support plate 11, the support base 12, and the connecting member 13. 14 is a pair of water level gauges attached to two locations on the connecting member 13, S is the distance between the centers of the cylinders 10, λ is the wavelength of the wave that enters the twin body from the direction of the white arrow, and W and L are stationary. Shows the horizontal plane of the state.

第4図および第5図は、第3図に示した双胴体
の円柱10の間の2箇所に取付けられた水位計1
4によつて、双胴体に種々の波長λの波が入射し
た場合の円柱10間の水面の双胴体に対する変位
量、いわゆる相対水位の振幅をそれぞれ計測した
値を理論計算値とともに示す図表である。
Figures 4 and 5 show water level gauges 1 installed at two locations between the cylinders 10 of the twin body shown in Figure 3.
4 is a chart showing the measured values of the amount of displacement of the water surface between the cylinders 10 with respect to the twin body when waves of various wavelengths λ are incident on the twin body, the so-called relative water level amplitude, together with theoretically calculated values. .

これらの図において、縦軸は相対水位振幅HR
を入射波振幅Hrで割つて無次元化した値であ
り、横軸は入射波長λを円柱10間の中心間距離
Sで割つた無次元値を示すものである。また、〇
印は計測値であり、実線は理論計算値を示すもの
である。
In these figures, the vertical axis is the relative water level amplitude H R
It is a value obtained by dividing by the incident wave amplitude H r to make it dimensionless, and the horizontal axis shows a dimensionless value obtained by dividing the incident wavelength λ by the center-to-center distance S between the cylinders 10. In addition, the 〇 marks are measured values, and the solid lines indicate theoretically calculated values.

又、第6図は、第4図および第5図の曲線の値
の平均を示したものである。第6図によれば、
λ/S=0.7〜1.1と1.4〜2.5の2つの領域で、入
射波が増幅され相対水位振幅が入射波振幅よりも
大きくなつている。このうち、λ/S=0.7〜1.1
の短波長領域では、波面の相対運動は大きくて
も、実際の波面の動きは、観測によると、第7図
Aのようになる。これに対してλ/S=1.4〜2.5
の領域では、双胴体はほとんど上下動だけをして
おり、また、円柱間の水面は、水面幅に対して波
長が長いので、第7図Bのように、ほぼ同じ位相
で上下動をしている。すなわち、λ/S=1.4〜
2.5の領域では、入射波長に対して円柱間の水面
の幅が狭いから水面に凹凸(波)が少なく、水面
が双胴体に対してあたかも1枚の平板のようにな
つて、平均して入射波振動の2倍程度の上下動を
する事が観測された。
Moreover, FIG. 6 shows the average of the values of the curves in FIGS. 4 and 5. According to Figure 6,
In the two regions of λ/S=0.7 to 1.1 and 1.4 to 2.5, the incident wave is amplified and the relative water level amplitude becomes larger than the incident wave amplitude. Among these, λ/S=0.7~1.1
In the short wavelength region of , even though the relative motion of the wavefront is large, the actual motion of the wavefront is as shown in Figure 7A, according to observation. On the other hand, λ/S=1.4~2.5
In the region of , the twin fuselage almost only moves up and down, and the water surface between the cylinders has a longer wavelength than the width of the water surface, so it moves up and down in almost the same phase as shown in Figure 7B. ing. That is, λ/S=1.4~
In the region of 2.5, the width of the water surface between the cylinders is narrow relative to the incident wavelength, so there are few irregularities (waves) on the water surface, and the water surface acts as if it were a single flat plate with respect to the twin fuselage, making the incident light on average It was observed that the vertical movement was about twice the wave vibration.

本考案は、上記に示した現象を利用して、浮遊
体によつて能率の良い波力発電を行ない、あわせ
て効率の良い消波効果を持つた装置を提供するも
のである。
The present invention utilizes the above-mentioned phenomenon to provide a device that can efficiently generate wave power generation using a floating body and also has an efficient wave dissipation effect.

以下添付図面に示した実施例により本考案を詳
細に説明する。
The present invention will be described in detail below with reference to embodiments shown in the accompanying drawings.

第8図及び第9図は本考案の実施例を示す。第
8図は正面断面図、第9図は下方から見た斜視図
である。
8 and 9 show an embodiment of the invention. FIG. 8 is a front sectional view, and FIG. 9 is a perspective view seen from below.

双胴体Cは入射波の波長に比べて充分に長い一
対の細長い円柱15によつて水面に浮んでいる。
この一対の円柱15の中心間隔Sは、設置地点に
おける自然波の波長λの1/2.5ないし1/1.4となる
よう、支え柱16を介して取付けられた甲板17
によつて固定されている。甲板17には、漏斗状
の構造物18を取付けるための空間が設けられて
いる。これらは、本考案装置を海面上に浮ばせ得
る程度に軽く出来ている。
The twin body C floats on the water surface by a pair of elongated cylinders 15 that are sufficiently long compared to the wavelength of the incident wave.
The deck 17 attached via the support columns 16 is set so that the distance S between the centers of the pair of columns 15 is 1/2.5 to 1/1.4 of the wavelength λ of the natural wave at the installation point.
It is fixed by. The deck 17 is provided with a space for attaching a funnel-shaped structure 18. These are light enough to allow the device of the invention to float on the sea surface.

前記漏斗状の構造物18は、開口部18aを下
方にして、甲板17に固定されており、上端は空
気ダクト19と連通している。開口部18aの側
板は、一対の円柱15の外板に溶接され、前後端
をなす板は、ほぼ垂直に円柱15の下端まで取付
けられている。
The funnel-shaped structure 18 is fixed to the deck 17 with the opening 18a facing downward, and the upper end communicates with the air duct 19. The side plates of the opening 18a are welded to the outer plates of the pair of cylinders 15, and the plates forming the front and rear ends are attached almost vertically to the lower ends of the cylinders 15.

空気ダクト19は漏斗状の構造物18の一端に
取付けられており、往復気流を一方向に変える公
知の弁構造20(たとえば実開昭51−39143号公
報の第6図又は第7図に符号10で示されてい
る)が設けられている。一端開口部は、空気ター
ビン21に向けられている。
The air duct 19 is attached to one end of the funnel-shaped structure 18, and has a known valve structure 20 for changing the reciprocating airflow in one direction (for example, the reference numeral shown in FIG. 6 or 7 of Japanese Utility Model Application Publication No. 51-39143) 10) are provided. One end opening is directed toward the air turbine 21 .

上記空気タービン21は空気ダクト19の開口
部に向けられており、空気ダクト19の空気の流
れによつて回転する。また、空気タービン21は
発電機22に連結される。
The air turbine 21 is directed toward the opening of the air duct 19 and is rotated by the air flow of the air duct 19 . The air turbine 21 is also connected to a generator 22 .

第10図は、本考案装置を海面上に浮遊させた
ときの状態を示すものである。
FIG. 10 shows the state in which the device of the present invention is suspended on the sea surface.

第10図において、双胴体Cの右側から波長λ
の波が入射した場合、前述の如く、円筒10間の
水面は双胴体Cに対してあたかも1枚の平板のよ
うになつて、入射波振幅の平均2倍程度の振幅を
持つて上下動をする。
In Fig. 10, from the right side of the twin fuselage C, the wavelength λ
When a wave of do.

この上下動をする波の大きさに応じて漏斗状の
構造物18内の空気は、水面のピストン作用によ
り図上方あるいは下方へと流れる。前記空気は、
弁機構20の作用によつて、常に有効な流れに変
換され、空気ダクト19より噴出し、空気タービ
ン21を回転させ、発電機22によつて電気エネ
ルギに変換される。
Depending on the size of this vertically moving wave, the air within the funnel-shaped structure 18 flows upward or downward in the figure due to the piston action of the water surface. The air is
By the action of the valve mechanism 20, the air is constantly converted into a useful flow, which is ejected from the air duct 19, rotates the air turbine 21, and is converted into electrical energy by the generator 22.

また、上記に述べたように、入射波のエネルギ
の多くは、漏斗状の構造物18の海水中部分で上
下動する波のエネルギに変換され、そのエネルギ
は最終的には電気エネルギとして変換されるの
で、双胴体Cを通過する波すなわち第10図にお
いて左側への透過波のエネルギは小さくなり、従
つて消波効果が得られる。このように考えれば、
効率のよい波浪発電装置は良好な浮遊式消波装置
であるはずだから、本考案の装置は浮遊式消波装
置としても利用できる。この場合、浮遊式消波装
置であるから内外の水は消波装置の下方を通つて
自由に出入りでき、湾内の水質を汚濁する恐れは
ない。
Furthermore, as described above, much of the energy of the incident waves is converted into the energy of waves moving up and down in the seawater portion of the funnel-shaped structure 18, and that energy is ultimately converted into electrical energy. Therefore, the energy of the wave passing through the twin fuselage C, that is, the transmitted wave to the left in FIG. 10, becomes small, and a wave-dissipating effect is therefore obtained. If you think about it this way,
Since an efficient wave power generation device should be a good floating wave dissipating device, the device of the present invention can also be used as a floating wave dissipating device. In this case, since it is a floating type wave dissipating device, water inside and outside can freely enter and exit through the bottom of the wave dissipating device, and there is no risk of polluting the water quality in the bay.

なお、λ/S=0.7〜1.1の範囲においても入射
波が増幅されるが、その場合は前述のとおり、波
面は第7図Aに示されるような動きをするから、
漏斗状構造物18内の空気に対してピストン作用
を殆んど生じることなく、したがつて空気タービ
ンを回転させる作用も生じない。
Note that the incident wave is amplified even in the range of λ/S = 0.7 to 1.1, but in that case, as mentioned above, the wavefront moves as shown in Figure 7A.
There is almost no piston action on the air in the funnel-shaped structure 18 and therefore no action to rotate the air turbine.

本考案装置を、第11図に示すように、索条2
3を介してアンカー24により海岸付近に配置し
た場合には、打寄せる波はその地点特有のほぼ一
定波長のうねりであるので、その波長にあわせ
て、適当な双胴間隔を選んで設計することは可能
である。また、その場合、海岸に打寄せる波のエ
ネルギは電気エネルギに変換された分だけは入射
波のエネルギより小さくなつているので、この装
置は浮遊式消波装置としての効果も持つことにな
る。
As shown in FIG.
When the anchor 24 is placed near the coast via the anchor 24, the waves hitting the vessel are swells with a substantially constant wavelength unique to that location, so the design should be designed by selecting an appropriate twin-hull spacing according to that wavelength. is possible. Furthermore, in this case, the energy of the waves hitting the shore is smaller than the energy of the incident waves by the amount converted into electrical energy, so this device also has the effect of a floating wave dissipating device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の波力発電装置の構成を示す概略
図、第2図は改善案を施した従来例の構成を示す
概要図、第3図は双胴体に、種々波長の波が入射
した場合の双胴間の相対水位の振幅を計測する状
況を示す斜視図、第4図及び第5図は双胴体にお
いて、円柱間の2ケ所に取付けられた水位計によ
つて、双胴体に種々の波長の波が入射した場合の
円柱間の相対水位の振幅を計測した値を理論計算
値とともに示す図表、第6図は第4図および第5
図の曲線の値の平均を示す図、第7図は円柱間の
波面の動きを観測した結果を説明する図、第8図
は本考案装置の正面断面図、第9図は本考案装置
を下方から見た斜視図、第10図は本考案装置を
海面上に浮遊させた状態を示す断面図、第11図
は本考案装置を海岸近くに配置した場合の斜視図
である。 15……円柱、16……支え柱、17……甲
板、18……漏斗状の構造物、18a……開口
部、19……空気ダクト、20……弁機構、21
……空気タービン、22……発電機、C……双胴
体。
Figure 1 is a schematic diagram showing the configuration of a conventional wave power generation device, Figure 2 is a schematic diagram showing the configuration of a conventional example with an improvement plan, and Figure 3 is a diagram showing waves of various wavelengths incident on the twin fuselage. Figures 4 and 5 are perspective views showing the situation in which the relative water level amplitude between the twin hulls is measured. A chart showing the measured values of the amplitude of the relative water level between the cylinders together with the theoretically calculated values when a wave with a wavelength of
Figure 7 is a diagram showing the average of the values of the curves in Figure 7, Figure 7 is a diagram explaining the results of observing the movement of the wave front between cylinders, Figure 8 is a front sectional view of the device of the present invention, and Figure 9 is a diagram of the device of the present invention. FIG. 10 is a sectional view showing the device of the present invention floating on the sea surface, and FIG. 11 is a perspective view of the device of the present invention placed near the coast. 15...Cylinder, 16...Support column, 17...Deck, 18...Funnel-shaped structure, 18a...Opening, 19...Air duct, 20...Valve mechanism, 21
...Air turbine, 22...Generator, C...Twin fuselage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入射波の波長λに比べて充分に長い一対の浮遊
体を、浮遊体間の中心間距離をSとするときλ/
S=1.4〜2.5となる関係で互に連結し、同浮遊体
の間に広口開口部を海中に没した逆漏斗状部材を
固定し、上記浮遊体上で上記逆漏斗状部材の狭口
出口部に往復気流を一方向流れに規制する弁を介
して空気タービンを配設してなる浮遊式波力発電
装置。
When a pair of floating bodies is sufficiently long compared to the wavelength λ of the incident wave, and the distance between the centers of the floating bodies is S, λ/
A reverse funnel-shaped member whose wide opening is submerged in the sea is fixed between the floating bodies, and the narrow outlet of the reverse funnel-shaped member is connected to the floating body in a relationship such that S = 1.4 to 2.5. A floating wave power generation device in which an air turbine is installed through a valve that regulates reciprocating airflow to one-way flow.
JP1985066101U 1985-05-02 1985-05-02 Floating wave power generation device Granted JPS611672U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985066101U JPS611672U (en) 1985-05-02 1985-05-02 Floating wave power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985066101U JPS611672U (en) 1985-05-02 1985-05-02 Floating wave power generation device

Publications (2)

Publication Number Publication Date
JPS611672U JPS611672U (en) 1986-01-08
JPS6129981Y2 true JPS6129981Y2 (en) 1986-09-03

Family

ID=30598693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985066101U Granted JPS611672U (en) 1985-05-02 1985-05-02 Floating wave power generation device

Country Status (1)

Country Link
JP (1) JPS611672U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457041B2 (en) * 2009-01-22 2014-04-02 ジョンマン ユーン Wave generator and wave ship

Also Published As

Publication number Publication date
JPS611672U (en) 1986-01-08

Similar Documents

Publication Publication Date Title
JP5541465B2 (en) Wave energy conversion equipment
JP5284949B2 (en) Heave plate with vertical structure
CA2564703C (en) Configurations and methods for wave energy extraction
ES2654602T3 (en) Floating mast structure
JPH07503776A (en) Sea wave power generation device
US20130009402A1 (en) Wave-energy converter
US20100320766A1 (en) Device for Collecting Swell Energy
JP2014513242A (en) Wave energy extraction apparatus and method
US4360004A (en) Floating solar collector
US4023370A (en) Floating breakwater
US4189918A (en) Devices for extracting energy from wave power
JP2008516107A (en) Floating wave breaker and propulsion system
JPS6129981Y2 (en)
FR2548739A1 (en) Floating power station for recovering energy from swell
CN211312407U (en) Buoy type breakwater
JPH03129005A (en) Lattice type floating wave suppressing bank incorporating wave power generation
GB1601219A (en) Devices for extracting energy from wave power
GB2608176A (en) Wave energy capturing device
RU2113613C1 (en) Wave-electric converter
RU2005838C1 (en) Floating breakwater
TWM573795U (en) Wave power generating system
JPH0128225B2 (en)
CN109162244B (en) Horizontal fixed extrusion type quick assembly disassembly's floating breakwater
WO2009095651A1 (en) Method and apparatus for generating energy from waves
Chung et al. Design parameter study of an oil-spill boom