JPS61296880A - Device for improving picture quality of television - Google Patents

Device for improving picture quality of television

Info

Publication number
JPS61296880A
JPS61296880A JP60136970A JP13697085A JPS61296880A JP S61296880 A JPS61296880 A JP S61296880A JP 60136970 A JP60136970 A JP 60136970A JP 13697085 A JP13697085 A JP 13697085A JP S61296880 A JPS61296880 A JP S61296880A
Authority
JP
Japan
Prior art keywords
signal
correction
circuit
contour
flare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60136970A
Other languages
Japanese (ja)
Other versions
JPH0327151B2 (en
Inventor
Ryuichi Fujimura
隆一 藤村
Reiichi Kobayashi
玲一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP60136970A priority Critical patent/JPS61296880A/en
Publication of JPS61296880A publication Critical patent/JPS61296880A/en
Publication of JPH0327151B2 publication Critical patent/JPH0327151B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To make a scale small by disposing a vertical direction and a horizon tal direction in series in parallel to the correction of a contour and a flare, using an FIR filter for correcting the contour and an IIR filter for correcting the flare, using a RAM for coefficient circuit such as filters and correcting by a digital means. CONSTITUTION:A digital luminance signal is inputted to a compensating delay device 25, passes through a vertical contour correction filter 21, a horizontal contour correction FIR filter 22 from a signal line (l) to input to a subtraction circuit 26a, is subtracted from a reference signal from a signal line (n) and similarly, passes through vertical and horizontal flare correction composite IIR filters 23, 24 from a signal line (m), is subtracted from the reference signal in a subtraction circuit 26b to obtain correcting signals of high frequency characteristic, respectively. A selector 31 is disposed at a CPU address side and the data from the CPU is written in a prescribed address in a RAM 32 during an image blanking period through a buffer 33. During the image period, the selector 31 is disposed to an input side and the data multiplied by a coefficient through a buffer 34 is read and fed as an output of a factor circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーテレビジョン受像機、特に大画面のス
クリーンに投写管より3原色画像光を投写して画像を得
る、いわゆる投写型受像機に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a color television receiver, particularly a so-called projection type receiver that obtains an image by projecting three primary color image lights onto a large screen from a projection tube. Regarding.

〔従来の技術〕[Conventional technology]

大型の画像面をもつCRTは製作上、現在40インチ程
度が限度である。それ以上では投写管による方式が現在
のところ実際的である。高品質の大型画面の場合には単
に画面を大きくするだけでは高品質は得られないので、
走査本数を多くするとともに、画質についての要求が厳
しくなる。特に投写型では、投写管のビームの電流密度
を直視形の5〜10倍程度にするため、ビームが太くな
り、またレンズの影響のため解像度が低下することと、
高輝度の投写管・レンズ等に起因するフレアとが画質低
下の原因となっていた。
Currently, CRTs with large image planes have a manufacturing limit of about 40 inches. Beyond that, a method using a projection tube is currently practical. In the case of a high-quality large screen, high quality cannot be obtained simply by making the screen larger.
As the number of scans increases, requirements regarding image quality become stricter. In particular, in the projection type, the current density of the beam of the projection tube is about 5 to 10 times that of the direct view type, so the beam becomes thicker and the resolution decreases due to the influence of the lens.
Flare caused by high-brightness projection tubes, lenses, etc. was a cause of deterioration in image quality.

投写型の大型画面の受像機は、開発段階であるためか、
上記フレア補正・輪郭補正の手段も全面的に確定した技
術として確立していない。従来、高品位テレビ用として
提案されているフレア補正手段として、[高品位テレビ
用投写形ディスプレイの画質改善−3AWフイルターに
よるフレア妨害除去−」テレビジョン学会1982年金
国大会5PI−14,金庫等の映像信号を一旦AM変調
し、SAWフィルタにとおし、再び復調するアナログフ
ィルタを利用した方法がある。この方法は変調信号波に
ついて変調キャリア周波数の近傍の±IMIIzで減衰
を与えることで、フレア補正のために低周波成分を減衰
させるものである。しかしこの方法では変調キャリア周
波数がloOMHz以上の高周波を用いなければならず
、また画面の水平方向のフレア成分を除去できても、垂
直方向成分に応用しようとすると非常に正確な1ライン
遅延線が多数必要になり実現が困難である。
Perhaps because large-screen projection receivers are still in the development stage,
The flare correction/contour correction means described above have not yet been established as completely definitive techniques. Conventionally, as a flare correction means proposed for high-definition televisions, there is an article published in ``Improvement of Image Quality of Projection Displays for High-Definition Televisions - Removal of Flare Interference by 3AW Filter'', Television Society of Japan 1982 National Annual Conference 5PI-14, Safe etc. There is a method using an analog filter in which a video signal is once AM-modulated, passed through a SAW filter, and demodulated again. This method attenuates the modulated signal wave by ±IMIIz near the modulated carrier frequency, thereby attenuating the low frequency component for flare correction. However, this method requires the use of a high frequency modulation carrier frequency of loOMHz or higher, and even if the horizontal flare component of the screen can be removed, when applied to the vertical component, a very accurate one-line delay line is required. This is difficult to implement as a large number of them are required.

輪郭補正としては・画像の輪郭成分を抽出して、原信号
に付加する方法が一般的であるが、画面の水平方向だけ
強調する方式が大部分で、垂直方向の強調は何らかの方
法でライン遅延をつくらねばならないため、例がすくな
い。
The most common method for contour correction is to extract the contour components of the image and add them to the original signal, but in most cases only the horizontal direction of the screen is emphasized, and the vertical direction is emphasized using some method of line delay. There are few examples because it requires creating a

ところで、解像度低下を防ぐため、輪郭を強調する輪郭
補正と、フレアをおさえるフレア補正とは、前者は微分
を含む高周波成分の強調であり、後者はフレアの多い画
面がMTF (解像度特性)が低域で持ち上がる形にな
っているので、低域の周波数成分に減衰特性を与えるこ
とになる。したがって、輪郭補正とフレア補正とは周波
数的には並行的に行ないうる性質のものであるが、ディ
ジタル方式とアナログ方式とが混在するとか、あるいは
一方式に統一すれば、実現が難しいということで両方の
補正処理を行なった例はない。
By the way, in order to prevent resolution degradation, contour correction that emphasizes contours and flare correction that suppresses flare are two methods.The former emphasizes high-frequency components including differentials, and the latter emphasizes that a screen with a lot of flare has a low MTF (resolution characteristic). Since it has a shape that is lifted in the range, it gives attenuation characteristics to the low frequency components. Therefore, although contour correction and flare correction can be performed in parallel in terms of frequency, it is difficult to achieve this by mixing digital and analog methods, or by unifying one method. There is no example in which both types of correction processing were performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上、述べたように、大画面の投写型受像機について、
必要とされるフレア補正・輪郭補正手段を全面的に採用
し、高品質の画像を得る段階までいたっていない。ここ
で全面的にというのは、輪郭・フレア補正を垂直・水平
両成分とも可能にすることである。アナログ方式では、
特にフィルタ特性の均一性、遅延線の温度による変動等
の問題があり、また大規模の方式では、全装置のタイミ
ング調整が難しい。ディジタル方式であれば原則的に前
記問題に充分対応でき、かつ設計上の柔軟性に冨んでい
る。しかし規模が大きくなる困難がある。問題は、いか
にディジタル補正装置を具体化するかにある。
As mentioned above, regarding large screen projection receivers,
We have not yet reached the stage where we can fully adopt the necessary flare correction and contour correction means and obtain high-quality images. Here, "completely" means that contour/flare correction can be performed for both vertical and horizontal components. In the analog method,
In particular, there are problems such as uniformity of filter characteristics and temperature-related fluctuations in delay lines, and in a large-scale system, it is difficult to adjust the timing of all devices. In principle, a digital system can sufficiently address the above problems and has a lot of flexibility in terms of design. However, there are difficulties as the scale increases. The problem lies in how to implement the digital correction device.

本発明の目的は、上記事情に鑑み、画面の水平および垂
直方向についてフレア成分を除去すると同時に画面の輪
郭を強調する補正を並行的に行なう画質改善装置をすべ
てディジタル的手段により、しかも小規模な形で実現す
ることにある。
In view of the above-mentioned circumstances, an object of the present invention is to provide an image quality improvement device that removes flare components in the horizontal and vertical directions of the screen and at the same time performs correction for emphasizing the outline of the screen, all by digital means and on a small scale. It lies in realizing it in form.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の画質改善装置は、 投写形ディスプレイ方式の
テレビジョン受像機において、輝度信号と2つの色信号
とを入力し、それぞれA/D変換した後、ディジタル輝
度信号を用いて輪郭・フレア補正信号を発生するととも
に、前記ディジタル輝度信号および色信号とからマトリ
クス回路により復元され、補償用遅延回路を経て遅延さ
れた3原色映像信号に、前記輪郭・フレア補正信号をそ
れぞれ合成してからD/A変換して出力するものである
The image quality improvement device of the present invention inputs a luminance signal and two color signals in a projection display type television receiver, performs A/D conversion on each, and then generates a contour/flare correction signal using the digital luminance signal. At the same time, the contour/flare correction signal is synthesized with the three primary color video signals which are restored from the digital luminance signal and color signal by the matrix circuit and delayed through the compensation delay circuit, and then the D/A It is converted and output.

前記輪郭・フレア補正信号発生部は、ディジタル輝度信
号を入力する輪郭・フレア補正信号作成回路と、該補正
信号作成回路に縦続しディジタル輝度信号の入力レベル
により利得を変化する利得調整回路とから構成されてい
る。
The contour/flare correction signal generation section includes a contour/flare correction signal generation circuit that inputs a digital luminance signal, and a gain adjustment circuit that is connected in series to the correction signal generation circuit and changes its gain depending on the input level of the digital luminance signal. has been done.

前記輪郭・フレア補正信号作成回路は、画像の輪郭補正
とフレア補正とを並列になすもので、(イ) 輪郭補正
は、画像の垂直方向・水平方向に直列に、垂直方向には
1ディレィとしてラインメモリを用いた低域通過型FI
Rフィルタ、水平方向には1ディレィとしてA/D変換
変換クロフレジスタを用いた低域通過型FIRフィルタ
を介して出力される信号を補正信号作成回路の入力を遅
延した信号から減算することによりなされ、(ロ) フ
レア補正は画像の垂直方向・水平方向に直列に、垂直方
向には1ディレィとしてラインメモリを用いた低域通過
型IIRフィルタと1フィールド分の情報を反転する反
転器とを交互に直列に2段づつ有し、水平方向には1デ
ィレィとしてA/D変換クロックのレジスタを用いた低
域通過型IIRフィルタと1ライン分の情報を反転する
反転器とを交互に直列に2段づつ有する回路を介して出
力される信号を、補正信号作成回路の入力を遅延した信
号から減算することによりなされる。
The contour/flare correction signal generation circuit performs contour correction and flare correction of the image in parallel; Low-pass FI using line memory
This is done by subtracting the signal output through the R filter and a low-pass FIR filter using an A/D converter cloff register with one delay in the horizontal direction from the signal that delayed the input of the correction signal creation circuit. (b) Flare correction is performed by alternating between a low-pass IIR filter using a line memory and an inverter that inverts one field of information in series in the vertical and horizontal directions of the image, with one delay in the vertical direction. In the horizontal direction, a low-pass IIR filter using an A/D conversion clock register and an inverter that inverts one line of information are alternately connected in series. This is done by subtracting the signal outputted through the circuit having stages from the signal input to the correction signal generation circuit with a delay.

前記フィルタ類および利得調整回路における係数回路は
RAMを利用し、映像ブランキング期間中にデータを書
きこみ、映像期間中は係数回路の入力信号が前記RAM
のアドレス信号であり、前記データが読みだされて出力
信号となるものである 〔作用〕 本発明は、R,G、Bの各原色信号を適宜逆マトリクス
回路を経て引き出された輝度信号(Y信号)と2つの色
信号すなわち広帯域色信号C,4,狭帯域色信号CM(
以下ここてはそれぞれC1信号。
The coefficient circuits in the filters and gain adjustment circuits use RAM, data is written during the video blanking period, and the input signals of the coefficient circuits are stored in the RAM during the video period.
This is an address signal from which the data is read out and becomes an output signal. [Function] The present invention provides a luminance signal (Y signal) and two color signals, namely a wideband color signal C,4, and a narrowband color signal CM(
The following are C1 signals.

C2信号として取扱う)とを入力し輪郭・フレアの補正
を行ない高品質の3原色映像信号を得ることができる。
It is possible to obtain a high-quality three-primary-color video signal by inputting a C2 signal (handled as a C2 signal) and correcting contours and flare.

補正信号の作成は、輝度信号を入力する1つの輪郭・フ
レア補正信号発生部(以下では補正信号発生部という)
で行なう。
The correction signal is created using one contour/flare correction signal generation unit (hereinafter referred to as the correction signal generation unit) that inputs the luminance signal.
Let's do it.

補正信号発生部は、補正信号作成回路と利得調整回路と
からなり、補正信号作成回路は輪郭補正信号作成回路と
、フレア補正信号作成回路とが並列になっていて、輪郭
とフレアとの補正が並行的に行なわれる。この輪郭補正
とフレア補正とは、さらに垂直方向と水平方向とを直列
にしている。
The correction signal generation section includes a correction signal generation circuit and a gain adjustment circuit, and the correction signal generation circuit includes a contour correction signal generation circuit and a flare correction signal generation circuit in parallel, and corrects contour and flare. done in parallel. The contour correction and flare correction are further performed in series in the vertical and horizontal directions.

実施例で詳しく説明するが、輪郭補正のフィルタはFI
Rフィルタを、フレア補正のフィルタはIIRフィルタ
を用い、上記フィルタは低域通過型フィルタとし、フィ
ルタ出力を入力のY信号から差し引くことで高域通過型
フィルタ特性をもたせている。補正信号は、利得調整回
路によってY信号のレベルに対応して振幅を調整して出
力される。
As will be explained in detail in the example, the contour correction filter is FI
The R filter is used as the flare correction filter, the IIR filter is used as the flare correction filter, and the filter is a low-pass filter, and the filter output is subtracted from the input Y signal to provide high-pass filter characteristics. The amplitude of the correction signal is adjusted by a gain adjustment circuit in accordance with the level of the Y signal, and then output.

上記補正信号出力をマトリクス回路により復元され、補
償用遅延回路を経た3原色(RGB)映像信号の各々と
合成回路で合成し、D/A変換することで、画質の改善
された3原色映像信号を得ることができる。
The above-mentioned correction signal output is restored by a matrix circuit, and combined with each of the three primary color (RGB) video signals that have passed through a compensation delay circuit in a synthesis circuit, and then D/A converted, resulting in a three primary color video signal with improved image quality. can be obtained.

なお、フィルタ類、利得調整回路には係数回路が必要と
なるが、可変的に調整可能な回路を用い最適に調整設定
しておく。
Note that coefficient circuits are required for filters and gain adjustment circuits, but variably adjustable circuits are used to optimally adjust and set them.

(実施例〕 本発明の一実施例を図面を参照して説明する。(Example〕 An embodiment of the present invention will be described with reference to the drawings.

実施例の基本的構成を第1図に示す。入力信号のY信号
、C3信号+C2信号はそれぞれA/D変換器112〜
llcによりディジタル映像信号となり、マトリクス回
路18に入力し、RGB信号に復元される。RGB信号
は各々補償用遅延回路12a 〜12cで遅延し合成回
路142〜14Cで補正信号発生部10の出力をそれぞ
れ合成する。
The basic configuration of the embodiment is shown in FIG. The input signals Y signal and C3 signal + C2 signal are each input to the A/D converter 112~
The signal is converted into a digital video signal by the llc, inputted to the matrix circuit 18, and restored to an RGB signal. The RGB signals are each delayed by compensation delay circuits 12a to 12c, and the outputs of the correction signal generator 10 are synthesized by synthesis circuits 142 to 14C, respectively.

補償用遅延は補正信号発生部10で生ずる遅延と合わせ
ておく。このように補正されたディジタル映像信号をD
/A変換器15a〜15cでアナログ信号として出力す
る。
The compensation delay is combined with the delay occurring in the correction signal generating section 10. The digital video signal corrected in this way is converted to D
/A converters 15a to 15c output it as an analog signal.

補正信号発生部10はディジタルY信号、すなわちA/
D変換器11aの出力を入力して各RGB信号に共通に
用いられる補正信号を補正信号作成回路13で発生する
The correction signal generator 10 generates a digital Y signal, that is, A/
A correction signal generation circuit 13 receives the output of the D converter 11a and generates a correction signal commonly used for each RGB signal.

ところで投写管の入力信号は、陰極線管の特性上、入力
に対してガンマ乗した非線形の信号としている。このよ
うな入力信号を、フィルタ処理し補正信号を作成し加算
するときに、補正信号自体の線形性が失われ、信号レベ
ルの低い画面暗部での補正フィルタの感度が低下し、暗
部の画質改善効果が低下する。この点を改良するため、
補正信号発生部10は第1図に示す構成にし、利得調整
回路17を補正信号作成回路13に縦続させる。
Incidentally, due to the characteristics of the cathode ray tube, the input signal to the projection tube is a nonlinear signal obtained by raising the input signal to the gamma power. When filtering such input signals to create a correction signal and adding it, the linearity of the correction signal itself is lost, and the sensitivity of the correction filter in dark areas of the screen where the signal level is low decreases, making it difficult to improve the image quality in dark areas. effectiveness decreases. To improve this point,
The correction signal generation section 10 has the configuration shown in FIG. 1, and a gain adjustment circuit 17 is connected in series to the correction signal generation circuit 13.

ディジタル映像信号は、遅延器16を介して補正信号作
成回路13の信号遅延を補償した制御信号として利得調
整回路17に入力する。そして信号レベルの低いところ
では、利得調整回路17の利得を上げて補正フィルタの
暗部の感度低下を補償する。逆に信号レベルの高いとこ
ろでは利得を下げる。これによって画面暗部も画質が改
善される。
The digital video signal is input to the gain adjustment circuit 17 via the delay device 16 as a control signal that compensates for the signal delay of the correction signal generation circuit 13. When the signal level is low, the gain of the gain adjustment circuit 17 is increased to compensate for the decrease in sensitivity of the correction filter in the dark areas. Conversely, the gain is lowered where the signal level is high. This improves the image quality even in dark areas of the screen.

なお利得調整回路17の利得は各3原色ごとにその利得
を変え補正信号の振幅を変えることができる。
Note that the gain of the gain adjustment circuit 17 can be changed for each of the three primary colors to change the amplitude of the correction signal.

次に補正信号作成回路13につき説明する。第2図が、
回路ブロック図であり、輪郭補正とフレア補正とを並行
的に各々独立に行なう。互いに関連なく実行できるから
並列にすることで、補正により生ずる信号遅延を減少し
ている。各補正はそれぞれ、垂直補正と水平補正とを直
列に行なう。
Next, the correction signal generation circuit 13 will be explained. Figure 2 is
It is a circuit block diagram in which contour correction and flare correction are performed in parallel and independently. Since they can be executed independently of each other, by parallelizing them, the signal delay caused by correction is reduced. Each correction is a vertical correction and a horizontal correction performed in series.

第2図の全体構成の説明の前に、各フィルタにつき説明
する。21.22はそれぞれ垂直、水平補正用の輪郭補
正FIRフィルタである。輪郭補正は補正に関与するラ
イン数、あるいはドツト数が少ないから、ディジタルフ
ィルタとして直線位相にすることのできるFIRフィル
タ(トランスバーサルフィルタ)で構成しても小規模に
できる。
Before explaining the overall configuration of FIG. 2, each filter will be explained. 21 and 22 are contour correction FIR filters for vertical and horizontal correction, respectively. Since the number of lines or dots involved in contour correction is small, it can be made small-scale even if it is configured with an FIR filter (transversal filter) that can be converted into a linear phase as a digital filter.

例えば第3図のように遅延素子200.係数回路201
a 〜201d、加算回路202より構成する。加算回
路202により、係数回路201a〜201dの加算位
相を合わせることで直線位相の特性を得ている。遅延素
子200は垂直補正の場合はラインメモリであり、水平
補正の場合はA/D変換クロックのレジスタである。
For example, as shown in FIG. 3, a delay element 200. Coefficient circuit 201
It is composed of a to 201d and an adder circuit 202. The adder circuit 202 matches the addition phases of the coefficient circuits 201a to 201d to obtain linear phase characteristics. The delay element 200 is a line memory in the case of vertical correction, and is a register for the A/D conversion clock in the case of horizontal correction.

次に23.24はそれぞれ垂直、水平補正用の特殊なフ
レア補正用フィルタである。フレア補正は、関与するラ
イン数、ドツト数が多くなるので、規模を小さくするた
めにIIRフィルタ(リカーシブフィルタ)とする。し
かしIIRフィルタで直線位相をうるには特別の手段が
必要になる。本発明ではFIRフィルタ出力を反転し、
その反転出力をさらに同一特性のIIRフィルタに入力
後にその出力を反転するという2段のIIRフィルタを
用い等価的に直線位相を得ている。以下では複合IIR
フィルタと略称する。
Next, 23 and 24 are special flare correction filters for vertical and horizontal correction, respectively. Since flare correction involves a large number of lines and dots, an IIR filter (recursive filter) is used to reduce the scale. However, special means are required to obtain a linear phase with an IIR filter. In the present invention, the FIR filter output is inverted,
An equivalent linear phase is obtained using a two-stage IIR filter in which the inverted output is further input to an IIR filter with the same characteristics and the output is inverted. In the following, the composite IIR
Abbreviated as filter.

第4図は垂直フレア補正用の複合IIRフィルタ23の
ブロック図である。IIRフィルタ230aは遅延素子
231と、各タップおよび入力端に結ばれた係数回路2
32a〜232dを加算回路233で合成する周知の形
式のものである。ここで遅延素子231はラインメモリ
である。IIRフィルタ230aの出力をフィールド単
位でフィールド反転器234aで反転し、さらに同一構
成のIIRフィルタ230bに入力し、その出力をフィ
ールド反転器234bで反転する。IIRフィルタ23
0aの位相遅れが、反転してIIRフィルタ230bに
とおすことで位相がすすむから、位相補償がされる。
FIG. 4 is a block diagram of the composite IIR filter 23 for vertical flare correction. The IIR filter 230a includes a delay element 231 and a coefficient circuit 2 connected to each tap and input terminal.
This is a well-known type in which the signals 32a to 232d are combined by an adder circuit 233. Here, the delay element 231 is a line memory. The output of the IIR filter 230a is inverted on a field-by-field basis by a field inverter 234a, and further input to an IIR filter 230b having the same configuration, and the output thereof is inverted by a field inverter 234b. IIR filter 23
Since the phase delay of 0a is inverted and passed through the IIR filter 230b, the phase advances, so phase compensation is achieved.

第5図は水平フレア補正用の複合ITRフィルタ24の
ブロック図である。回路構成は垂直フレア補正用の複合
IIRフィルタ23と同一である。
FIG. 5 is a block diagram of the composite ITR filter 24 for horizontal flare correction. The circuit configuration is the same as that of the composite IIR filter 23 for vertical flare correction.

ただ遅延素子241はA/D変換クロックのレジスタで
あり、ライン反転器244a〜244bになっているこ
とが異なる。
However, the difference is that the delay element 241 is a register for the A/D conversion clock, and is used as line inverters 244a to 244b.

以上で、フィルタの構成について述べたが、輪郭補正と
フレア補正とは周波数特性としてはそれぞれ高域成分の
強調と低域成分の減衰であり、フィルタとしては両者と
も高域通過型のフィルタになる。しかし、高域通過型の
フィルタを垂直補正・水平補正用に直列に用いると、画
面上の4近影ウィンドウパターンの場合、垂直方向と水
平方向との補正が関連して、改善すべき極性と逆極性の
補正信号がウィンドウ内角と対角になるななめ外側に表
われる。本発明では、厳密にこの点まで考慮して、フィ
ルタ類はすべて、低域通過型として、フィルタ出力を入
力信号から差し引き実効的に高域通過型にすることで、
4隅における補正の連続性を得ている。
The configuration of the filter has been described above, but the frequency characteristics of contour correction and flare correction are to emphasize high-frequency components and attenuate low-frequency components, respectively, and both filters are high-pass filters. . However, if high-pass filters are used in series for vertical correction and horizontal correction, in the case of a four-close window pattern on the screen, the vertical and horizontal corrections are related, and the polarity is opposite to the one to be improved. A polarity correction signal appears on the diagonal outer side diagonally to the inner corner of the window. In the present invention, strictly considering this point, all filters are low-pass type, and the filter output is subtracted from the input signal to effectively make it high-pass type.
Continuity of correction at the four corners is obtained.

上記でフィルタの説明がすんだので以下第2図の補正信
号作成回路13の全般につき説明する。
Since the filter has been explained above, the correction signal generation circuit 13 shown in FIG. 2 will be explained in general below.

ディジタル信号入力は先ず補償用遅延器25に入力する
。補償用遅延器25は輪郭補正用フィルタ系統!とフレ
ア補正用フィルタ系統mとを、それぞれ後述するリファ
レンス信号を送出する信号線nと減算回路26a、26
bで信号の位相を合わせるためのもので遅延量の異なる
3つのタップを有する。ただし信号線nは、垂直輪郭補
正FIRフィルタ21が有するラインメモリ列のタップ
21−1から適当なライン数だけ遅延した信号をとりだ
すようにしてもよい。信号線lからの入力は、垂直輪郭
補正FIRフィルタ21.水平輪郭補正FIRフィルタ
22を経て、減算回路26aに入力し、リファレンス信
号から減算する。これによって、輪郭補正のための実効
的な高域特性を得ることができ、しかもその際ウィンド
ウパターンの4隅における補正が連続的になる。同様に
信号線mからの入力は垂直および水平フレア補正複合I
TRフィルタ23.24を経て、減算回路26bでリフ
ァレンス信号から減算することで実効的に高域特性の補
正信号を得ている。
The digital signal input is first input to the compensation delay device 25. The compensation delay device 25 is a filter system for contour correction! and a flare correction filter system m are connected to a signal line n that sends out a reference signal, which will be described later, and subtraction circuits 26a and 26, respectively.
b is used to match the phase of the signal, and has three taps with different amounts of delay. However, the signal line n may take out a signal delayed by an appropriate number of lines from the tap 21-1 of the line memory column included in the vertical contour correction FIR filter 21. The input from the signal line l is sent to the vertical contour correction FIR filter 21. The signal is inputted to the subtraction circuit 26a through the horizontal contour correction FIR filter 22, and subtracted from the reference signal. This makes it possible to obtain effective high-frequency characteristics for contour correction, and at the same time, the correction at the four corners of the window pattern becomes continuous. Similarly, the input from the signal line m is the vertical and horizontal flare correction composite I
By passing through the TR filters 23 and 24 and subtracting it from the reference signal in the subtracting circuit 26b, a correction signal with high frequency characteristics is effectively obtained.

上記減算回路26a、26bの出力を直ちに合成回路2
8で、合成して補正信号出力を得ることができるが、第
2図の回路では、コアリング回路27a、27bをとお
してから合成している。補正信号は信号の高域成分を強
調するもので、特に輪郭補正ではそれが顕著である。こ
のとき同じ高域領域にあるノイズも強調され、画面の細
かいところでS/Nが劣化する傾向がある。そこで、ノ
イズが問題になる、信号のレベルの低い所では補正信号
を零にしてノイズの強調を防ぐようにした回路がコアリ
ング回路27a、27bである。つまり補正信号の零近
傍に無感帯を設けるのだが、投写する画面が小さいとき
などは必ずしも必要ない。
The outputs of the subtraction circuits 26a and 26b are immediately transferred to the synthesis circuit 2.
In the circuit shown in FIG. 2, the signals are combined after passing through coring circuits 27a and 27b. The correction signal emphasizes the high-frequency components of the signal, and this is particularly noticeable in contour correction. At this time, noise in the same high-frequency region is also emphasized, and the S/N tends to deteriorate in small areas of the screen. Therefore, the coring circuits 27a and 27b are circuits that set the correction signal to zero to prevent the noise from being emphasized in areas where the signal level is low and where noise is a problem. In other words, a dead zone is provided near zero in the correction signal, but this is not necessarily necessary when the screen to be projected is small.

以上で、本発明の回路構成の説明を行なったが、本発明
では、各種フィルタ類、利得調整回路あるいはコアリン
グ回路などに多数の係数回路が必要となる。係数回路の
各係数値はさまざまなものになり、しかも受像機ごとに
調整・設定を要することが多い。したがって、受像機の
製造の最終段階において調整可能なことが必要であり、
さらに受像機が実用に供せられているときでも、設置環
境が変わると画像品質に微妙に影響する。このようなと
きにもユーザーなどが自由に調整できることが好ましい
The circuit configuration of the present invention has been described above, but the present invention requires a large number of coefficient circuits for various filters, gain adjustment circuits, coring circuits, etc. The coefficient values of each coefficient circuit vary, and often require adjustment and setting for each receiver. Therefore, it is necessary that the receiver be adjustable at the final stage of manufacture;
Furthermore, even when the receiver is in practical use, changes in the installation environment have a subtle effect on image quality. It is preferable that the user etc. can freely make adjustments in such cases as well.

本発明では、任意に書きこみ可能なRAMを利用して上
記要望にこたえる係数回路としている。
In the present invention, a coefficient circuit that meets the above-mentioned requirements is created by using a randomly writable RAM.

第6図(alは係数回路を図示的に表示したもので同図
(b)はRAMを利用した回路を示す。この回路では、
別に設けたCPUから映像ブランキング期間中にデータ
を書きこむ。図ではセレクタ31のモードをCPUアド
レス側とし所定のアドレスにバッファ33を介してCP
UよりデータをRAM32に書きこむ。映像期間中はセ
レクタ31のモードを係数回路入力側にし、バッファ3
4を介して係数倍されたデータを読みだし係数回路出力
として送りだす。なおRAMへの書きこみはDMAモー
ドでもよい。CPUから任意にRAM32へ書きこむデ
ータを設定することで、係数回路の係数を可変となしう
る。
Fig. 6 (al is a diagrammatic representation of a coefficient circuit, and Fig. 6 (b) shows a circuit using RAM. In this circuit,
Data is written from a separately provided CPU during the video blanking period. In the figure, the mode of the selector 31 is set to the CPU address side, and the CPU is sent to a predetermined address via the buffer 33.
Write data from U to RAM32. During the video period, the mode of the selector 31 is set to the coefficient circuit input side, and the buffer 3
4, the data multiplied by the coefficient is read out and sent out as the coefficient circuit output. Note that writing to the RAM may be performed in DMA mode. By setting data to be arbitrarily written from the CPU to the RAM 32, the coefficients of the coefficient circuit can be made variable.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように、大画面の投写形テレビジョン受像
機の画質を、輪郭・フレア補正を並行して行なうことで
、格段と高品質とすることができる。本発明の効果とし
て次のことがあげられる。
As detailed above, the image quality of a large-screen projection television receiver can be significantly improved by performing contour and flare correction in parallel. The effects of the present invention include the following.

(1)入力信号である輝度信号を用いて、補正信号を作
成し、マトリクス回路で復元した3原色映像信号に加算
することで3原色映像信号の補正を行なう。したがって
複雑な補正信号作成回路などを含む補正信号発生部は1
個だけでよく、装置コストかが格段と低くなる利点があ
る。また、輝度信号に3原色映像信号が含まれており、
3原色映像信号ごとに補正値を加算するから補正量を適
正に調整することができる。
(1) A correction signal is created using a luminance signal as an input signal, and the signal is added to the three primary color video signals restored by a matrix circuit to correct the three primary color video signals. Therefore, the correction signal generation section including a complicated correction signal generation circuit, etc.
Only one piece is required, which has the advantage of significantly lowering the equipment cost. In addition, the luminance signal includes three primary color video signals,
Since the correction value is added for each of the three primary color video signals, the amount of correction can be adjusted appropriately.

(2)輪郭・フレア補正用フィルタとして、前者にFI
Rフィルタ、後者に複合IIRフィルタを用いることで
、直線位相でしかも素子数の少ない小規模な回路構成に
することができる。
(2) FI for the former as a contour/flare correction filter
By using an R filter and a composite IIR filter for the latter, it is possible to have a small-scale circuit configuration with a linear phase and a small number of elements.

(3)フィルタ特性自体は低域通過型で、リファレンス
信号との差をとることで実効的に高域通過型にしている
から、4辺形のウィンドウパターンの4隅でも良好な補
正が得られる。
(3) The filter characteristic itself is a low-pass type, and by taking the difference from the reference signal, it is effectively made into a high-pass type, so good correction can be obtained even at the four corners of a quadrilateral window pattern. .

(4)利得調整回路を設け、信号レベルに応じてその利
得を調整し、信号レベルの低いときには利得を上げるよ
うにすることで、映像信号のガンマ特性による画面暗部
での補正フィルタの感度低下を補償している。
(4) By providing a gain adjustment circuit and adjusting its gain according to the signal level and increasing the gain when the signal level is low, the sensitivity of the correction filter in dark areas of the screen due to the gamma characteristics of the video signal can be reduced. Compensated.

(5)  フィルタ類、利得調整回路などに用いられる
係数回路として、RAMを利用することで係数を任意に
設定できる。製造段階で、調整・設定が容易なばかりで
なく、受像機を運転中であっても、可変にすることがで
き、どんな環境でも画像品質を最適状態にしておくこと
ができる。
(5) By using RAM as a coefficient circuit used in filters, gain adjustment circuits, etc., coefficients can be set arbitrarily. Not only is it easy to adjust and set during the manufacturing stage, but it can also be made variable even while the receiver is in operation, allowing the image quality to be kept at its optimum in any environment.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は基本構成ブロ
ック図、第2図は補正信号作成回路の構成ブロック図、
第3図は輪郭補正に用いるFIRフィルタの構成図、第
4図・第5図はフレア補正に用いる複合IIRフィルタ
の構成図、第6図は係数回路の例を示す図である。 10−・・補正信号発生部、 11 a 〜11 c−・−A/ D変換器、12a〜
12c−補償用遅延回路、 13−・補正信号作成回路、 14a〜14C・−・合成回路、 15 a〜15 c−D/A変換器、 16−・−遅延器、 17・−・利得調整回路、18−
・・マトリクス回路、 21〜22・−輪郭補正FIRフィルタ、23〜24−
フレア補正複合IIRフィルタ、25−補償用遅延器、 26 a 〜26 b−減算回路、 27a〜27b−・コアリング回路、 28・・・・合成回路、 200−遅延素子、201 
a 〜201 d−−−一係数回路、202−加算回路
、 230 a 〜230 b− (低域通過型)IIRフィルタ、 231.241−遅延素子、 234 a 〜234 b−フィールド反転器、240
 a 〜240 b− (低域通過型)IIRフィルタ、 244 a 〜244 b−・−ライン反転器、3〇−
係数回路、  31−セレクタ、32−・−RAM、 
   33.34・−・バッファ。
The drawings show an embodiment of the present invention; FIG. 1 is a basic configuration block diagram, FIG. 2 is a configuration block diagram of a correction signal generation circuit,
FIG. 3 is a block diagram of an FIR filter used for contour correction, FIGS. 4 and 5 are block diagrams of a composite IIR filter used for flare correction, and FIG. 6 is a diagram showing an example of a coefficient circuit. 10--Correction signal generation unit, 11a-11c--A/D converter, 12a-
12c--compensation delay circuit, 13--correction signal creation circuit, 14a-14C--combining circuit, 15 a-15c-D/A converter, 16--delay device, 17--gain adjustment circuit , 18-
・・Matrix circuit, 21-22・-Contour correction FIR filter, 23-24-
Flare correction composite IIR filter, 25 - compensation delay device, 26 a - 26 b - subtraction circuit, 27 a - 27 b - coring circuit, 28 - synthesis circuit, 200 - delay element, 201
a ~ 201 d - one coefficient circuit, 202 - adder circuit, 230 a ~ 230 b - (low pass type) IIR filter, 231. 241 - delay element, 234 a ~ 234 b - field inverter, 240
a ~240 b- (Low pass type) IIR filter, 244 a ~244 b-・- Line inverter, 30-
Coefficient circuit, 31-selector, 32--RAM,
33.34 --- Buffer.

Claims (1)

【特許請求の範囲】 投写形ディスプレイ方式のテレビジョン受像機において
、輝度信号と2つの色信号とを入力し、それぞれA/D
変換した後、ディジタル輝度信号を用いて輪郭・フレア
補正信号を発生するとともに、前記ディジタル輝度信号
および色信号とからマトリクス回路により復元され、補
償用遅延回路を経て遅延された3原色映像信号に、前記
輪郭・フレア補正信号をそれぞれ合成してからD/A変
換して出力する画質改善装置であって、 前記輪郭・フレア補正信号発生部は、ディジタル輝度信
号を入力する輪郭・フレア補正信号作成回路と、該補正
信号作成回路に縦続しディジタル輝度信号の入力レベル
により利得を変化する利得調整回路とからなり、 前記輪郭・フレア補正信号作成回路は、画像の輪郭補正
とフレア補正とを並列になすもので、(イ)輪郭補正は
、画像の垂直方向・水平方向に直列に、垂直方向には1
ディレイとしてラインメモリを用いた低域通過型FIR
フィルタ、水平方向には1ディレイとしてA/D変換ク
ロックのレジスタを用いた低域通過型FIRフィルタを
介して出力される信号を補正信号作成回路の入力を遅延
した信号から減算することによりなされ、(ロ)フレア
補正は画像の垂直方向・水平方向に直列に、垂直方向に
は1ディレイとしてラインメモリを用いた低域通過型I
IRフィルタと1フィールド分の情報を反転する反転器
とを交互に直列に2段づつ有し、水平方向には1ディレ
イとしてA/D変換クロックのレジスタを用いた低域通
過型IIRフィルタと1ライン分の情報を反転する反転
器とを交互に直列に2段づつ有する回路を介して出力さ
れる信号を、補正信号作成回路の入力を遅延した信号か
ら減算することによりなされ、 前記フィルタ類および利得調整回路における係数回路は
RAMを利用し、映像ブランキング期間中にデータを書
きこみ、映像期間中は係数回路の入力信号が前記RAM
のアドレス信号であり、前記データが読みだされて出力
信号となるものである ことを特徴とするテレビジョン画質改善装置。
[Claims] In a projection display type television receiver, a luminance signal and two color signals are input, and each is A/D.
After the conversion, a contour/flare correction signal is generated using the digital luminance signal, and a three primary color video signal is restored from the digital luminance signal and color signal by a matrix circuit and delayed through a compensation delay circuit. An image quality improvement device that synthesizes each of the contour and flare correction signals, performs D/A conversion, and outputs the resulting image, wherein the contour and flare correction signal generation section includes a contour and flare correction signal generation circuit that inputs a digital luminance signal. and a gain adjustment circuit that is cascaded to the correction signal generation circuit and changes the gain depending on the input level of the digital luminance signal, and the contour/flare correction signal generation circuit performs image contour correction and flare correction in parallel. (a) Contour correction is performed in series in the vertical and horizontal directions of the image, and in the vertical direction.
Low-pass FIR using line memory as delay
This is done by subtracting the signal output through a low-pass FIR filter using an A/D conversion clock register with one delay in the horizontal direction from the signal that delayed the input of the correction signal creation circuit. (b) Flare correction is a low-pass type I that uses line memory in series in the vertical and horizontal directions of the image and with one delay in the vertical direction.
It has two stages of IR filters and inverters that invert one field's worth of information alternately in series, and a low-pass IIR filter that uses an A/D conversion clock register as one delay in the horizontal direction. This is done by subtracting the signal outputted through a circuit having two stages of inverters that invert information for each line alternately in series from the signal delayed from the input of the correction signal generation circuit, and the filters and The coefficient circuit in the gain adjustment circuit uses RAM and writes data during the video blanking period, and the input signal of the coefficient circuit is transferred to the RAM during the video period.
1. A television image quality improvement device, characterized in that the address signal is an address signal, and the data is read out to become an output signal.
JP60136970A 1985-06-25 1985-06-25 Device for improving picture quality of television Granted JPS61296880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136970A JPS61296880A (en) 1985-06-25 1985-06-25 Device for improving picture quality of television

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136970A JPS61296880A (en) 1985-06-25 1985-06-25 Device for improving picture quality of television

Publications (2)

Publication Number Publication Date
JPS61296880A true JPS61296880A (en) 1986-12-27
JPH0327151B2 JPH0327151B2 (en) 1991-04-15

Family

ID=15187734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136970A Granted JPS61296880A (en) 1985-06-25 1985-06-25 Device for improving picture quality of television

Country Status (1)

Country Link
JP (1) JPS61296880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244292A3 (en) * 2001-03-23 2003-04-23 NEC Viewtechnology, Ltd. Method and apparatus for improving picture quality
US8692939B2 (en) 2005-10-18 2014-04-08 Nec Viewtechnology, Ltd. Method and apparatus for improving image quality

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244292A3 (en) * 2001-03-23 2003-04-23 NEC Viewtechnology, Ltd. Method and apparatus for improving picture quality
US7006704B2 (en) 2001-03-23 2006-02-28 Nec Viewtechnology, Ltd. Method of and apparatus for improving picture quality
US8692939B2 (en) 2005-10-18 2014-04-08 Nec Viewtechnology, Ltd. Method and apparatus for improving image quality

Also Published As

Publication number Publication date
JPH0327151B2 (en) 1991-04-15

Similar Documents

Publication Publication Date Title
JPS61296880A (en) Device for improving picture quality of television
JPH0316078B2 (en)
JPS61295791A (en) Improving device for television picture quality
JPS61296881A (en) Device for improving picture quality of television
JPS61295787A (en) Improving device for television picture quality
JPS61270992A (en) Device for improving picture quality of television
JPS61270994A (en) Device for improving picture quality of television
JPH0327147B2 (en)
JPS61295786A (en) Improving device for television picture quantity
JPS61296879A (en) Device for improving picture quality of television
JPS61270987A (en) Device for improving picture quality of television
JPS61295792A (en) Improving device for television picture quality
JPS61270993A (en) Device for improving picture quality of television
JPS61296883A (en) Improving device for picture quality of television
JPS61270991A (en) Device for improving picture quality of television
JPS61295793A (en) Improving device for television picture quality
JPS61295789A (en) Improving device for television picture quality
JPS61270988A (en) Device for improving picture quality of television
JPS61295788A (en) Improving device for television picture quality
JPH0130350B2 (en)
JPS61295790A (en) Improving device for television picture quality
JPS61296884A (en) Improving device for picture quality of television
JPS61296882A (en) Device for improving picture quality of television
JPS61270990A (en) Device for improving picture quality of television
JPH0316077B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees