JPS6129776B2 - - Google Patents

Info

Publication number
JPS6129776B2
JPS6129776B2 JP53093254A JP9325478A JPS6129776B2 JP S6129776 B2 JPS6129776 B2 JP S6129776B2 JP 53093254 A JP53093254 A JP 53093254A JP 9325478 A JP9325478 A JP 9325478A JP S6129776 B2 JPS6129776 B2 JP S6129776B2
Authority
JP
Japan
Prior art keywords
catalyst
tio
nox
exhaust gas
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53093254A
Other languages
Japanese (ja)
Other versions
JPS5520641A (en
Inventor
Korehiko Nishimoto
Shigeo Yokoyama
Masao Hino
Toshikuni Sera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9325478A priority Critical patent/JPS5520641A/en
Publication of JPS5520641A publication Critical patent/JPS5520641A/en
Publication of JPS6129776B2 publication Critical patent/JPS6129776B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、重油焚ボイラをはじめとし石炭焚ボ
イラ、各種化学装置に付設する燃焼炉、製鉄プラ
ント、デイーゼルエンジンやタービンの如き内燃
機関からの排ガス中に含有される窒素酸化物(以
下NOxと略称する)を効果的かつ経済的に還元
し無害化する触媒組成物に関する。 特にNOxの外に触媒被毒となりやすい硫黄酸
化物や煤じんを含有する排ガスに適用してアンモ
ニア(以下NH3と略称する)を還元剤として、適
当な温度下に於てNOxを接触還元して窒素
(N2)と水(H2O)に転化し無害化するにあたり、
上記被毒成分の影響を受けないで効率良くその機
能を発揮する安価でかつ2次公害のない触媒を提
供するものである。 排ガス中のNOx除去法としては固体化捕集
法、吸着法、酸化吸収法、還元プロセスなどがあ
り、このプロセスも湿式法と乾式法、に分類でき
る。固体化捕集法と吸着法については濃縮された
NOxの何らかの処理が必要であること、吸収法
と湿式還元プロセスはNOの安定性から帰因する
酸化剤が必要となり処理費が高価になることに加
えて、吸着あるいは吸収装置の大型化と、吸着剤
あるいは吸収剤の再生、副生品の処理、さらには
廃液による二次公害についての配慮などが必要と
なり実用化には多くの問題を残している。 これらの方法と比較して還元法は還元ガス例え
ばアンモニア、水素、硫化水素、一酸化炭素、炭
化水素などでNOxを無害なN2とH2Oにする方法
であり、先に述べた問題点がなく各方面で開発が
試みられている。この一つに高温下の無触媒状態
でNOxを還元ガスと反応させる方法があるが、
高温下でしかも有効温度領域が限定されること
と、残留還元剤が多量に排出されること、さらに
はNOxを無害化するに必要な還元剤量がNOxの
何倍にもなることから実用上効果的な方法とはい
えない。 他の一つに触媒を適用する接触還元反応による
NOxの無害化法(以後脱硝と略称する)があ
り、還元剤の選択により2種類に分けられるが、
排ガス中の酸素の有無による影響を受けない選択
的接触還元法が比較的低温でかつNOxと等量の
還元剤で反応が進むので経済的に有利とされてい
る。 本発明は還元剤としてのNH3とNOxの反応に適
用する触媒組成に関するものであり、以下本発明
の特徴について詳述する。 従来選択的接触還元プロセスに適用する触媒の
構成は担体としてアルミナ、シリカ、チタニア、
ジルコニア、それらの混合物又はケイソウ土、ゼ
オライト等の多孔性物質の単独もしくは組合せを
使用し、活性体として貴金属の外に卑金属の遷移
金属の酸化物もしくは硫酸塩が有効であることが
知られているが、アルミナ系などは硫黄酸化物で
被毒されるため触媒寿命が短く大容量の排ガスを
処理する場合には経済性がない場合もある。 一般に硫黄酸化物を含有する燃焼排ガスは煤じ
んを含有しており通常の粒状触媒を充填した反応
器で触媒層に処理ガスを通過させる場合には、こ
のダストによる閉塞があり実用に供せられない。 これらの問題を解決するために硫黄酸化物によ
る被毒については耐久性のあるチタニア、ジルコ
ニア等の担体が適用され、ダストについては粒状
触媒を移動させる移動床式反応器の適用や、特殊
形状触媒例えばハニカム状や中空円筒状などで対
処している。しかしこれらの対策ではチタニア等
の材料費が高価であること、触媒比重が大で反応
器支持枠等の増強が必要となり、移動床式反応器
の建設は複雑かつ設置のための敷地の制約から、
既存の設備への脱硝装置の付設が困難であるこ
と、チタニアやジルコニアは成形性に乏しいなど
多くの解決すべき事項がある。それにも、かかわ
らずチタニアは鉄、コバルト、ニツケル、マンガ
ン、クロム、モリブデン、タングステン、バナジ
ウム、銅などの酸化物あるいは硫酸化合物を担持
することで極めて高性能を示すことは捨てがた
い。本発明はこれらの点に鑑み、如加なる場所に
も適用しうる自由な成形性と被毒成分に対して耐
久性を有し再生も容易でしかも軽くかつ安価な触
媒を提供することにある。 また本発明触媒は如何なる形状にも成形可能な
点から薄い板状にも加工できることと、比重も
0.2〜0.5g/c.c.と軽いことから、現有の煙路に配
置し排ガスを板状触媒に並行流で接触させ、排ガ
ス中のNOxを、NH3を還元剤として無害化できる
ことから特別の脱硝反応装置を必要としなくな
り、設備費を大巾に低減し、大気汚染の防止を容
易にするものである。さらに排ガスを板状触媒に
並行流で接触させるため移動床を含んだ従来の固
定床式反応器の触媒の如く、煤じんの付着もしく
は閉塞による活性の低下がなく、触媒寿命も長い
ために脱硝装置を極めて安価にすることが可能と
なつた。 本発明者らは上記のような認識に基づき脱硝用
触媒について高活性は当然のこと、耐久性特に硫
黄酸化物で被毒され難く軽質で如加なる形状にも
容易に成形が可能であり、かつ材料費、製造費を
含む触媒費用を安価にすることに留意し、新規な
触媒を見出すべく広範な研究を実施した結果、ケ
イ酸質原料と石灰質原料を主成分とした生成物で
あるケイ酸カルシウムにチタニア(TiO2)と、周
期律表の−B族(バナジン族元素)、−B族
(クロム族元素)、−B族(マンガン族元素)、
族の卑金属遷移金族および銅の酸化物の少なく
とも1種類からなる触媒成分を担持すると極めて
良好な性能を示すばかりか、成形性が良好なこと
から種々の形状に成形することが可能になる利点
を有することを見出した。 この触媒の母材であるケイ酸カルシウム成形体
は大別すると二つの方法があり、一つはケイ酸質
原料と石灰質原料を水に懸濁して得られるスラリ
ーに必要に応じて粘土、ガラス繊維、石綿などの
補強材を添加して成形後、これをオートクレーブ
内で水熱処理して、ケイ酸カルシウム水和物を結
晶化させるとともに硬化させる方法、もう一つは
ケイ酸質原料と石灰質原料を水に懸濁し、さらに
必要に応じて粘土、ガラス繊維、石綿などの補強
材を添加して得られる混合物を加圧下で加熱撹拌
しながら、あるいは断続撹拌や撹拌を中断して水
熱合成反応と結晶化を促進することにより得られ
るケイ酸カルシウム水和物を成形、乾燥すること
で成形体を得る方法である。いずれの方法でも本
発明触媒として適用可能であるが、任意の形状に
成形できる点からは後者が望ましい。触媒成分の
担持法も前述のようにして得られた成形体の表面
部に触媒成分を塗着させる方法、ケイ酸カルシウ
ムスラリーに触媒成分を混合して成形する方法な
どが考えられる。 一方脱硝触媒としてモリブテン、バナジウム、
マンガン、鉄、銅、クロムの酸化物を単独あるい
は組合せたもの(西独特許1253685
(1963.1.22)、1259298(1964.8.29))が有効であ
ると報告されている。又鉄、コバルト、ニツケ
ル、銅、バナジウム、クロム、マンガン、タング
ステンの酸化物をシリカ、チタニア、ジルコニア
に組合せることの効果は特開昭49−97794に報告
されている。これらの触媒をSOx含有排ガスに適
用する場合には耐SOx性があり、高性能が得られ
る点からTiO2を担体とする触媒が最適であり、
特にアナターゼ型の結晶構造を有するTiO2が好
ましい。 しかしTiO2をアナターゼ型のままで粒状、中
空円筒状に成形するには回転式や打錠式で何とか
造粒できるが、700〜800℃以上にすると結晶構造
がルチル型に変化していく制約から強度のある物
は製造しにくい。又排ガス中の煤じんによる閉塞
を考慮すると粒状触媒を使用する反応器は実用的
でなく、ダストフリー型のハニカム状、パイプ状
に押出し成形することも、結晶構造の制約から高
強度の担体は得にくい、。このようにTiO2を高強
度に成形することの困難さからTiO2だけで煤じ
んの影響がない板状物例えば大きさとして1m×
1m×10mm厚さの成形も容易ではない。さらに
TiO2は一般に比重が重く(約1.0〜1.2)取扱いが
困難である外に、反応器強度を大きく設計する必
要があること、高価であることなどの欠点があ
る。 以上の観点から本発明触媒は日本国内に多量に
存在し安価である石灰石とケイ砂から合成される
ケイ酸カルシウムの母材にTiO2と活性成分を添
加した組成であるため、極めて軽質で、比重とし
ては0.3〜0.6g/c.c.程度であり、いかなる形状に
も成形できること、かつ極めて安価な触媒を提供
しうる上に、TiO2と活性成分を添加したことに
より脱硝性能も優れているところに特徴がある。
従つて触媒を反応器に充填する時の支持枠その他
の鋼材も少量でまかなえる利点を有している。以
下実施例により具体的に説明する。 実施例 ケイ砂粉52部、生石灰44部と石綿4部を水1100
部と混合し、これを撹拌器付オートクレーブに密
閉後加圧して内圧を12Kg/cm2、温度を191℃とし
100回/分の撹拌速度で5時間撹拌しながら反応
させゾノトライト(6CaO・6SiO2・H2O)を主成
分とするケイ酸カルシウムスラリーを得た。この
スラリー100部にガラス繊維10部とアナターゼ型
のTiO2粉末(平均粒子径1.2μ)1200部を加えて
金枠中で脱水成形後、乾燥して比重0.4、厚さ7
mm、幅1m、長さ1mのケイ酸カルシウムを母材
とし、TiO2と6CaO・6SiO2・H2Oの含有重量比
が9.2の成形体を得た。ここで、TiO2粉末をスラ
リーに対して1.2倍添加するのは脱水成形時の
TiO2粉末の流出による損失を見込んでいるため
である。 なおケイ酸カルシウム結晶のスラリーに硫酸チ
タン又は塩化チタンを作用させて得られる水酸化
チタンを混合した母材担体を加熱することにより
アナターゼ型のTiO2に転化させる方法、又はケ
イ酸カルシウム結晶のスラリーにガラス繊維を加
え金枠中で脱水成形し乾燥後硫酸チタン、塩化チ
タン、チタンアルコラートを作用させ加熱しても
目的とする成形体を得ることができる。さらには
アナターゼ型のTiO2粉末をスラリー状態で成形
体表面に塗着することでも目的とする成形体を得
ることが可能である。 ここで得られるケイ酸カルシウムの結晶形は多
種類存在するが、成形性と触媒としての強度の関
係からxCaO・ySiO2のx/yの値は5/6〜2が好
ましいことがわかつた。また耐火性の点から
〔H2O〕bの値は当然小さい方が安定で好ましく
実用性のあるb/aは1以下であつた。 次にTiO2の必要量であるが、c/aが1以下
では活性に乏しく、10以上にすると触媒担体の重
量が大きくなる上に、原料費が高くなることで経
済性から好ましくない。 以上のようにして得られる担体の活性化につい
ては従来の脱硝触媒と同様にFe2O3、Co2O3
NiO、MnO2、Cr2O3、MoO3、WO3、V2O5、CuO
などの活性体の原料となりうるアンモニウム塩、
硫酸塩、硝酸塩などを水などの溶媒に溶解させて
含浸させるか、あるいはこれらの原料粉末又は酸
化物自体の粉末をTiO2と混合して担体製造工程
で添加させ焼成することにより目的を達する。こ
の活性体量については〔MO〕dにおけるd/a
を0.005以下にすると十分な活性能が得られず、
1.0以上にすると活性能の向上に比して経済性が
悪化するので望ましくない。 触媒活性成分を選択する場合、触媒性能に優
れ、かつ目的とする反応以外の副反応特に後部機
器に悪影響を及ぼす反応を抑制する活性体にする
必要がある。触媒活性成分の相違による触媒特性
は使用される排ガス性状例えばSOx、H2Oの有無
にも多いに影響されるが、ガス温度の影響も大き
い。 すなわち事業用ボイラの如き負荷変化のある排
ガスに対しては広範囲の温度領域で優れた触媒特
性を示す活性成分が必要であり、自家発ボイラの
如き負荷をほぼ一定にして使用する場合には常用
温度で優れた性能を示す活性成分で十分である。 通常脱硝を必要とする排ガス中にはSO2が存在
している場合が多く、共存するO2と反応し触媒
上でSO2がSO3に転化する。この時脱硝反応で還
元剤として使用するNH3と反応して生じる
(NH42SO4あるいはNH4HSO4などの付着による
ガス閉塞や金属材料の腐食さらにはダスト増加に
よる集じん器の増強あるいはSO3の大気放出など
の問題が生じてくるためSO2のSO3への転化はで
きるだけ抑制しなければならない。この抑制効果
のある酸化物は前述のCo2O3、MoO3、WO3以外
にもSnO2、ZnOなどがあり、これらをSO2酸化抑
制剤として添加することも可能である。 本発明触媒の活性成分の相違による触媒特性を
確認するために、500mm×500mmの大きさにした前
述のケイ酸カルシウムを母材とする成形体にアナ
ターゼ型のTiO2と表2の触媒活性成分を担持し
た触媒1〜12を得た。なおこの時のTiO2と触媒
活性成分の比率は9対1とした。これらの触媒を
触媒間隔12mmに配置する触媒層長さ5mの反応器
に処理ガス量(Nm3/H)/触媒面積(m2)=10
の割合で充填して、NH3/NOx=1.0、線速度4
m/secで表1に示す重油焚ボイラ排ガス(ガス量
500Nm3/H)を触媒に対して並行に接触させたと
ころ、表2に示しす触媒性能が得られた。なおガ
ス温度はボイラ運用、加熱器の併用で変化させ、
温度に対する触媒特性を示している。
The present invention deals with nitrogen oxides (hereinafter abbreviated as NOx) contained in exhaust gas from internal combustion engines such as heavy oil-fired boilers, coal-fired boilers, combustion furnaces attached to various chemical equipment, steel plants, diesel engines, and turbines. catalytic composition that effectively and economically reduces and detoxifies In particular, it is applied to exhaust gases that contain sulfur oxides and soot that are likely to poison the catalyst, in addition to NOx, and uses ammonia (hereinafter abbreviated as NH3 ) as a reducing agent to catalytically reduce NOx at an appropriate temperature. In converting it into nitrogen (N 2 ) and water (H 2 O) and making it harmless,
The object of the present invention is to provide a catalyst that is inexpensive, free from secondary pollution, and efficiently exhibits its functions without being affected by the poisoning components. Methods for removing NOx from exhaust gas include solidification capture methods, adsorption methods, oxidation absorption methods, and reduction processes, and these processes can also be classified into wet methods and dry methods. Regarding solidification collection method and adsorption method, concentrated
Some kind of treatment of NOx is required, and the absorption method and wet reduction process require an oxidizing agent due to the stability of NO, which increases treatment costs, and the adsorption or absorption equipment becomes larger. Many problems remain before practical application, as it is necessary to regenerate the adsorbent or absorbent, treat by-products, and consider secondary pollution caused by waste liquid. Compared to these methods, the reduction method converts NOx into harmless N 2 and H 2 O using reducing gases such as ammonia, hydrogen, hydrogen sulfide, carbon monoxide, and hydrocarbons, and does not have the problems mentioned above. Development efforts are being made in various areas. One of these methods is to react NOx with reducing gas in a non-catalytic state at high temperatures.
It is not practical because the effective temperature range is limited under high temperatures, a large amount of residual reducing agent is emitted, and the amount of reducing agent required to make NOx harmless is many times that of NOx. It's not an effective method. by a catalytic reduction reaction applying a catalyst to the other one
There are NOx detoxification methods (hereinafter abbreviated as denitrification), which can be divided into two types depending on the choice of reducing agent.
The selective catalytic reduction method, which is not affected by the presence or absence of oxygen in the exhaust gas, is considered to be economically advantageous because the reaction proceeds at a relatively low temperature and with the same amount of reducing agent as NOx. The present invention relates to a catalyst composition applied to the reaction of NH 3 as a reducing agent and NOx, and the features of the present invention will be described in detail below. Conventionally, the composition of the catalyst applied to the selective catalytic reduction process is alumina, silica, titania,
It is known that oxides or sulfates of base metals in addition to noble metals are effective as activators when using porous materials such as zirconia, mixtures thereof, diatomaceous earth, zeolites, etc. alone or in combination. However, since alumina-based catalysts are poisoned by sulfur oxides, they have a short catalyst life and may not be economical when treating a large volume of exhaust gas. In general, combustion exhaust gas containing sulfur oxides contains soot and dust, and when the process gas is passed through the catalyst bed in a reactor filled with normal granular catalysts, this dust causes blockage, making it difficult to put into practical use. do not have. To solve these problems, durable carriers such as titania and zirconia are used to treat poisoning caused by sulfur oxides, and moving bed reactors that move granular catalysts and specially shaped catalysts are used to deal with dust. For example, honeycomb shapes and hollow cylindrical shapes are used. However, with these measures, the cost of materials such as titania is high, the specific gravity of the catalyst is high and the reactor support frame needs to be strengthened, and the construction of a moving bed reactor is complicated and due to site constraints for installation. ,
There are many issues that need to be resolved, such as the difficulty of installing a denitrification device to existing equipment and the poor formability of titania and zirconia. Nevertheless, it cannot be ignored that titania exhibits extremely high performance by supporting oxides or sulfuric compounds of iron, cobalt, nickel, manganese, chromium, molybdenum, tungsten, vanadium, copper, etc. In view of these points, it is an object of the present invention to provide a catalyst that can be applied to any location, has free moldability, is durable against poisonous components, is easy to regenerate, and is lightweight and inexpensive. . In addition, the catalyst of the present invention can be formed into any shape and can be processed into a thin plate shape, and the specific gravity is also low.
Because it is light at 0.2 to 0.5 g/cc, it is placed in the existing flue and the exhaust gas is brought into contact with a plate-shaped catalyst in parallel flow, and NOx in the exhaust gas can be rendered harmless using NH 3 as a reducing agent, making it a special denitrification reaction. This eliminates the need for equipment, greatly reduces equipment costs, and facilitates the prevention of air pollution. Furthermore, because the exhaust gas is brought into contact with the plate-shaped catalyst in parallel flow, there is no reduction in activity due to adhesion or blockage of soot and dust, unlike in conventional fixed bed reactor catalysts that include a moving bed, and the catalyst has a long lifespan. It has become possible to make the device extremely inexpensive. Based on the above recognition, the present inventors have developed a catalyst for denitrification that not only has high activity, but also durability, especially resistance to poisoning by sulfur oxides, light weight, and the ability to be easily molded into any shape. In addition, we conducted extensive research to find new catalysts, keeping in mind the need to reduce catalyst costs, including material costs and manufacturing costs. Calcium acid, titania (TiO 2 ), -B group (vanadine group elements), -B group (chromium group elements), -B group (manganese group elements) of the periodic table,
Supporting a catalyst component consisting of at least one of the oxides of base metals of the transition metal group and copper not only shows extremely good performance but also has the advantage of being able to be molded into various shapes due to good moldability. It was found that There are two methods for producing calcium silicate molded bodies, which are the base material of this catalyst.One is to suspend silicic acid raw materials and calcareous raw materials in water, and add clay and glass fiber to the slurry obtained. The other method is to add a reinforcing material such as asbestos and form it, then hydrothermally treat it in an autoclave to crystallize and harden the calcium silicate hydrate. A mixture obtained by suspending the mixture in water and adding reinforcing materials such as clay, glass fiber, and asbestos as necessary is subjected to a hydrothermal synthesis reaction while heating and stirring under pressure, or by intermittent stirring or discontinuing the stirring. This is a method of obtaining a molded body by molding and drying calcium silicate hydrate obtained by promoting crystallization. Although either method can be applied to the catalyst of the present invention, the latter is preferable since it can be molded into any shape. Possible methods for supporting the catalyst component include a method in which the catalyst component is coated on the surface of the molded article obtained as described above, and a method in which the catalyst component is mixed with calcium silicate slurry and molded. On the other hand, molybdenum, vanadium,
Oxides of manganese, iron, copper, and chromium alone or in combination (West German patent 1253685)
(1963.1.22), 1259298 (1964.8.29)) are reported to be valid. Furthermore, the effects of combining oxides of iron, cobalt, nickel, copper, vanadium, chromium, manganese, and tungsten with silica, titania, and zirconia have been reported in JP-A-49-97794. When applying these catalysts to SOx-containing exhaust gas, catalysts with TiO 2 as a carrier are optimal because they have SOx resistance and high performance.
Particularly preferred is TiO 2 having an anatase crystal structure. However, in order to form TiO 2 into granular or hollow cylindrical shapes while keeping it in the anatase form, it is possible to granulate it using a rotary or tableting method, but when the temperature exceeds 700-800℃, the crystal structure changes to a rutile type. It is difficult to manufacture strong materials. Also, considering the blockage caused by soot and dust in the exhaust gas, reactors using granular catalysts are impractical, and extrusion molding into dust-free honeycomb or pipe shapes is not possible, but due to crystal structure limitations, high-strength carriers are not practical. Hard to get. Due to the difficulty of molding TiO 2 to high strength, it is difficult to form TiO 2 into plate-like products that are not affected by soot and dust, for example, 1 m x 1 m in size.
Molding 1m x 10mm thick is not easy either. moreover
TiO 2 generally has a high specific gravity (approximately 1.0 to 1.2), making it difficult to handle, and has disadvantages such as the need to design a reactor with high strength and high cost. From the above point of view, the catalyst of the present invention has a composition in which TiO 2 and active ingredients are added to the base material of calcium silicate synthesized from limestone and silica sand, which are abundant and inexpensive in Japan, and are extremely light. It has a specific gravity of about 0.3 to 0.6 g/cc, can be molded into any shape, provides an extremely inexpensive catalyst, and has excellent denitrification performance due to the addition of TiO 2 and active ingredients. It has characteristics.
Therefore, there is an advantage that the support frame and other steel materials required for filling the reactor with the catalyst can be provided in small amounts. This will be explained in detail below using examples. Example 52 parts of silica sand powder, 44 parts of quicklime and 4 parts of asbestos are mixed with 1100 parts of water.
This was placed in a sealed autoclave with a stirrer and pressurized to an internal pressure of 12 kg/cm 2 and a temperature of 191°C.
The reaction was carried out while stirring at a stirring rate of 100 times/min for 5 hours to obtain a calcium silicate slurry containing xonotlite (6CaO.6SiO 2.H 2 O) as a main component. To 100 parts of this slurry, 10 parts of glass fiber and 1200 parts of anatase-type TiO 2 powder (average particle size 1.2μ) were added, dehydrated and molded in a metal frame, and dried to a specific gravity of 0.4 and a thickness of 7.
A molded body with a weight ratio of TiO 2 and 6CaO·6SiO 2 ·H 2 O of 9.2 was obtained using calcium silicate as a base material with a width of 1 m, a width of 1 m, and a length of 1 m. Here, adding 1.2 times more TiO 2 powder to the slurry is done during dehydration molding.
This is because losses due to outflow of TiO 2 powder are expected. In addition, a method of converting into anatase-type TiO 2 by heating a base material carrier mixed with titanium hydroxide obtained by treating a slurry of calcium silicate crystals with titanium sulfate or titanium chloride, or a slurry of calcium silicate crystals. The desired molded product can also be obtained by adding glass fiber to the product, dehydrating it in a metal frame, drying it, and then applying titanium sulfate, titanium chloride, or titanium alcoholate to it and heating it. Furthermore, it is also possible to obtain the desired molded body by applying anatase-type TiO 2 powder in a slurry state to the surface of the molded body. Although there are many types of crystal forms of calcium silicate obtained here, it has been found that the value of x/y of xCaO·ySiO 2 is preferably 5/6 to 2 from the relationship between formability and strength as a catalyst. In addition, from the viewpoint of fire resistance, the smaller the value of [H 2 O]b, the more stable it is, and the preferable and practical b/a is 1 or less. Next, regarding the required amount of TiO 2 , if c/a is less than 1, the activity is poor, and if c/a is more than 10, the weight of the catalyst carrier becomes large and the cost of raw materials increases, which is not preferable from an economic point of view. Regarding the activation of the carrier obtained in the above manner, Fe 2 O 3 , Co 2 O 3 ,
NiO, MnO2 , Cr2O3 , MoO3 , WO3 , V2O5 , CuO
Ammonium salts that can be used as raw materials for active substances such as
The purpose is achieved by dissolving sulfate, nitrate, etc. in a solvent such as water and impregnating it, or by mixing these raw material powders or the powder of the oxide itself with TiO 2 and adding it during the carrier manufacturing process and firing. Regarding the amount of active substance, d/a in [MO] d
If it is less than 0.005, sufficient activity cannot be obtained,
If it is more than 1.0, it is not desirable because the economical efficiency deteriorates compared to the improvement in activity ability. When selecting a catalytically active component, it is necessary to use an activator that has excellent catalytic performance and suppresses side reactions other than the intended reaction, particularly reactions that adversely affect rear equipment. Catalytic properties due to differences in catalytic active components are largely influenced by the properties of the exhaust gas used, such as the presence or absence of SOx and H 2 O, but are also greatly influenced by gas temperature. In other words, an active component that exhibits excellent catalytic properties over a wide temperature range is required for exhaust gas that changes in load, such as in a commercial boiler, while an active component that exhibits excellent catalytic properties over a wide temperature range is required when the load is kept constant, such as in a private boiler. Active ingredients that exhibit good performance at temperature are sufficient. SO 2 is often present in the exhaust gas that normally requires denitrification, and reacts with the coexisting O 2 to convert SO 2 to SO 3 on the catalyst. At this time, the reaction with NH 3 used as a reducing agent in the denitrification reaction results in (NH 4 ) 2 SO 4 or NH 4 HSO 4 adhering to the gas, resulting in gas blockage, corrosion of metal materials, and increased dust to strengthen the dust collector. Alternatively, problems such as SO 3 being released into the atmosphere may arise, so the conversion of SO 2 to SO 3 must be suppressed as much as possible. In addition to the above-mentioned Co 2 O 3 , MoO 3 , and WO 3 , oxides that have this suppressing effect include SnO 2 and ZnO, and these can also be added as SO 2 oxidation inhibitors. In order to confirm the catalytic properties of the catalyst of the present invention due to differences in the active components, anatase-type TiO 2 and the catalytic active components shown in Table 2 were added to the above-mentioned calcium silicate-based molded body with a size of 500 mm x 500 mm. Catalysts 1 to 12 supporting the above were obtained. Note that the ratio of TiO 2 to the catalytically active component at this time was 9:1. These catalysts were placed in a reactor with a catalyst layer length of 5 m in which the catalyst spacing was 12 mm, and the amount of gas to be treated (Nm 3 /H)/catalyst area (m 2 ) = 10
NH 3 /NOx = 1.0, linear velocity 4
Heavy oil-fired boiler exhaust gas (gas amount) shown in Table 1 in m/sec
500Nm 3 /H) was brought into contact with the catalyst in parallel, and the catalyst performance shown in Table 2 was obtained. The gas temperature can be changed by operating the boiler and using a heater.
It shows the catalyst characteristics with respect to temperature.

【表】【table】

【表】 次にSO2の酸化抑制効果を確認するために、触
媒1、6、7、8、10、11、12について測定した
結果を表3に示した。この時の試験条件は脱硝性
能を計測した時と同様であり、SO2のSO3への転
化率は 出口SO−入口SO/入口SO×100 として計算した。WO3、MoO3を添加することに
よりSO3の生成を極めて抑制していることがわか
る。
[Table] Next, in order to confirm the oxidation suppressing effect of SO 2 , the results of measurements for catalysts 1, 6, 7, 8, 10, 11, and 12 are shown in Table 3. The test conditions at this time were the same as those used when measuring the denitrification performance, and the conversion rate of SO 2 to SO 3 was calculated as: outlet SO 3 - inlet SO 3 /inlet SO 2 ×100. It can be seen that the addition of WO 3 and MoO 3 greatly suppresses the generation of SO 3 .

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 アンモニアを還元剤として窒素酸化物を接触
還元除去するプロセスに適用する触媒として
〔xCaO・ySiO2〕a〔H2O〕b〔TiO2〕c
〔MO〕dの構造をなし、b/a=O〜1、c/
a=1〜10、d/a=0.005〜1.0、x/yが好ま
しくは5/6〜2であり、かつMOが周期律表の
−B族、−B族、−B族、族の卑金属の遷
移金属および銅の酸化物の少なくとも一種類から
成る触媒組成物。
[Claims] 1. [xCaO・ySiO 2 ]a [H 2 O]b [TiO 2 ]c as a catalyst applied to a process for catalytic reduction removal of nitrogen oxides using ammonia as a reducing agent.
[MO] has the structure of d, b/a=O~1, c/
a=1 to 10, d/a=0.005 to 1.0, x/y is preferably 5/6 to 2, and MO is a base metal of -B group, -B group, -B group, group of the periodic table. A catalyst composition comprising at least one oxide of a transition metal and copper.
JP9325478A 1978-07-31 1978-07-31 Catalyst composition Granted JPS5520641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9325478A JPS5520641A (en) 1978-07-31 1978-07-31 Catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9325478A JPS5520641A (en) 1978-07-31 1978-07-31 Catalyst composition

Publications (2)

Publication Number Publication Date
JPS5520641A JPS5520641A (en) 1980-02-14
JPS6129776B2 true JPS6129776B2 (en) 1986-07-09

Family

ID=14077355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9325478A Granted JPS5520641A (en) 1978-07-31 1978-07-31 Catalyst composition

Country Status (1)

Country Link
JP (1) JPS5520641A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926331B2 (en) * 1979-06-15 1984-06-26 バブコツク日立株式会社 Denitration catalyst for high temperature exhaust gas
JPS61185121A (en) * 1985-02-13 1986-08-18 スタ−農機株式会社 Foldable mechanism of hay reversal machine
JPH0422812Y2 (en) * 1986-02-05 1992-05-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626756Y2 (en) * 1976-08-19 1981-06-25

Also Published As

Publication number Publication date
JPS5520641A (en) 1980-02-14

Similar Documents

Publication Publication Date Title
US4282115A (en) Catalyst for selectively reducing nitrogen oxides from oxygen-containing exhaust gases
US4140654A (en) Catalyst composition with support comprising titanium oxide and clay mineral for vapor phase reduction of nitrogen oxides
KR100686381B1 (en) Vanadium/titania-based catalysts comprising of nmo(natural manganese ore) for removing nitrogen oxides and dioxine at wide operation temperature region, and using thereof
US8088709B2 (en) Preparation method of vanadium/titania-based catalyst showing excellent nitrogen oxide-removal performance at wide temperature window through introduction of ball milling, and use thereof
US20060182676A1 (en) Ammonia oxidation catalyst for the coal fired utilities
JPS6090043A (en) Catalyst for purifying nitrogen oxide
CZ343796A3 (en) Catalyst for reducing amount of nitrogen oxides in flowing media and process for preparing thereof
CN106731581A (en) A kind of activated carbon supported MnO2Preparation method, the equipment and technique of industrial smoke denitration
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JP3352494B2 (en) Nitrogen oxide decomposition catalyst and denitration method using the same
CN106824174A (en) A kind of coccoid catalyst of high-efficient purification nitrogen oxides and preparation method thereof
US4350670A (en) Process for treating flue gas
US4188365A (en) Process for catalytic vapor phase reduction of nitrogen oxides and catalyst composition used therefor
JP4346706B2 (en) Catalyst carrier, production method thereof, denitration catalyst and denitration method
JP4172828B2 (en) NOx removal agent and method for removing nitrogen oxides in exhaust gas
JPS6129776B2 (en)
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
GB2361653A (en) Improvements in catalytic reduction of NOx
BG104214A (en) Method for reducing the nitrogen oxide content in gases and the respective catalysts
JPH08103632A (en) Treatment of gas
JPH09313946A (en) Catalyst for cleaning nox-containing exhaust gas and cleaning method
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JPS6043170B2 (en) Catalyst for removing nitrogen oxides
JPS61230748A (en) Catalyst for purifying nitrogen oxide