JPS61270993A - Device for improving picture quality of television - Google Patents

Device for improving picture quality of television

Info

Publication number
JPS61270993A
JPS61270993A JP60111348A JP11134885A JPS61270993A JP S61270993 A JPS61270993 A JP S61270993A JP 60111348 A JP60111348 A JP 60111348A JP 11134885 A JP11134885 A JP 11134885A JP S61270993 A JPS61270993 A JP S61270993A
Authority
JP
Japan
Prior art keywords
circuit
correction
flare
contour
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60111348A
Other languages
Japanese (ja)
Other versions
JPH0628390B2 (en
Inventor
Ryuichi Fujimura
隆一 藤村
Reiichi Kobayashi
玲一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP60111348A priority Critical patent/JPH0628390B2/en
Publication of JPS61270993A publication Critical patent/JPS61270993A/en
Publication of JPH0628390B2 publication Critical patent/JPH0628390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits

Abstract

PURPOSE:To remove a flare component of a screen with a small scale type and to emphasize an outline in parallel by providing in parallel an outline correcting signal forming circuit and a flare correcting signal forming circuit respectively in a horizontal and a vertical directions. CONSTITUTION:A digital signal input is initially inputted to a compensating delay device 25, and signals to which prescribed delay quantity is applied from a tap are respectively fed to signal lines l1, l2, m1, m2. The signals from the signal lines l1, l2 are respectively applied to vertical and horizontal outline correcting FIR filters 21, 22, outline-corrected and fed to a composite circuit 28a. The signals from the signal lines m1, m2 are respectively applied to vertical and horizontal flare correcting composite IIR filters 23, 24, flare-corrected and synthesized in a synthesizing circuit 28b. The respective outputs of the synthesizing circuits 28a, 28b are synthesized in a synthesizing circuit 26 through core ring circuits 27a, 27b and outputted as the corrected signals.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーテレビジョン受像機、特に大画面のス
クリーンに投写管より3原色画像光を投写して画像を得
る、いわゆる投写型受像機に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a color television receiver, particularly a so-called projection type receiver that obtains an image by projecting three primary color image lights onto a large screen from a projection tube. Regarding.

〔従来の技術〕[Conventional technology]

大型の画像面をもつCRTは製作上、現在40インチ程
度が限度である。それ以上では投写管による方式が現在
のところ実際的である。高品質の大型画面の場合には単
に画面を大きくするだけでは高品質は得られないので、
走査本数を多くするとともに、画質についての要求が厳
しくなる。特に投写型では、投写管のビームの電流密度
を直視形の5〜10倍程度にするため、ビームが太くな
り、またレンズの影響のため解像度が低下することと、
高輝度の投写管・レンズ等に起因するフレアとが画質低
下の原因となっていた。
Currently, CRTs with large image planes have a manufacturing limit of about 40 inches. Beyond that, a method using a projection tube is currently practical. In the case of a high-quality large screen, high quality cannot be obtained simply by making the screen larger.
As the number of scans increases, requirements regarding image quality become stricter. In particular, in the projection type, the current density of the beam of the projection tube is about 5 to 10 times that of the direct view type, so the beam becomes thicker and the resolution decreases due to the influence of the lens.
Flare caused by high-brightness projection tubes, lenses, etc. was a cause of deterioration in image quality.

投写型の大型画面の受像機は、開発段階であるためか、
上記フレア補正・輪郭補正の手段も全面的に確定した技
術として確立していない。従来、高品位テレビ用として
提案されているフレア補正手段として、「高品位テレビ
用投写形ディスプレイの画質改善−3AWフイルターに
よるフレア妨害除去−」テレビジョン学会1982年金
国大会5PI−14,金庫等の映像信号を一旦AM変調
し、SAWフィルタにとおし、再び復調するアナログフ
ィルタを利用した方法がある。この方法は変調信号波に
ついて変調キャリア周波数の近傍の±IMHzで減衰を
与えることで、フレア補正のために低周波成分を減衰さ
せるものである。しかしこの方法では変調キャリア周波
数が100MHz以上の高周波を用いなければならず、
また画面の水平方向のフレア成分を除去できても、垂直
方向成分に応用しようとすると非常に正確な1ライン遅
延線が多数必要になり実現が困難である。
Perhaps because large-screen projection receivers are still in the development stage,
The flare correction/contour correction means described above have not yet been established as completely definitive techniques. As a flare correction means that has been proposed for high-definition televisions, there is a paper in "Improvement of Image Quality of Projection Displays for High-Definition Televisions - Removal of Flare Interference by 3AW Filter", Television Society of Japan 1982 National Annual Conference 5PI-14, Safe etc. There is a method using an analog filter in which a video signal is once AM-modulated, passed through a SAW filter, and demodulated again. This method attenuates the modulated signal wave at ±IMHz near the modulated carrier frequency, thereby attenuating the low frequency component for flare correction. However, this method requires the use of a high frequency modulation carrier frequency of 100 MHz or higher,
Furthermore, even if it is possible to remove the flare component in the horizontal direction of the screen, applying it to the vertical component requires a large number of highly accurate one-line delay lines, which is difficult to implement.

輪郭補正としては、画像の輪郭成分を抽出して、原信号
に付加する方法が一般的であるが、画面の水平方向だけ
強調する方式が大部分で、垂直方向の強調は何らかの方
法でライン遅延をつくらねばならないため、例がすくな
い。
The most common method for contour correction is to extract the contour components of the image and add them to the original signal, but most of the methods only emphasize the horizontal direction of the screen, and the vertical direction is emphasized using some method of line delay. There are few examples because it requires creating a

ところで、解像度低下を防ぐため、輪郭を強調する輪郭
補正と、フレアをおさえるフレア補正とは、前者は微分
を含む高周波成分の強調であり、後者はフレアの多い画
面がMTF (解像度特性)が低域で持ち上がる形にな
っているので、低域の周波数成分に減衰特性を与えるこ
とになる。したがって、輪郭補正とフレア補正とは周波
数的には並行的に行ないうる性質のものであるが、ディ
ジタル方式とアナログ方式とが混在するとか、あるいは
一方式に統一すれば、実現が難しいということで両方の
補正処理を行なった例はない。
By the way, in order to prevent resolution degradation, contour correction that emphasizes contours and flare correction that suppresses flare are two methods.The former emphasizes high-frequency components including differentials, and the latter emphasizes that a screen with a lot of flare has a low MTF (resolution characteristic). Since it has a shape that is lifted in the range, it gives attenuation characteristics to the low frequency components. Therefore, although contour correction and flare correction can be performed in parallel in terms of frequency, it is difficult to achieve this by mixing digital and analog methods, or by unifying one method. There is no example in which both types of correction processing were performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上、述べたように、大画面の投写型受像機について、
必要とされるフレア補正・輪郭補正手段を全面的に採用
し、高品質の画像を得る段階までいたっていない。ここ
で全面的にというのは、輪郭・フレア補正を垂直・水平
両成分とも可能にすることである。アナログ方式では、
特にフィルタ特性の均一性、遅延線の温度による変動等
の問題があり、また大規模の方式では、全装置のタイミ
ング調整が難しい。ディジタル方式であれば原則的に前
記問題に充分対応でき、かつ設計上の柔軟性に富んでい
る。しかし規模が大きくなる困難がある。問題は、いか
にディジタル補正装置を具体化するかにある。
As mentioned above, regarding large screen projection receivers,
We have not yet reached the stage where we can fully adopt the necessary flare correction and contour correction means and obtain high-quality images. Here, "completely" means that contour/flare correction can be performed for both vertical and horizontal components. In the analog method,
In particular, there are problems such as uniformity of filter characteristics and temperature-related fluctuations in delay lines, and in a large-scale system, it is difficult to adjust the timing of all devices. In principle, a digital system can sufficiently deal with the above problems and is highly flexible in terms of design. However, there are difficulties as the scale increases. The problem lies in how to implement the digital correction device.

本発明の目的は、上記事情に鑑み、画面の水平および垂
直方向についてフレア成分を除去すると同時に画面の輪
郭を強調する補正を並行的に行なう画質改善装置をすべ
てディジタル的手段により、しかも小規模な形で実現す
ることにある。
In view of the above-mentioned circumstances, an object of the present invention is to provide an image quality improvement device that removes flare components in the horizontal and vertical directions of the screen and at the same time performs correction for emphasizing the outline of the screen, all by digital means and on a small scale. It lies in realizing it in form.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の画質改善装置は、投写形ディスプレイ方式のテ
レビジョン受像機において、3原色映像信号の系列ごと
に設け、それぞれの映像信号を入力してA/D変換し、
輪郭・フレア補正後、D/A変換して出力するものであ
る。
The image quality improvement device of the present invention is provided for each series of three primary color video signals in a projection display type television receiver, inputs each video signal, performs A/D conversion,
After contour/flare correction, it is D/A converted and output.

前記輪郭・フレア補正部は、ディジタル映像信号入力に
対して並列に設けられた、補償用遅延回路および前段に
逆ガンマ補正回路を後続段にガンマ補正回路を付した輪
郭・フレア補正信号作成回路と、前記補償用遅延回路と
ガンマ補正回路の出力を合成する合成回路とから構成さ
れている。
The contour/flare correction section includes a compensation delay circuit, a contour/flare correction signal generation circuit having an inverse gamma correction circuit in the preceding stage and a gamma correction circuit in the subsequent stage, which are provided in parallel with respect to the digital video signal input. , and a synthesis circuit for synthesizing the outputs of the compensation delay circuit and the gamma correction circuit.

前記輪郭・フレア補正信号作成回路は、画像の輪郭補正
とフレア補正とを並列になすもので、(イ) 輪郭補正
は、画像の垂直方向・水平方向に並列になされ、垂直方
向には1ディレィとしてラインメモリを用いた高域通過
型FIRフィルタ。
The contour/flare correction signal generation circuit performs contour correction and flare correction of an image in parallel, and (a) contour correction is performed in parallel in the vertical and horizontal directions of the image, with one delay in the vertical direction. A high-pass FIR filter that uses line memory.

水平方向には1ディレィとしてA/D変換クロックのレ
ジスタを用いた高域通過型FIRフィルタによりなされ
、 (ロ) フレア補正は画像の垂直方向・水平方向に並列
になされ、垂直方向には1ディレィとしてラインメモリ
を用いた高域通過型IIRフィルタと1フィールド分の
情報を反転する反転器とを交互に直列に2段づつ有し、
水平方向には1ディレィとしてA/D変換クロックのレ
ジスタを用いた高域通過型IIRフィルタと1ライン分
の情報を反転する反転器とを交互に直列に2段づつ有す
る回路によりなされる。
In the horizontal direction, one delay is performed using a high-pass FIR filter using an A/D conversion clock register. (b) Flare correction is performed in parallel in the vertical and horizontal directions of the image, and in the vertical direction, one delay is applied. It has two stages of high-pass IIR filters using line memory and inverters that invert one field's worth of information alternately in series.
In the horizontal direction, it is made up of a circuit having two stages each of a high-pass IIR filter using an A/D conversion clock register as one delay and an inverter for inverting one line of information, alternately arranged in series.

ここで前記フィルタ類、ガンマ補正回路、逆ガンマ補正
回路における係数回路はRAMを利用し、映像ブランキ
ング期間中にデータを書きこみ、映像期間中は係数回路
の入力信号が前記RAMのアドレス信号であり、前記デ
ータが読みだされて出力信号となるものである。
Here, the coefficient circuits in the filters, gamma correction circuit, and inverse gamma correction circuit use RAM and write data during the video blanking period, and during the video period, the input signal of the coefficient circuit is the address signal of the RAM. The data is read out and becomes an output signal.

〔作用〕[Effect]

本発明は、補正を3原色映像信号の系列ごとに別々に設
け、各信号につき適性な補正を得られるようにしている
。補正はすべてディジタル処理であるからA/D変換後
、輪郭・フレア補正部に入力する。入力映像信号はガン
マ処理され非線形になっているから−、逆ガンマ補正回
路をとおして線形化してから補正する。
In the present invention, correction is provided separately for each series of three primary color video signals, so that appropriate correction can be obtained for each signal. Since the correction is all digital processing, it is input to the contour/flare correction section after A/D conversion. Since the input video signal has been gamma-processed and has become non-linear, it is linearized through an inverse gamma correction circuit and then corrected.

補正信号作成回路は、輪郭補正信号作成回路とフレア補
正信号作成回路とが並列になっていて、輪郭とフレアと
の補正が並行的に行なわれる。この輪郭補正とフレア補
正とは、さらに垂直方向と水平方向とを並列にしている
。実施例で詳しく説明するが、輪郭補正のフィルタはF
IRフィルタを、フレア補正のフィルタはIrRフィル
タを用い、高域通過型フィルタの特性をもたせる。
In the correction signal generation circuit, a contour correction signal generation circuit and a flare correction signal generation circuit are arranged in parallel, and correction of contour and flare is performed in parallel. The contour correction and flare correction are performed in parallel in the vertical and horizontal directions. As will be explained in detail in the example, the contour correction filter is F.
An IrR filter is used as an IR filter, and an IrR filter is used as a flare correction filter, giving it the characteristics of a high-pass filter.

上記輪郭・フレア補正信号作成回路の出力を再びガンマ
特性をもたせてから合成回路で、補償用遅延回路を経た
出力と合成す、る。次にこの合成回路の出力をD/A変
換とすることで、画質の改善された3原色映像信号を得
ることができる。
The output of the contour/flare correction signal generation circuit is given gamma characteristics again, and then combined with the output that has passed through the compensation delay circuit in a synthesis circuit. Next, by D/A converting the output of this synthesis circuit, it is possible to obtain a three-primary color video signal with improved image quality.

なお、フィルタ、ガンマ補正回路、逆ガンマ補正回路に
は、係数回路が必要となるが、RAMを利用して、RA
Mにデータを書きこみ係数値を変えることができる。
Note that coefficient circuits are required for filters, gamma correction circuits, and inverse gamma correction circuits, but by using RAM,
Data can be written to M to change the coefficient value.

〔実施例〕 本発明の一実施例を図面を参照して説明する。〔Example〕 An embodiment of the present invention will be described with reference to the drawings.

実施例の基本的構成を第1図に示す。3原色の映像信号
に対して、各々独立した同一の構成回路で補正を行なう
。R信号で説明すれば、A/D変換器11aによりディ
ジタル映像信号となし、逆ガンマ補正回路16a、補正
信号作成回路13a。
The basic configuration of the embodiment is shown in FIG. The video signals of the three primary colors are corrected by the same and independent circuits. In terms of the R signal, it is converted into a digital video signal by the A/D converter 11a, an inverse gamma correction circuit 16a, and a correction signal generation circuit 13a.

ガンマ補正回路17aで生成した補正信号を、ディジタ
ル映像信号を補償用遅延回路12aで遅延した信号と合
成回路14aで合成する。補償用遅延は補正信号作成回
路132などで生ずる遅延と合わせておく。このように
補正されたディジタル映像信号をD/A変換器15aで
アナログ信号として出力する。なお、以下の説明では、
とくにR,G、B信号と区別せず説明するので符号のサ
フィクスは省略する。
The correction signal generated by the gamma correction circuit 17a is combined with the signal obtained by delaying the digital video signal by the compensation delay circuit 12a, by the combination circuit 14a. The compensation delay is combined with the delay caused by the correction signal generation circuit 132 and the like. The digital video signal corrected in this way is output as an analog signal by the D/A converter 15a. In addition, in the following explanation,
In particular, since the description will be made without distinguishing between R, G, and B signals, the suffixes of the symbols will be omitted.

逆ガンマ補正回路16.ガンマ補正回路17を補正信号
作成回路130前後に設は線形化した信号について補正
信号を作成するが、この理由を以下に説明する。投写管
の入力信号は、陰極線管の特性上、入力に対してガンマ
乗した非線形の信号としている。このような入力信号を
、フィルタ処理し補正信号を作成し加算するときに、補
正信号自体の線形性が失われ、信号レベルの低い画面暗
部での補正フィルタの感度が低下し、暗部の画質改善効
果が低下する。そのため、一旦逆ガンマ補正回路で線形
信号に直して補正するのである。
Reverse gamma correction circuit 16. The gamma correction circuit 17 is installed before and after the correction signal creation circuit 130 to create a correction signal for the linearized signal, and the reason for this will be explained below. Due to the characteristics of the cathode ray tube, the input signal to the projection tube is a nonlinear signal obtained by raising the input to the gamma power. When filtering such input signals to create a correction signal and adding it, the linearity of the correction signal itself is lost, and the sensitivity of the correction filter in dark areas of the screen where the signal level is low decreases, making it difficult to improve the image quality in dark areas. effectiveness decreases. Therefore, the signal is first converted into a linear signal by an inverse gamma correction circuit and then corrected.

次に補正信号作成回路13につき説明する。第2図が、
回路ブロック図であり、輪郭補正とフレア補正とを並行
的に各々独立に行なう。互いに関連なく実行できるから
並列にすることで、補正により生ずる信号遅延を減少し
ている。さらに各補正もそれぞれ、垂直補正と水平補正
とを並列に行なう。
Next, the correction signal generation circuit 13 will be explained. Figure 2 is
It is a circuit block diagram in which contour correction and flare correction are performed in parallel and independently. Since they can be executed independently of each other, by parallelizing them, the signal delay caused by correction is reduced. Further, for each correction, vertical correction and horizontal correction are performed in parallel.

第2図の全体構成の説明の前に、各フィルタにつき説明
する。21.22はそれぞれ垂直、水平補正用の輪郭補
正FIRフィルタである。輪郭補正は補正に関与するラ
イン数、あるいはドツト数が少ないから、ディジタルフ
ィルタとして直線位相にすることのできるFIRフィル
タ(トランスバーサルフィルタ)で構成しても小規模に
できる。
Before explaining the overall configuration of FIG. 2, each filter will be explained. 21 and 22 are contour correction FIR filters for vertical and horizontal correction, respectively. Since the number of lines or dots involved in contour correction is small, it can be made small-scale even if it is configured with an FIR filter (transversal filter) that can be converted into a linear phase as a digital filter.

例えば第3図のように遅延素子200.係数回路201
 a 〜201 d、加算回路202より構成する。加
算回路202により、係数回路201a〜201dの加
算位相を合わせることで直線位相の特性を得ている。遅
延素子200は垂直補正の場合はラインメモリであり、
水平補正の場合はA/D変換クロックのレジスタである
For example, as shown in FIG. 3, a delay element 200. Coefficient circuit 201
It is composed of a to 201d and an adder circuit 202. The adder circuit 202 matches the addition phases of the coefficient circuits 201a to 201d to obtain linear phase characteristics. The delay element 200 is a line memory in the case of vertical correction,
In the case of horizontal correction, it is an A/D conversion clock register.

次に23.24はそれぞれ垂直、水平補正用の特殊なフ
レア補正用フィルタである。フレア補正は、関与するラ
イン数、ドツト数が多くなるので、規模を小さくするた
めにIIRフィルタ(リカーシブフィルタ)とする。し
かしIIRフィルタで直線位相をうろことは特別の手段
が必要になる。
Next, 23 and 24 are special flare correction filters for vertical and horizontal correction, respectively. Since flare correction involves a large number of lines and dots, an IIR filter (recursive filter) is used to reduce the scale. However, measuring the linear phase with an IIR filter requires special means.

本発明ではIIRフィルタ出力を反転し、その反転出力
をさらに同一特性のIIRフィルタに入力後にその出力
を反転するという2段のIfRフィルタを用い等測的に
直線位相を得ている。以下では複合IIRフィルタと略
称する。
In the present invention, a linear phase is obtained isometrically using a two-stage IfR filter in which the IIR filter output is inverted, the inverted output is further input to an IIR filter with the same characteristics, and the output is inverted. Hereinafter, it will be abbreviated as a composite IIR filter.

第4図は垂直フレア補正用の複合IIRフィルタ23の
ブロック図である。IIRフィルタ230aは遅延素子
231と、各タップおよび入力端に結ばれた係数回路2
32a〜232dを加算回路233で合成する周知の形
式のものである。ここで遅延素子231はラインメモリ
である。IIRフィルタ230aの出力をフィールド単
位でフィールド反転器234aで反転し、さらに同一構
成のIIRフィルタ230bに入力し、その出力をフィ
ールド反転器234bで反転する。IIRフィルタ23
0aの位相遅れが、反転してIIRフィルタ230bに
とおすことで位相がすすむから、位相補償がされる。
FIG. 4 is a block diagram of the composite IIR filter 23 for vertical flare correction. The IIR filter 230a includes a delay element 231 and a coefficient circuit 2 connected to each tap and input terminal.
This is a well-known type in which the signals 32a to 232d are combined by an adder circuit 233. Here, the delay element 231 is a line memory. The output of the IIR filter 230a is inverted on a field-by-field basis by a field inverter 234a, and further input to an IIR filter 230b having the same configuration, and the output thereof is inverted by a field inverter 234b. IIR filter 23
Since the phase delay of 0a is inverted and passed through the IIR filter 230b, the phase advances, so phase compensation is achieved.

第5図は水平フレア補正用の複合IIRフィルタ24の
ブロック図である。回路構成は垂直フレア補正用の複合
IIRフィルタ23と同一である。
FIG. 5 is a block diagram of the composite IIR filter 24 for horizontal flare correction. The circuit configuration is the same as that of the composite IIR filter 23 for vertical flare correction.

ただ遅延素子241はA/D変換クロックのレジスタで
あり、ライン反転器2443〜244bになっているこ
とが異なる。
However, the difference is that the delay element 241 is a register for the A/D conversion clock, and is used as line inverters 2443 to 244b.

以上で、フィルタの構成について述べたが、輪郭補正と
フレア補正とは周波数特性としては高域通過特性の強調
と低域通過特性の低下であり、フィルタとしては高域通
過型のフィルタにする。
The configuration of the filter has been described above, and the contour correction and flare correction emphasize the high-pass characteristic and reduce the low-pass characteristic as frequency characteristics, and the filter is a high-pass type filter.

上記でフィルタの説明がすんだので以下第2図の補正信
号作成回路13の全般につき説明する。
Since the filter has been explained above, the correction signal generation circuit 13 shown in FIG. 2 will be explained in general below.

ディジタル信号入力は先ず補償用遅延器25に入力し、
タップから所定の遅延量を与えた信号をそれぞれ信号線
1 、、1 z、 m、、 m、に送りだす。信号線2
 、、22.からの入力はそれぞれ垂直輪郭補正FIR
フィルタ21.水平輪郭補正FIRフィルタ22によっ
て、輪郭補正されて合成回路28aで合成される。また
ml、m、Hからの人力はそれぞれ垂直フレア補正複合
IIRフィルタ23.水平フレア補正複合IIRフィル
タ24によって、フレア補正されて合成回路28bで合
成される。コアリング回路27a、27bの説明は後述
するが、前記合成回路28a、28b、の出力はさらに
合成回路26で合成され、補正信号として出力する。
The digital signal input is first input to the compensation delay device 25,
Signals given a predetermined amount of delay are sent from the taps to signal lines 1, 1z, m, , m, respectively. Signal line 2
,,22. Each input from vertical contour correction FIR
Filter 21. The horizontal contour correction FIR filter 22 performs contour correction, and the resulting signals are synthesized by a synthesis circuit 28a. In addition, the human power from ml, m, and H is applied to the vertical flare correction composite IIR filter 23. The horizontal flare correction composite IIR filter 24 performs flare correction, and the combined signal is synthesized by a synthesis circuit 28b. The coring circuits 27a and 27b will be explained later, but the outputs of the combining circuits 28a and 28b are further combined by a combining circuit 26 and output as a correction signal.

補償用遅延器25から出力される信号線β1゜7!z、
 m 1. mzはそれぞれ異なる遅延量をディジタル
信号に対してもたせる。この遅延量の決定は、合成回路
28a、28b、26のすべてにおいて、それぞれの合
成すべき入力信号の位相がすべて合致するようにきめる
のでかなり複雑である。本回路では、輪郭・フレア補正
とも垂直方向と水平方向とを並列に行なっている。他の
方法として垂直方向と水平方向とを直列に行なうことが
考えられ、補償用遅延器が簡単になる。しかし高域通過
型のフィルタを垂直補正・水平補正用に直列に用いると
、画面上の4近影ウィンドウパターンの場合、垂直方向
と水平方向との補正が関連して、改善すべき極性と逆極
性の補正信号がウィンドウ内角と対角になるななめ外側
に表われる。本発明では垂直方向と水平方向とを並列に
行なうので、相互の補正が関連することがなく、上記ウ
ィンドウパターンの4隅でも良好な補正が得られる。
The signal line β1°7! output from the compensation delay device 25! z,
m1. mz gives different amounts of delay to the digital signal. Determining the amount of delay is quite complicated because it is determined so that the phases of the input signals to be combined are all matched in all of the combining circuits 28a, 28b, and 26. In this circuit, contour and flare corrections are performed in parallel in the vertical and horizontal directions. Another method is to perform the vertical and horizontal directions in series, which simplifies the compensating delay device. However, when high-pass filters are used in series for vertical correction and horizontal correction, in the case of a four-close window pattern on the screen, vertical and horizontal corrections are related, and the polarity and opposite polarity to be improved are The correction signal appears on the diagonal outer side of the window, which is diagonal to the inner corner of the window. In the present invention, since correction is performed in parallel in the vertical direction and in the horizontal direction, the corrections are not related to each other, and good correction can be obtained even at the four corners of the window pattern.

上記補正出力を直ちに合成回路26で、合成して補正信
号出力を得ることができるが、第2図の回路では、コア
リング回路27a、27bをとおしてから合成している
。補正信号は信号の高域成分を強調するもので、特に輪
郭補正ではそれが顕著である。このとき同じ高域領域に
あるノイズも強調され、画面の細かいところでS/Nが
劣化する傾向がある。そこで、ノイズが問題になる、信
号のレベルの低い所では補正信号を零にしてノイズの強
調を防ぐようにした回路がコアリング回路27a、27
bである。つまり補正信号の零近傍に無感帯を設けるの
だが、投写する画面が小さいときなどは必ずしも必要な
い。
The above correction outputs can be immediately synthesized in the synthesis circuit 26 to obtain a correction signal output, but in the circuit shown in FIG. 2, the signals are synthesized after passing through the coring circuits 27a and 27b. The correction signal emphasizes the high-frequency components of the signal, and this is particularly noticeable in contour correction. At this time, noise in the same high-frequency region is also emphasized, and the S/N tends to deteriorate in small areas of the screen. Therefore, the coring circuits 27a and 27 are designed to reduce the correction signal to zero in areas where noise is a problem and where the signal level is low to prevent the noise from being emphasized.
It is b. In other words, a dead zone is provided near zero in the correction signal, but this is not necessarily necessary when the screen to be projected is small.

以上で、本発明の回路構成の説明を行なったが、本発明
では、各種フィルタ類、ガンマ補正回路。
The circuit configuration of the present invention has been described above, and the present invention includes various filters and gamma correction circuits.

逆ガンマ補正回路あるいはコアリング回路などに多数の
係数回路が必要となる。係数回路の各係数値はさまざま
なものになり、しかも受像機ごとに調整・設定を要する
ことが多い。したがって、受像機の製造の最終段階にお
いて調整可能なことが必要であり、さらに受像機が実用
に供せられているときでも、設置環境が変わると画像品
質に微妙に影響する。このようなときにもユーザーなど
が自由に調整できることが好ましい。
A large number of coefficient circuits are required for the inverse gamma correction circuit or coring circuit. The coefficient values of each coefficient circuit vary, and often require adjustment and setting for each receiver. Therefore, it is necessary to be able to make adjustments at the final stage of manufacturing the receiver, and even when the receiver is in use, changes in the installation environment will have a subtle effect on image quality. It is preferable that the user etc. can freely make adjustments in such cases as well.

本発明では、任意に書きこみ可能なRAMを利用して上
記要望にこたえる係数回路としている。
In the present invention, a coefficient circuit that meets the above-mentioned requirements is created by using a randomly writable RAM.

第6図(a)は係数回路を図式的に表示したもので同図
(b)にRAMを利用した回路を示す。この回路では、
別に設けたCPUから映像ブランキング期間中にデータ
を書きこむ。図ではセレクタ31のモードをCPUアド
レス側とし所定のアドレスにバッファ33を介してCP
UよりデータをRAM32に書きこむ。映像期間中はセ
レクタ31のモードを係数回路入力側にし、バッファ3
4を介して係数倍されたデータを読みだし係数回路出力
として送りだす。なおRAMへの書きこみはDMAモー
ドでもよい。CPUから任意にRAM32へ書きこむデ
ータを設定することで、係数回路の係数を可変となしう
る。
FIG. 6(a) schematically shows a coefficient circuit, and FIG. 6(b) shows a circuit using a RAM. In this circuit,
Data is written from a separately provided CPU during the video blanking period. In the figure, the mode of the selector 31 is set to the CPU address side, and the CPU is sent to a predetermined address via the buffer 33.
Write data from U to RAM32. During the video period, the mode of the selector 31 is set to the coefficient circuit input side, and the buffer 3
4, the data multiplied by the coefficient is read out and sent out as the coefficient circuit output. Note that writing to the RAM may be performed in DMA mode. By setting data to be arbitrarily written from the CPU to the RAM 32, the coefficients of the coefficient circuit can be made variable.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように、大画面の投写形テレビジョン受像
機の画質を、輪郭・フレア補正を並行して行なうことで
、格段と高品質とすることができる。本発明の効果とし
て次のことがあげられる。
As detailed above, the image quality of a large-screen projection television receiver can be significantly improved by performing contour and flare correction in parallel. The effects of the present invention include the following.

(1)3原色映像信号の各々に対し補正が行なわれるか
らいかなる画像に対しても、補正が完全である。従来例
のようにG信号についてのみから補正信号をとりだす場
合には、G信号成分が少ない画像に対しては補正効果が
少ないのに対し、高品質になる。
(1) Since each of the three primary color video signals is corrected, any image can be completely corrected. When a correction signal is extracted only from the G signal as in the conventional example, the correction effect is small for an image with a small G signal component, but the quality is high.

(2)輪郭・フレア補正用フィルタとして、前者にFI
Rフィルタ、後者に複合IIRフィルタを 。
(2) FI for the former as a contour/flare correction filter
R filter, and a composite IIR filter on the latter.

用いることで、直線位相でしかも素子数の少ない小規模
な回路構成にすることができる。(1)のように3原色
別々に補正できるのもこのことによる。
By using this, it is possible to have a small-scale circuit configuration with a linear phase and a small number of elements. This is also the reason why the three primary colors can be corrected separately as shown in (1).

(3)  フィルタ特性が高域通過型であるが、垂直補
正・水平補正を並列に行なっているので、相互の関連が
なく4辺形のウィンドウパターンの4隅でも良好な補正
が得られる。またすべてのフィルタが並列になっている
ので、補正信号作成回路の遅延が少ない。
(3) Although the filter characteristic is a high-pass type, since vertical correction and horizontal correction are performed in parallel, there is no correlation between them, and good correction can be obtained even at the four corners of a quadrilateral window pattern. Furthermore, since all the filters are arranged in parallel, there is little delay in the correction signal generation circuit.

(4)逆ガンマ補正回路を設け、信号を線形化してから
補正するので、信号レベルの低い画面暗部の補正効果が
低下しない。
(4) Since an inverse gamma correction circuit is provided and the signal is linearized and then corrected, the correction effect for dark areas of the screen where the signal level is low does not deteriorate.

(5)  フィルタ類、逆ガンマ補正回路、ガンマ補正
回路などに用いられる係数回路として、RAMを利用す
ることで係数を任意に設定できる。製造段階で、調整・
設定が容易なばかりでなく、受像機を運転中であっても
、可変にすることができ、どんな環境でも画像品質を最
適状態にしておくことができる。
(5) Coefficients can be arbitrarily set by using RAM as coefficient circuits used in filters, inverse gamma correction circuits, gamma correction circuits, and the like. Adjustments and
Not only is it easy to set, but it can also be made variable even while the receiver is in operation, allowing the image quality to be kept at its optimum in any environment.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は基本構成ブロ
ック図、第2図は補正信号作成回路の構成ブロック図、
第3図は輪郭補正に用いるFIRフィルタの構成図、第
4図・第5図はフレア補正に用いる複合IIRフィルタ
の構成図、第6図は係数回路の例を示す図である。 11 a 〜11 c−A/ D変換器、12a〜12
c・−補償用遅延回路、 13a〜13c・−補正信号作成回路、142〜14c
m・合成回路、 15 a 〜15 c−・−D/ A変換器、16 a
 〜16 C−逆ガンマ補正回路、17a〜17 c−
ガンマ補正回路 21〜22−  輪郭補正FIRフィルタ、23〜24
・−フレア補正複合IIRフィルタ、25−補償用遅延
器、 26.28a、28b−合成回路、 27 a 〜27 b・−コアリング回路、200−・
遅延素子、 201a 〜201d−係数回路、 202−・・加算回路、 230 a 〜230 b− (高域通過型)IIRフィルタ、 231.241・−遅延素子、 234a〜234b−フィールド反転器、240 a 
〜240 b− (高域通過型)IIRフィルタ、 244a 〜244b−ライン反転器、3〇−係数回路
、  31・−セレクタ、32− RAM、    3
3.34−バッファ。
The drawings show an embodiment of the present invention; FIG. 1 is a basic configuration block diagram, FIG. 2 is a configuration block diagram of a correction signal generation circuit,
FIG. 3 is a block diagram of an FIR filter used for contour correction, FIGS. 4 and 5 are block diagrams of a composite IIR filter used for flare correction, and FIG. 6 is a diagram showing an example of a coefficient circuit. 11a to 11c A/D converter, 12a to 12
c.-compensation delay circuit, 13a-13c.-correction signal generation circuit, 142-14c
m・Synthesizing circuit, 15 a to 15 c-・-D/A converter, 16 a
~16 C- Reverse gamma correction circuit, 17a ~ 17 c-
Gamma correction circuit 21-22- Contour correction FIR filter, 23-24
・-Flare correction composite IIR filter, 25-Compensation delay device, 26.28a, 28b-Synthesizing circuit, 27 a to 27 b・-Coring circuit, 200-・
Delay elements, 201a to 201d - coefficient circuits, 202 - adder circuits, 230 a to 230 b - (high-pass type) IIR filters, 231.241 - delay elements, 234a to 234 b - field inverters, 240 a
~240b- (high-pass type) IIR filter, 244a ~244b-line inverter, 30-coefficient circuit, 31--selector, 32-RAM, 3
3.34-Buffer.

Claims (1)

【特許請求の範囲】 投写形ディスプレイ方式のテレビジョン受像機において
、3原色映像信号系列ごとに設け、それぞれの映像信号
を入力してA/D変換し、輪郭・フレア補正後、D/A
変換して出力する画質改善装置であって、 前記輪郭・フレア補正部は、ディジタル映像信号入力に
対して並列に設けられた、補償用遅延回路および前段に
逆ガンマ補正回路を後続段にガンマ補正回路を付した輪
郭・フレア補正信号作成回路と、前記補償用遅延回路と
ガンマ補正回路の出力を合成する合成回路とからなり、 前記輪郭・フレア補正信号作成回路は、画像の輪郭補正
とフレア補正とを並列になすもので、(イ)輪郭補正は
、画像の垂直方向・水平方向に並列に、垂直方向には1
ディレイとしてラインメモリを用いた高域通過型FIR
フィルタ、水平方向には1ディレイとしてA/D変換ク
ロックのレジスタを用いた高域通過型FIRフィルタに
よりなされ、 (ロ)フレア補正は画像の垂直方向・水平方向に並列に
、垂直方向には1ディレイとしてラインメモリを用いた
高域通過型IIRフィルタと1フィールド分の情報を反
転する反転器とを交互に直列に2段づつ有し、水平方向
には1ディレイとしてA/D変換クロックのレジスタを
用いた高域通過型IIRフィルタと1ライン分の情報を
反転する反転器とを交互に直列に2段づつ有する回路に
よりなされ、 前記フィルタ類、ガンマ補正回路、逆ガンマ補正回路に
おける係数回路は、RAMを利用し、映像期間中は係数
回路の入力信号が前記RAMのアドレス信号であり、前
記データが読みだされて出力信号となるものである ことを特徴とするテレビジョン画質改善装置。
[Scope of Claims] In a projection display type television receiver, each of the three primary color video signal series is provided, each video signal is input and A/D converted, and after contour/flare correction, the D/A
The image quality improvement device converts and outputs the image, and the contour/flare correction section includes a compensation delay circuit and an inverse gamma correction circuit in a preceding stage and a gamma correction circuit in a subsequent stage, which are provided in parallel with the digital video signal input. The contour/flare correction signal generation circuit includes a contour/flare correction signal generation circuit with an attached circuit, and a synthesis circuit that synthesizes the outputs of the compensation delay circuit and the gamma correction circuit, and the contour/flare correction signal generation circuit is configured to perform image contour correction and flare correction. (a) Contour correction is performed in parallel in the vertical and horizontal directions of the image, and 1 in the vertical direction.
High-pass FIR using line memory as delay
The filter is a high-pass FIR filter that uses an A/D conversion clock register with a delay of 1 in the horizontal direction, and (b) Flare correction is performed in parallel in the vertical and horizontal directions of the image, with a delay of 1 in the vertical direction. It has two stages of high-pass IIR filters that use line memory as a delay and an inverter that inverts one field's worth of information alternately in series, and a register for the A/D conversion clock as one delay in the horizontal direction. The coefficient circuit in the filters, gamma correction circuit, and inverse gamma correction circuit is made up of a circuit having two stages each of a high-pass IIR filter using . A television image quality improving device, which utilizes a RAM, and wherein during a video period, the input signal of the coefficient circuit is an address signal of the RAM, and the data is read out and becomes an output signal.
JP60111348A 1985-05-25 1985-05-25 TV image quality improvement device Expired - Fee Related JPH0628390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111348A JPH0628390B2 (en) 1985-05-25 1985-05-25 TV image quality improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111348A JPH0628390B2 (en) 1985-05-25 1985-05-25 TV image quality improvement device

Publications (2)

Publication Number Publication Date
JPS61270993A true JPS61270993A (en) 1986-12-01
JPH0628390B2 JPH0628390B2 (en) 1994-04-13

Family

ID=14558913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111348A Expired - Fee Related JPH0628390B2 (en) 1985-05-25 1985-05-25 TV image quality improvement device

Country Status (1)

Country Link
JP (1) JPH0628390B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289280A2 (en) * 2001-07-30 2003-03-05 NEC Viewtechnology, Ltd. Device and method for improving picture quality
US7006704B2 (en) 2001-03-23 2006-02-28 Nec Viewtechnology, Ltd. Method of and apparatus for improving picture quality

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006704B2 (en) 2001-03-23 2006-02-28 Nec Viewtechnology, Ltd. Method of and apparatus for improving picture quality
EP1289280A2 (en) * 2001-07-30 2003-03-05 NEC Viewtechnology, Ltd. Device and method for improving picture quality
EP1289280A3 (en) * 2001-07-30 2003-04-23 NEC Viewtechnology, Ltd. Device and method for improving picture quality
US7106386B2 (en) 2001-07-30 2006-09-12 Nec Viewtechnology, Ltd. Device and method for improving picture quality

Also Published As

Publication number Publication date
JPH0628390B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JPS61270993A (en) Device for improving picture quality of television
JPS61270992A (en) Device for improving picture quality of television
JPH0327145B2 (en)
JPS61295786A (en) Improving device for television picture quantity
JPS61295791A (en) Improving device for television picture quality
JPS61270991A (en) Device for improving picture quality of television
JPS61270994A (en) Device for improving picture quality of television
JPS61296881A (en) Device for improving picture quality of television
JPH0327147B2 (en)
JPS61296880A (en) Device for improving picture quality of television
JPH0316078B2 (en)
JPS61270990A (en) Device for improving picture quality of television
JPS61270988A (en) Device for improving picture quality of television
JPS61295787A (en) Improving device for television picture quality
JPS61295789A (en) Improving device for television picture quality
JPS61295792A (en) Improving device for television picture quality
JPS61295793A (en) Improving device for television picture quality
JPS61296883A (en) Improving device for picture quality of television
JPH0330353B2 (en)
JPS61296879A (en) Device for improving picture quality of television
JPS61295788A (en) Improving device for television picture quality
JPS61295790A (en) Improving device for television picture quality
JPH02142279A (en) Picture quality improvement device
JPH0327153B2 (en)
JPH0130350B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees