JPS61296342A - Reflex projecting screen - Google Patents

Reflex projecting screen

Info

Publication number
JPS61296342A
JPS61296342A JP60138325A JP13832585A JPS61296342A JP S61296342 A JPS61296342 A JP S61296342A JP 60138325 A JP60138325 A JP 60138325A JP 13832585 A JP13832585 A JP 13832585A JP S61296342 A JPS61296342 A JP S61296342A
Authority
JP
Japan
Prior art keywords
angle
refraction
light
incident
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60138325A
Other languages
Japanese (ja)
Inventor
Yoshio Yatabe
谷田部 善雄
Itaru Yatabe
谷田部 格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUUPU KK
Original Assignee
YUUPU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUUPU KK filed Critical YUUPU KK
Priority to JP60138325A priority Critical patent/JPS61296342A/en
Publication of JPS61296342A publication Critical patent/JPS61296342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Overhead Projectors And Projection Screens (AREA)

Abstract

PURPOSE:To eliminate the insufficiency of contrast in a dark part by providing the visual field lens of a convergence optical system on the front, a reflex lenticular lens on the back and a transparent optical medium with a high refraction factor between former two. CONSTITUTION:A lenticular lens surface 3 equipped with the refraction surface 1 of the visual field lens of the convergence optical system on the front and a reflex layer 2 on the back is provided, and the transparent optical medium 4 with a high refraction factor is filled in an intermediate space constructed with both lens surfaces. Thus the forward space on the reflex surface is filled with the transparent material with a high temperature refraction factor, and therefore the inclination of an incident beam develops a change in a direction of an angle twice said incline angle when the beam is made obliquely incident. The beam turns out to be a beam having the incident angle twice its initial one, again is made incident in the direction reverse to its initial one, and has a larger refraction angle than the incident angle due to the reaction of refraction when said beam enters air with a refraction factor of '1' from the optical material with a high refraction factor. Then the direction of said beam is further changed. Thus the projecting screen of an intensive light system can be obtained due to a high efficiency in terms of using a projected flux.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は画像投映装置に好適な反射型映写幕に係り、特
(二映写幕の全域に亘シ高輝度な反射型映写幕に関する
ものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a reflective projection screen suitable for an image projection device, and particularly relates to a reflective projection screen that has high brightness over the entire area of the projection screen. be.

(従来の技術) 近時投射型テレビジョン装置や投射型1面像ディスプレ
イ装置、拡大投映機等の所謂反射型画像投影装置が広く
普及している。
(Prior Art) In recent years, so-called reflective image projection devices such as projection television devices, projection type single-image display devices, and enlarged projectors have become widespread.

この種の装置は映写幕(=光投射装置から画像光を投影
してその像を観察するもので、大画面化を容易にはかる
ことができるので種々のものが開発されているが一長一
短があり未だ不充分である。
This type of device projects image light from a projection screen (= light projection device) and observes the image. Various devices have been developed because they can easily make the screen larger, but they have advantages and disadvantages. It is still insufficient.

以下これ(二ついて述べる。I will explain this in two parts below.

t マツトスクリーン 簡単な白紙、白布、白色のプラスチックシートのような
物で代表させることができる。すべての方向に均等(二
元を反射させるので広い範囲で同じ位の明るさに見える
が、映写光束が観客のいない範囲にまで無駄(:分散す
るので観客個個の受取る光量の絶対値は低くなる不利が
ある。
A matte screen can be represented by a simple piece of white paper, white cloth, or a white plastic sheet. Equally in all directions (because it reflects two elements, it appears to be about the same brightness over a wide area, but the projection light flux is wasted even in areas where there are no audience members (: because it is dispersed, the absolute value of the amount of light received by each audience member is low) There is a disadvantage.

Z ビーズスクリーン 白地(二透明なガラスピーズ(微粉子)を塗布したもの
で映写光を#1ぼ入射方向に反射してしまうので明るい
が観覧に適する範囲が挾いいわゆるバックレフターのよ
うな性質がある。
Z Bead screen white background (coated with two transparent glass beads (fine powder) that reflects the projection light in the direction of incidence, so it is bright but has a so-called backlefter-like property that covers an area suitable for viewing. There is.

3、 アルミニウムホイルスクリーン 特殊処理をして圧延した薄いアルミニウムのシートでで
きており、僅かに彎曲したフレームに嵌めこまれている
。効果的な映写を行なうにはスクリーン表面の特殊加工
と歪みのない適正な彎曲が必要となりか\るスクリーン
の製造は困難である。
3. Aluminum foil screen Made of specially treated and rolled thin sheets of aluminum, fitted into a slightly curved frame. It is difficult to manufacture a screen because effective projection requires special processing of the screen surface and proper curvature without distortion.

4.金属レンチキュラー スクリーン 透明合成樹脂の表面に金属コーチングし、小さな鏡の働
をする微小な凹凸をつけたもので。
4. Metal lenticular screen The surface of transparent synthetic resin is coated with metal and has minute irregularities that act as small mirrors.

観客席からでた連送光はそのまま観客席に反射して戻る
ため映像をそこねるものである。
The continuous beam of light that comes out of the audience seats is reflected directly back into the audience seats, damaging the image.

5、 非金属レンチキュラー スクリーン金属レンチキ
ュラースクリーンの場合と同じく表面に凹凸がついてい
るが金属コーチングはしていない。大体の性質は金属レ
ンチキュラースクリーンとほぼ同じである。
5. Non-metallic lenticular screen The surface has irregularities like the metal lenticular screen, but there is no metal coating. The general properties are almost the same as metal lenticular screens.

ただ金属、非金属レンチキュラースクリーンともに表面
の凹凸の形や鏡の形を製造過程で変えられるので他のス
クリーンよシもバラエティ−(二富んでいるのが取シ柄
である。
However, since both metal and non-metallic lenticular screens can change the shape of the surface irregularities and the shape of the mirror during the manufacturing process, they have a wide variety compared to other screens.

(発明が解決しようとする問題点) 上記の従来の反射型スクリーンはいづれもコントラスト
のダイナミックレンジが挾いことは大同小異である。
(Problems to be Solved by the Invention) The conventional reflective screens described above are all the same in that they have a limited dynamic range of contrast.

従って先に述べたように強光力の映写機でノ・イライト
を充分明るくしてやっても暗部のコントラストが不足し
、深味のある暗部の細部は出てこない恨みがあった。
Therefore, as mentioned earlier, even if you used a projector with high light power to make the light sufficiently bright, the contrast in the dark areas was insufficient, and the deep details in the dark areas were not visible.

(問題点を解決しようとするための手段)本発明は上記
のような従来の技術の問題点を解決するためになされた
もので、収斂光学系の視野レンズを前面に、反射型レン
チキュラーレンズを後面に、両者の中間に高屈折率の透
明光学媒体を備えたことを特徴とする反射型映写幕であ
る。
(Means for solving the problems) The present invention was made to solve the problems of the conventional technology as described above. This is a reflective projection screen characterized by having a transparent optical medium with a high refractive index on the rear surface between the two.

(作用) 本発明は上記の如き構成であるから、表面の収斂光学レ
ンズは映写レンズに面し、これに映写レンズの射出瞳を
第二次光源とした映写光の発散光束を映写幕全面に受け
て、これら光束を並行光束にコリメートする物で、この
並行光束は金属裏面の反射指向性レンチキュ之−面には
ソ垂直に入射する。そこでこれらの並行光束は昔同様に
、レンチキュラー指向性反射面の一次作用を受けて、反
射面の傾斜角の二倍の角度の方向変換をし、その角度で
再度収斂光学系面に入射し、屈折収斂作用を受けて空気
中に出射され、映写レンズ射出瞳の共役像の分散分布を
以って設計に対応した観客配置範囲に照射される。
(Function) Since the present invention has the above-described configuration, the converging optical lens on the front surface faces the projection lens, and the diverging luminous flux of the projection light using the exit pupil of the projection lens as the secondary light source is directed to the entire surface of the projection screen. In response, these beams are collimated into parallel beams, which are incident perpendicularly to the reflective directional lenticule surface on the back surface of the metal. Therefore, as in the past, these parallel light beams are subjected to the primary action of the lenticular directional reflecting surface, change direction by an angle twice the inclination angle of the reflecting surface, and enter the converging optical system surface again at that angle. The light is emitted into the air under the effect of refraction and convergence, and is irradiated onto the audience arrangement range corresponding to the design using the dispersion distribution of the conjugate image of the exit pupil of the projection lens.

(実施例) 以下本発明を図面を参照しつつ説明する。(Example) The present invention will be explained below with reference to the drawings.

第1図は本発明の一実施例を示す断面図で前面に収斂光
学系の視野レンズの屈折面1を、後面に反射層2を設け
たレンチキュラーレンズ面3を備え、両レンズ面によシ
構成された中間の空間に高屈折率の透明光学媒体4を満
たした構成となっている。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, which has a refractive surface 1 of a field lens of a converging optical system on the front surface and a lenticular lens surface 3 provided with a reflective layer 2 on the rear surface. The constructed intermediate space is filled with a transparent optical medium 4 having a high refractive index.

この際の反射層面とレンチキュラーレンズ面とは物理的
にも光学的にも同一面であると見做しうる0 今本発明の詳細な説明するため、便宜的に第2図に示す
ように収斂光学系は前面が凸で裏面が平面で構成された
平凸レンズに於て背面に反射鏡面を設けたものについて
考えてみる。収斂面は収斂作用があれば充分であるから
フレネルレンズ面であってもよいことは勿論である。
In this case, the reflective layer surface and the lenticular lens surface can be considered to be the same surface both physically and optically. Consider an optical system that is a plano-convex lens with a convex front surface and a flat back surface, with a reflective mirror surface provided on the back surface. It goes without saying that the convergence surface may be a Fresnel lens surface, since it is sufficient to have a convergence effect.

さて先(二も述べたように映写光束は映写レンズの射出
瞳を第2次光源とし、映写幕全面に均等に映写光束が照
射される。この発散光束は収斂レンズ面でコリメートさ
れ並行光束となって反射平面にほぼ垂直に入射する。そ
の後反射して再度収斂レンズ面に入射し再び収斂され映
写レンズ射出瞳の共役点(:光源像を結ぶこの収態は第
2図に示したとおりである。
Now, as mentioned earlier (2), the projection light flux uses the exit pupil of the projection lens as a secondary light source, and the entire surface of the projection screen is uniformly irradiated with the projection light flux.This diverging light flux is collimated by the converging lens surface and becomes a parallel light flux. The light then enters the reflection plane almost perpendicularly.Then, it is reflected, enters the converging lens surface again, and is converged again to the conjugate point of the projection lens exit pupil (: This convergence that connects the light source image is as shown in Figure 2. be.

本発明の場合、収斂光学系コリメーターと対物レンズの
機能を果しているが見方を変えれば第3図に示すように
両凸単レンズその勿の内部にレンチキュラー構造があり
光拡散の作用をしていると見ることができる。
In the case of the present invention, the convergent optical system functions as a collimator and an objective lens, but if you look at it from a different perspective, as shown in Figure 3, there is a lenticular structure inside the double-convex single lens, which acts as a light diffuser. You can see it there.

一般の透過型映写幕は視野レンズのコリメータ↓ 一レンズの作用と対物レンズの作とを一面に受け1持た
せているので二面分の収斂力を必要とする。
A general transmission projection screen requires the converging power of two surfaces because it has one field lens that takes on the action of the collimator and one lens and the action of the objective lens.

従って視野外周の部分の傾斜角が入射光線に対し急であ
るので光束密度が低くなるために、画面周縁の光量低下
が起る。
Therefore, since the angle of inclination at the outer periphery of the field of view is steep with respect to the incident light beam, the luminous flux density becomes low, resulting in a decrease in the amount of light at the periphery of the screen.

本発明のように視野レンズを往復二回使用すると収斂作
用が半分で足り、曲率は半分となり、従って面の傾斜も
半分となり周辺光量に及ぼす影響が少なく光量の低下を
防止軽減することができる。
When the field lens is used twice back and forth as in the present invention, the convergence effect is only halved, the curvature is halved, and therefore the slope of the surface is also halved, so there is little influence on the amount of peripheral light and it is possible to prevent and reduce a decrease in the amount of light.

これは光学的に極めて有利である。又、この場合球面の
曲率を適描に選ぶことによって映写距離と観覧距離とを
任意に設定することに困難はない。
This is extremely advantageous optically. Furthermore, in this case, there is no difficulty in arbitrarily setting the projection distance and viewing distance by appropriately selecting the curvature of the spherical surface.

以上のような条件によると視野レンズ球面は往復再度に
亘って光束が通過し、その収斂作用を受ける。
Under the above conditions, the spherical surface of the field lens passes the light beam again and again, and is subjected to its converging action.

又更に表裏二面をともに利用するので、レンズ材料は一
枚ですむこととなり、至って経済的なものである。
Furthermore, since both the front and back surfaces are used, only one lens material is required, making it very economical.

次に本発明における反射型レンチキュラー面について考
察する。
Next, the reflective lenticular surface in the present invention will be considered.

本発明に於ては前面に視野レンズ面、後面に反射型レン
チキュラー面を配置し、両者の中間の空間が高屈折率の
透明光学材料でみたされた構造となっている。
The present invention has a structure in which a field lens surface is arranged on the front surface, a reflective lenticular surface is arranged on the rear surface, and the space between the two is filled with a transparent optical material having a high refractive index.

このよう(二反射面の前面の空間を高温屈折率の透明材
料で満すことにより光線が斜めに入射した場合は、傾斜
が僅かでもその傾斜角の、又は光線の入射方向に対し、
反射面が傾斜している場合は面の傾斜角のそれぞれ2倍
の角度の方向の変化を生じ、これらの光線が更に当初の
傾斜角の2倍の入射角をもつ光線となって入射面に当初
と逆方向に再入射して屈折率の高い光学材料から屈折率
1の空気中に出る際に屈折の作用によって入射角より大
きい屈折角となって更に方向が変えられる。
In this way, if the space in front of the two reflective surfaces is filled with a transparent material with a high refractive index and the light rays are incident obliquely, even if the inclination is slight, the angle of inclination or the direction of incidence of the light rays will be
If the reflective surface is tilted, the direction changes by an angle twice the tilt angle of the surface, and these rays further become rays with an incident angle twice the initial tilt angle and reach the incident surface. When the light re-enters in the opposite direction to the original direction and exits from the optical material with a high refractive index into the air with a refractive index of 1, the refraction angle becomes larger than the angle of incidence due to the effect of refraction, and the direction is further changed.

このことは顕微鏡における液浸検鏡法的使用法である。This is the immersion microscopy method used in microscopy.

しかじ顕微鏡等一般の液浸或いは油浸法は、第4図に示
すようによシ広い角度からの収斂光束を狭い角度の光束
に集光するのであるが、本発明に於ては第5図に示すよ
うにその逆であって狭い角度の光束をよシ広い角度の発
散光束とする作用を利用するものである。
In general liquid immersion or oil immersion methods such as those using a microscope, a convergent light beam from a wide angle is condensed into a light beam at a narrow angle, as shown in FIG. As shown in the figure, it is the opposite, and utilizes the effect of converting a light beam at a narrow angle into a divergent light beam at a wider angle.

なお第4図、第5図に於て10は空気、11は高屈折率
媒体を示す。
In FIGS. 4 and 5, 10 represents air and 11 represents a high refractive index medium.

この場合光の進行方向に着目すると第4図では入射角θ
で入った光束が高屈折率媒体内に入ったときに屈折角μ
となり高屈折率媒体を出るときに0度となる。
In this case, if we pay attention to the traveling direction of the light, in Fig. 4 we can see that the incident angle θ is
When the light beam enters the high refractive index medium, the refraction angle μ
It becomes 0 degrees when exiting the high refractive index medium.

更に反射面に光学的形状を設計配置すれば、入射光線を
多岐多様に拡散させることができる。
Furthermore, by designing and arranging optical shapes on the reflective surface, the incident light beam can be diffused in a wide variety of ways.

即ち反射型レンチキュラー面は上記の利点を活用するも
ので透過型レンチキュラー面が主として屈折作用に依存
しているのに比較してその影響度が犬である。
That is, the reflective lenticular surface makes use of the above-mentioned advantages, and its degree of influence is much lower than that of the transmissive lenticular surface, which relies mainly on refraction.

本発明の映写幕は光線の方向変化に、反射作用と屈折作
用とを重複して利用する外、視野レンズも往復活用する
ものである。
The projection screen of the present invention not only utilizes reflection and refraction in combination to change the direction of light rays, but also utilizes a field lens to reciprocate.

即ち本発明の反射型レンチキュラー面反射型映写幕はこ
れらの影響度の徹底した活用をはかったものであること
は第6図、第7図により説明できる。
That is, the reflective lenticular surface reflective projection screen of the present invention makes thorough use of these influences, which can be explained with reference to FIGS. 6 and 7.

第6図(二於て頂角αを持つ光学模をとり、光線がその
一面に垂直に入射するものとすると、光が通過する場合
はsinαが角αにはソ等しいときθ1nαキα 従って屈折角をβとすると β=N・α 但しNは透明光学材料の屈折率一般の透明
体の屈折率の方向と屈折光線の方向のなす角をrとする
と γ=β−α=l(’α−α=(刊−1)α一般の透明体
の屈折率Nは1.5程度であるからγ=(1,5−1)
−α=0.5α となる次に第7図に示すように、後面
を反射面とし反射させた場合に反射角は入射角の倍角即
ち2αで入射面に再入射する。
Figure 6 (2) If we take an optical model with an apex angle α and assume that a ray of light is incident perpendicularly to one surface of the model, then when the light passes through, when sin α is equal to the angle α, θ1nα is If the angle is β, then β=N・α. However, N is the refractive index of the transparent optical material. If the angle between the direction of the refractive index of a general transparent body and the direction of the refracted ray is r, then γ=β−α=l('α -α=(published-1) αThe refractive index N of a general transparent body is about 1.5, so γ=(1,5-1)
-α=0.5α Then, as shown in FIG. 7, when the rear surface is used as a reflecting surface and the light is reflected, the reflection angle is twice the incident angle, that is, 2α, and the light re-enters the incident surface.

この時入射後の空間への屈折角δ角は sinδ=N・(sin 2α) = 1゜5 X (
sin 2a)近似的C二反射後空気との境界面での再
屈折角δは1,5X2α 即ち3αとみなされる。
At this time, the angle of refraction δ into space after incidence is sin δ = N・(sin 2α) = 1°5
sin 2a) After approximately C2 reflection, the refraction angle δ at the interface with air is taken as 1,5X2α, ie 3α.

従って屈折作用4ユおける方向変化γが0.5αである
とき反射作用におけるδは3αであって比較すると δ/γ=6α10.5α=6倍になる。
Therefore, when the direction change γ in 4 units of refraction is 0.5α, δ in reflection is 3α, and by comparison, δ/γ=6α10.5α=6 times.

よって結局レンチキュラー金属反射面での反射作用と並
びに媒体と空気との境界面での屈折作用との総合効果が
著るしく大きいことになる。
Therefore, the overall effect of the reflection action at the lenticular metal reflection surface and the refraction action at the interface between the medium and the air is extremely large.

次に第8図、第9図に反射型の光の状態を示1この場合
反射レンチキュラー面が凸又は凹の曲面であるとしてそ
の曲率半径なrとし、その光軸からの入射高さをhとす
ると曲面による光線の方向変化はε= sin”−1k
y’rとなる。
Next, Figures 8 and 9 show the state of reflective light.1 In this case, assuming that the reflective lenticular surface is a convex or concave curved surface, its radius of curvature is r, and the incident height from the optical axis is h. Then, the change in direction of the light ray due to the curved surface is ε=sin”−1k
It becomes y'r.

即ち光線の反射面による反射角は2εで再入射角も又こ
れと同じである。
That is, the angle of reflection of the light beam by the reflecting surface is 2ε, and the angle of re-incidence is also the same.

よって再入射後の屈折角ζは sinζ=NI sin2g このように−回の反射と一回の高屈折率の媒体から空気
への屈折によって光線の方向の変化量はことなる。
Therefore, the refraction angle ζ after re-incidence is sin ζ = NI sin2g In this way, the amount of change in the direction of the light ray differs due to - times of reflection and once refraction from a high refractive index medium to air.

これに比べて単に屈折作用だけであるとsinφ=(N
−1)sinε即ちεの半角となる。これは大差である
In contrast, if there is only a refractive effect, sinφ=(N
-1) sin ε, that is, the half-angle of ε. This is a big difference.

いま反射型レンチキュラー面の拡散角度の限界と透過型
レンチキュラーレンズ面のそれとの比較をする。
We will now compare the limit of the diffusion angle of the reflective lenticular surface with that of the transmissive lenticular lens surface.

反射型レンチキュラー面においては光線は反射後、高屈
折率媒体面と空気との境界面に再入射する。わけである
が、再入射角は媒体の臨界角にまで自由にとる事ができ
る為に、再入射後空気中にでる際に90度の屈折角とな
る。
In the reflective lenticular surface, after being reflected, the light beam re-enters the interface between the high refractive index medium surface and the air. However, since the angle of re-incidence can be freely adjusted up to the critical angle of the medium, the angle of refraction will be 90 degrees when the beam exits the air after re-incidence.

この屈折角は、即ち拡散角である。理論上映4幕正面左
右90度の拡散範囲があるので使用条件に対応して任意
(二定める自由がある事になる。
This angle of refraction is the angle of diffusion. Theoretically, there is a diffusion range of 90 degrees to the left and right of the front of the 4th act, so you have the freedom to decide as you like depending on the conditions of use.

一方、透過型レンチキュラーレンズ面においては同様に
高屈折率媒体から空気中に出射されるが、この時入射角
が臨界角の場合屈折角は90度即ち屈折面の接面になり
光の進行方向は臨界角の補角の方向になシそれ以上には
光は拡散しない。即ち屈折率Nが1,492であれば1
 / 1゜492 :8in4でφは約42度でその補
角は48度となる。これを反射型レンチキュラー面のそ
れと比べては約半分である。(第11図、第12図参照
)以上が反射型、透過型双方のレンチキュラー面の拡散
限界であるが、この限界から約20度位までは光量の分
布量が弱いので有効な範囲とは見做されない。従って実
効値は限界範囲より更に狭くなる。
On the other hand, on the transmission type lenticular lens surface, light is similarly emitted into the air from a high refractive index medium, but at this time, if the incident angle is a critical angle, the refraction angle is 90 degrees, that is, the tangential surface of the refraction surface, and the traveling direction of the light is is in the direction of the supplementary angle of the critical angle, and light will not be diffused beyond that direction. That is, if the refractive index N is 1,492, then 1
/ 1°492: In 8in4, φ is approximately 42 degrees and its supplementary angle is 48 degrees. This is about half that of a reflective lenticular surface. (See Figures 11 and 12) The above is the diffusion limit for both reflective and transmissive lenticular surfaces, but since the distribution of light intensity is weak from this limit to about 20 degrees, it is not considered to be an effective range. Not considered. Therefore, the effective value becomes even narrower than the limit range.

しかしながら両者の差異は歴然としている。However, the differences between the two are obvious.

単純な実例を示せば0.5 mの曲率半径の反射型レン
チキュラー面の場合光軸からの入射高さが0.18ff
弱で臨界角に達する。−ピッチはその二倍で0.36m
となる。一般にレンチキュラー面の実用的な−ピッチは
大体0.2〜0.75ff程度であるからいま挙げた例
は実用例といえるであろう。
To give a simple example, in the case of a reflective lenticular surface with a radius of curvature of 0.5 m, the incident height from the optical axis is 0.18ff.
It reaches a critical angle at low temperatures. -The pitch is twice that, 0.36m
becomes. Generally, the practical pitch of the lenticular surface is about 0.2 to 0.75 ff, so the example just given can be said to be a practical example.

左右各々70度全拡散範囲140度の広角度の物が容易
にえられるわけである。
This means that it is easy to obtain a wide-angle lens with a total diffusion range of 140 degrees and a total diffusion range of 70 degrees on each side.

透過レンチキュラー面では左右各々約30度全拡散角で
60度である。映写光束の分布範囲のこの差異は実用上
の大差である。
On the transmission lenticular surface, the total diffusion angle is 60 degrees, about 30 degrees on each side. This difference in the distribution range of the projection light flux is a large difference in practical use.

以上各種の点(=おいて反射レンチキュラー面は屈折レ
ンチキュラー面に優越するものである。
In the above various points (=), the reflective lenticular surface is superior to the refractive lenticular surface.

次に上記の視野レンズの機能とレンチキュラー金属反射
面の機能とを一体として重畳させた場合について考える
と以下のとおりである。
Next, consider the case where the above-described function of the field lens and function of the lenticular metal reflective surface are integrated and superimposed as follows.

即ち映写光束は映写レンズの射出瞳を第2次光源とする
発散光束であって視野レンズ全面に分布照射される。こ
の発散光束は映写基の前面の視野レンズによって並行光
束群となって後面ルンチキュラー金属反射面に入射する
。ここで並行光束群がレンチキュラー金属反射の作用に
よって所定の発散光束群となる。これ等の発散光束群は
反転方向を変えて再び視野レンズζ二再入射して視野レ
ンズの収斂作用を受けて、光源である射出瞳の共役像群
を各拡散光束群に対応して設計に応じた観客の分布範囲
に分散結像する。
That is, the projection light beam is a diverging light beam that uses the exit pupil of the projection lens as a secondary light source, and is distributed over the entire surface of the field lens. This diverging light flux becomes a group of parallel light fluxes by the field lens on the front surface of the projection base and is incident on the rear lunticular metal reflective surface. Here, the parallel beam group becomes a predetermined diverging beam group due to the action of lenticular metal reflection. These diverging beam groups change their inversion direction and re-enter the field lens ζ2, where they receive the converging action of the field lens, and the conjugate image group of the exit pupil, which is the light source, is designed corresponding to each diffuse beam group. Distributed images are formed in the distribution range of the audience according to the audience.

その結果設計範囲に位置する観客は均等な明るさの鮮明
な画像を観賞することができるのであ4次に本発明で用
いられているレンチキュラー金属反射角の細部構造の要
点に触れよう。
As a result, the audience located within the design range can view clear images with uniform brightness.Fourth, let us discuss the detailed structure of the lenticular metal reflection angle used in the present invention.

既に述べたように反射面はその僅かな傾斜並びに傾斜の
変化にも敏感に対応する。これは−面においては製作時
の工作精度に厳しい要求があることを示す。これは要す
るに光線の方向の制御に効果的であることの証査である
As already mentioned, the reflective surface responds sensitively to slight inclinations and changes in inclination. This indicates that there are strict requirements for machining accuracy during manufacturing on the negative side. This proves that it is effective in controlling the direction of the light beam.

次にレンチキュラー金属反射面の具体例を若干列挙する
と、(第8図、第9図及び第10図参照)(1)  凸
又は凹の球面 (2)  凸又は凹の円筒面 (3)凸又は凹の非球面 又裏面反射面に成型されたアクリル樹脂の如き透明材料
のレンチキュラーで金属反射面には金属を蒸着又はスパ
ッタリング等の一般的な金属膜形成手段によって施すこ
とができる。
Next, some specific examples of lenticular metal reflective surfaces are listed (see Figures 8, 9, and 10): (1) Convex or concave spherical surface (2) Convex or concave cylindrical surface (3) Convex or concave cylindrical surface A metal reflective surface of a lenticular made of a transparent material such as an acrylic resin molded on a concave aspherical surface or a back reflective surface can be coated with metal by general metal film forming means such as vapor deposition or sputtering.

(発明の効果) 本発明は反射型であるから透過型映写幕のように余分の
映写空間を必要とせず、又従来の反射型映写幕に比ベコ
ントラストのダイナミックレンジがはるかに広くなシ、
映写光束の高い利用効率による強光制度の映写画面をも
たす映写幕を提供することができる。
(Effects of the Invention) Since the present invention is a reflective screen, it does not require extra projection space unlike a transmissive screen, and has a much wider contrast dynamic range than a conventional reflective screen.
It is possible to provide a projection screen that has a high-light projection screen with high utilization efficiency of projection luminous flux.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の反射型映写幕の一例を示す側面図、第
2図は本発明の映写幕における収斂光学系(平凸ンンズ
の背面に反射鏡面を設けたもの)の光の屈折図、第3図
は両凸単レンズその物の内部にレンチキュラー構造があ
る場合の光の屈折図。 第4図は顕微鏡における液浸法の説明図、第5図は本発
明の液浸作用の説明図、第6図は頂角αの透過性光学楔
の光の屈折図、第7図は頂角αの反射性光学楔の光の屈
折図、第8図は反射レンチキュラー面が光線に向って凹
の曲面の場合の光の屈折図、第9図はその逆の場合の光
の屈折図、第10図は反射レンチキュラー面が第8図、
第9図の混合型の光の反射屈折状態の説明図、第11図
は透過型映写幕で光線に向って凸の場合の説明図、第1
2図は透過型映写幕で光線に向って凹の場合の説明図で
ある。 代理人 弁理士 竹 内   守 第1図 第3図 第8図 第9図 手続補正書(自慢 昭和60年7月24日 特許庁長官 宇 賀 道 部 殿 1、事件の表示 昭和60年特許願第138325号 λ発明の名称 反射型映写幕 3、補正をする者 事件との関係  特許出願人 住 所 東京都北区十条仲原−丁目10番3号名 称 
 株式会社 ユ − プ 代表者 容出部   格 4、代理人〒101 居 所 東京都千代田区内神田二丁目15413号南部
ビル 6、補正によ仄増加する発明の数  07、補正の対象 1、 明細書の第7頁下から2行目「高温屈折率」とあ
るのを「高屈折率」に訂正する。 2、 明細書簡10頁1行目「一般の透明体の屈折率」
とあるのを「入射光線」に訂正する。 3、 明細書簡15頁11行目「制度」とあるのを「力
」に訂正する。
Fig. 1 is a side view showing an example of the reflective projection screen of the present invention, and Fig. 2 is a light refraction diagram of the convergent optical system (having a reflective mirror surface on the back surface of plano-convex lenses) in the projection screen of the present invention. , FIG. 3 is a light refraction diagram when there is a lenticular structure inside the biconvex single lens itself. Fig. 4 is an explanatory diagram of the immersion method in a microscope, Fig. 5 is an explanatory diagram of the immersion action of the present invention, Fig. 6 is a refraction diagram of light of a transparent optical wedge with an apex angle α, and Fig. 7 is an illustration of the apex A refraction diagram of light in a reflective optical wedge having an angle α, FIG. 8 is a refraction diagram of light when the reflective lenticular surface is a curved surface concave toward the light beam, and FIG. 9 is a diagram of refraction of light in the opposite case. Figure 10 shows the reflective lenticular surface as shown in Figure 8.
Figure 9 is an explanatory diagram of the catadioptric state of mixed light; Figure 11 is an explanatory diagram of a transmission type projection screen that is convex toward the light beam;
FIG. 2 is an explanatory diagram of a transmission type projection screen that is concave toward the light beam. Agent Patent Attorney Mamoru Takeuchi Figure 1 Figure 3 Figure 8 Figure 9 Procedural Amendment (July 24, 1985 Director General of the Patent Office Michibu Uga 1, Indication of Case 1985 Patent Application No. No. 138325 λ Name of the invention Reflective projection screen 3, Relationship to the amended case Patent applicant address 10-3 Jujo Nakahara-chome, Kita-ku, Tokyo Name
Yup Co., Ltd. Representative: Kaku Yodebe 4, Agent address: 101 Address: Nanbu Building 6, 15413 Uchikanda 2-chome, Chiyoda-ku, Tokyo Number of inventions to be slightly increased by amendment: 07, Subject of amendment: 1, Details In the second line from the bottom of page 7 of the book, the text ``high temperature refractive index'' has been corrected to ``high refractive index.'' 2. Specification letter page 10, line 1 “Refractive index of general transparent bodies”
Correct it to "incident ray". 3. On page 15, line 11 of the detailed letter, the word "system" is corrected to "power."

Claims (1)

【特許請求の範囲】[Claims] 前面に収斂光学系の視野レンズを、後面に反射型レンチ
キュラーレンズを、両者の中間の空間には高屈折率の透
明光学媒体を備えたことを特徴とする反射型映写幕
A reflective projection screen characterized by having a viewing lens with a convergent optical system on the front surface, a reflective lenticular lens on the rear surface, and a transparent optical medium with a high refractive index in the space between the two.
JP60138325A 1985-06-25 1985-06-25 Reflex projecting screen Pending JPS61296342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138325A JPS61296342A (en) 1985-06-25 1985-06-25 Reflex projecting screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138325A JPS61296342A (en) 1985-06-25 1985-06-25 Reflex projecting screen

Publications (1)

Publication Number Publication Date
JPS61296342A true JPS61296342A (en) 1986-12-27

Family

ID=15219264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138325A Pending JPS61296342A (en) 1985-06-25 1985-06-25 Reflex projecting screen

Country Status (1)

Country Link
JP (1) JPS61296342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238449A (en) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 Ceiling reflection-resistant projection screen and projection system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657030A (en) * 1979-10-15 1981-05-19 Sony Corp Recurrent screen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5657030A (en) * 1979-10-15 1981-05-19 Sony Corp Recurrent screen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238449A (en) * 2021-05-24 2021-08-10 青岛海信激光显示股份有限公司 Ceiling reflection-resistant projection screen and projection system

Similar Documents

Publication Publication Date Title
US7281805B2 (en) Projection-type display apparatus
WO2004003661A1 (en) Projection screen and projection display device
KR19990023874A (en) Lenticular lens sheet
KR20040079423A (en) Transparent screen and projection display apparatus
CN110297385A (en) Screen and optical projection system
JP4205998B2 (en) Projection screen and projection display device
JPS6193424A (en) Light projector
US4766684A (en) Lenticular screen for outdoor display
JP2002514316A (en) Projection television including holographic screen with center-to-edge variation characteristics
JPH03156435A (en) Reflection type screen and its using method
JP2006301430A (en) Transmissive screen and projection type display apparatus
JPS62501584A (en) projection screen
JP3272673B2 (en) Lenticular lens sheet
JPS61296342A (en) Reflex projecting screen
JP3842121B2 (en) Fresnel lens sheet and transmissive projection screen
EP1051858B1 (en) Projection television with holographic screen and partly occluded projection lens
EP0956708B1 (en) Projection television using a holographic screen
KR20010073103A (en) Lenticular lens sheet for projection screen
JPS6210637A (en) Rear projection screen
JPS6289941A (en) Reflection type screen
TWI705910B (en) Target reflection type diffuser head-up display device
JPH11133508A (en) Transmission screen
JP3423133B2 (en) Transmissive screen, rear projection type image display device, and multi-screen display device
JPS58176628A (en) Back projection screen
CN112255875A (en) Reflective lateral projection screen and projection system