JPS61296243A - Method for inspecting object to be inspected in non-contact state - Google Patents

Method for inspecting object to be inspected in non-contact state

Info

Publication number
JPS61296243A
JPS61296243A JP13860885A JP13860885A JPS61296243A JP S61296243 A JPS61296243 A JP S61296243A JP 13860885 A JP13860885 A JP 13860885A JP 13860885 A JP13860885 A JP 13860885A JP S61296243 A JPS61296243 A JP S61296243A
Authority
JP
Japan
Prior art keywords
liquid crystal
image
subject
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13860885A
Other languages
Japanese (ja)
Inventor
Takao Ito
隆夫 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DATSUKU ENG KK
Original Assignee
DATSUKU ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DATSUKU ENG KK filed Critical DATSUKU ENG KK
Priority to JP13860885A priority Critical patent/JPS61296243A/en
Publication of JPS61296243A publication Critical patent/JPS61296243A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable inspection with good resolving power without limiting a visual field, by applying indirect laser scanning to the image of an object to be inspected through a liquid crystal light valve. CONSTITUTION:The laser beam oscillated from a laser oscillation is controlled in its irradiation angle by a laser X-Y scanning mechanism 12. Said laser beam passes through a polarizer 11 and transmits through a half mirror 9 while the luminous flux thereof is converged by a condensing lens 10 to irradiate the optical image on a liquid crystal 5b at every coordinates. Subsequently, the laser beam issued to the liquid crystal 5b is reflected to the direction at a right angle to an advance path, for example, by the mirror 9 and subsequently passes through an analyser 8 to be incident to a beam receiving part 7. If the quantity of this laser beam is measured, the polarizing state in the liquid crystal 5b can be analyzed and the optical state thereof can be further specified. The information of laser beam incident to the light receiving part 7 is converted to an electric signal which is, in turn, outputted to an image processor 6 to receive digital processing. By this method, the flaw area on the surface of an object to be inspected can be inspected.

Description

【発明の詳細な説明】 本発明は被検体の非接触検査方法に関し、さらに詳しく
は任意の被検体の表面性状あるいは透光性被検体の内部
性状の非接触検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for non-contact testing of a specimen, and more particularly to a method for non-contact testing of the surface properties of any specimen or the internal properties of a translucent specimen.

従来、プリント基板やIC,LSIチップ等の回路検査
においては、被検体を撮像管や固定撮像素子等で撮像し
た後、ディスプレイ上に表示された被検体形象を視覚的
に検査したり、被検体形象に対応する画像情報を得てコ
ンピューターにより解析処理するなどして表面性状を検
査していたが、ICやLSIチップなどでは検査部の構
造が極めて緻密であるので、被検体形象を光学的に拡大
して撮像する必要があった。しかし従来の撮像管では一
度に撮像し得る視野はその分解能依存性のため限界があ
るので、被検体表面を撮像可能な大きさに分割して逐一
検査するしか方法がなかった。
Conventionally, when inspecting circuits such as printed circuit boards, ICs, and LSI chips, the subject is imaged using an image pickup tube or a fixed image sensor, and then the shape of the subject displayed on a display is visually inspected. The surface texture was inspected by obtaining image information corresponding to the shape and analyzing it using a computer, but since the structure of the inspection part of IC and LSI chips is extremely precise, it is difficult to optically examine the shape of the object to be inspected. It was necessary to enlarge the image. However, with conventional image pickup tubes, there is a limit to the field of view that can be imaged at one time due to its resolution dependence, so the only way to do so is to divide the surface of the subject into pieces of a size that can be imaged and inspect them one by one.

たとえば表面検査に使用される従来の撮像管の走査線数
は通常は525本以下、高解像度のものでも1200本
以下であるが、それに対しICやLSIチップの回路を
識別するには最低0.5μm/画素程度の分解能は必要
とされる。この分解能を実現するために従来はレンズな
どを用いて被検体像を光学的に拡大して撮像管に結像入
力していたが、その際は一度に撮像し得る視野は0.2
5mm角程度の狭小なものとなり、たとえば4mmX5
mm角程度のLSIの回路検査を表面全体にわたりなそ
うとすれば拡大された被検体表面像を撮像管の視野に入
る大きさに分割して、I最像管あるいは被検体を所定位
置へ移動させて憑像する作業を数百回繰返す必要があっ
た。また全体像を認識しようとすれば分割して得られた
画像情報を再統一する複雑な処理工程も必要となるなど
、表面検査を時間のかかる煩雑な作業としていた。また
逆に被検体の表面全体を一括撮像し得るよう光学系レン
ズの倍率を調節すれば分解能の低下を招き細部の識別が
不可能となるため、高精度な表面検査は望めず、ICや
LSIチップの回路検査法としてははなはだ不十分なも
のであった。
For example, the number of scanning lines in conventional image pickup tubes used for surface inspection is usually 525 or less, and even high-resolution models have 1,200 or less, whereas in order to identify the circuits of ICs and LSI chips, the number of scanning lines is at least 0. A resolution of about 5 μm/pixel is required. In order to achieve this resolution, conventionally the subject image was optically magnified using a lens and input into the image pickup tube, but in that case, the field of view that could be captured at one time was 0.2
It will be narrow, about 5 mm square, for example 4 mm x 5
If you want to conduct a circuit inspection on the entire surface of an LSI measuring approximately mm square, it is necessary to divide the enlarged surface image of the object into pieces that fit within the field of view of the image pickup tube, and then move the image tube or the object to a predetermined position. It was necessary to repeat the process several hundred times. Furthermore, in order to recognize the entire image, a complicated processing step is required to reunite the image information obtained by dividing, making surface inspection a time-consuming and complicated task. Conversely, if the magnification of the optical system lens is adjusted so that the entire surface of the object to be inspected can be imaged at once, the resolution will drop and it will become impossible to identify fine details, making it impossible to expect high-precision surface inspection. This method was extremely unsatisfactory as a chip circuit inspection method.

本発明は上記の状況にかんがみなされたもので、液晶ラ
イトバルブに被検体像を投影して検査することにより、
たとえば任意の被検体の表面性状検査や、透光性被検体
の内部性状検査などを広い範囲で且つ高分解能でなし得
る検査法を提供することを目的とし、その要旨とすると
ころは、被検体の形象を光変調素子たる液晶ライトバル
ブの光導電層に投影し、該投影像に対応して形成される
液晶の光学的形象をレーザースキャニングすることによ
り、投影画像に対応した電気信号を得ることを特徴とす
る点にある。
The present invention was conceived in view of the above situation, and by projecting the image of the subject on a liquid crystal light valve for inspection,
For example, the purpose is to provide an inspection method that can perform inspections on the surface properties of arbitrary specimens, internal properties of translucent specimens, etc. over a wide range and with high resolution. By projecting an image of the image onto a photoconductive layer of a liquid crystal light valve, which is a light modulation element, and scanning the optical image of the liquid crystal formed corresponding to the projected image with a laser, an electric signal corresponding to the projected image is obtained. It is characterized by the following.

以下、本発明の主要な構成について第1図に示した簡略
概念図により説明する。
Hereinafter, the main structure of the present invention will be explained with reference to the simplified conceptual diagram shown in FIG.

図中Bは反射式の液晶ライトバルブであり、光導電層B
l、液晶B3を光反射層B2を介して重合することによ
り主に構成され、光導電層B1と液晶B3に直列に電圧
を印加した状態で使用されるものである。図中左側の光
導電層B1前方には書き込み光源Eと被検体Aを配置し
、被検体Aと液晶ライトバルブ8間には光学系の投影レ
ンズFを配置して、書き込み光源Eにより照明された被
検体Aの投影像が光導電層Bl上に等倍あるいは拡大、
縮小して結像されるよう構成されている。
B in the figure is a reflective liquid crystal light valve, and the photoconductive layer B
1. It is mainly constructed by polymerizing liquid crystal B3 via a light reflective layer B2, and is used with a voltage applied in series to photoconductive layer B1 and liquid crystal B3. A writing light source E and a subject A are arranged in front of the photoconductive layer B1 on the left side of the figure, and a projection lens F of an optical system is arranged between the subject A and the liquid crystal light valve 8, and is illuminated by the writing light source E. The projected image of the subject A is displayed on the photoconductive layer Bl at the same magnification or magnification.
The image is formed in a reduced size.

一方、図中右側の液晶B3後方には読み取り光々源とし
て、レーザー発振・制御機構りをハーフミラ−Gを介し
て配置するとともに受光・画像処理機構Cを設けて前記
レーザー発振・制御機構りより発振制御され液晶B3で
反射した読み取り光を受光して画像処理することにより
液晶B3の光学的状態変化を読み取っている。尚、書き
込み用光源としては、分解能を向上させるhめに波長の
短い紫外線を用いるのが有利であり、また光導電層B1
としては硫化亜鉛、硫化カドミウム、セレン化カドミウ
ム、アモルファスシリコン、ポリビニルカルバゾールな
どが一任意に使用できるが、特に書き込み光として紫外
線を使用したときは紫外線に対して高感度な硫化亜鉛を
用いることが好ましいものである。
On the other hand, behind the liquid crystal B3 on the right side of the figure, a laser oscillation/control mechanism is arranged as a reading light source via a half mirror G, and a light receiving/image processing mechanism C is provided. Changes in the optical state of the liquid crystal B3 are read by receiving and image-processing the reading light that is oscillated and reflected by the liquid crystal B3. Note that as a writing light source, it is advantageous to use ultraviolet light with a short wavelength to improve resolution, and the photoconductive layer B1
As the material, zinc sulfide, cadmium sulfide, cadmium selenide, amorphous silicon, polyvinylcarbazole, etc. can be used arbitrarily, but it is preferable to use zinc sulfide, which is highly sensitive to ultraviolet rays, especially when ultraviolet rays are used as the writing light. It is something.

次に上記構成における作用を説明する。たとえば書き込
み光源Eより照明された被検体への形象は投影レンズF
を経由して等倍あるいは拡大・縮小されて液晶ライトバ
ルブBに入射し光導電層B1に結像されるが、光導電層
B1は各座標の光の強度に対応してインピーダンスを変
化させるので、光導電層B1に投影された光学的パター
ンは、電荷パターンに変換されて即時的に液晶B3へ伝
達されることとなる。そして液晶B3に伝達された該電
荷パターンは電気光学効果により液晶B3の光学的状態
を変化させることとなり、読み取り光を照射すれば、被
検体像はその強度分布として検出されることになる。し
たがって、たとえば液晶へ入射する読み取り光の偏光方
向をあらかじめ偏光子で規定し、液晶通過後の読み取り
光を前記偏光子と適宜偏光関係で配置される検光子を介
して、測定すれば液晶B3の光学的状態が決定できるこ
ととなる。そしてこのようにして液晶B3に結像される
被検体の光学像の精度は、液晶ライトバルブの分解能に
依存することになるが、現行技術でも501 p/mm
程度のものが既に作成可能であり、また素子の大きさも
200mm X 200mm程度迄は実現可能とされて
いるので、一つの受光面で10000 xlO000画
素程度得ることが十分期待できる。この画素数は従来の
標準的な撮像管の画素数480 X512に比べれば格
段に多く、たとえば従来の撮像管と同程度の分解能であ
れば数百倍の範囲を一度に視野となすことができ、また
逆に視野を限定すれば、従来の2〜30倍もの解像度を
実現することができるものであり、被検体検査が高精度
且つ広い視野で可能となることがわかる。液晶B3に結
像された光学像は、偏光子で偏光方向を規定され且つ適
宜機構により進行方向を制御されたレーザー光によりハ
ーフミラ−Gを介して各座標単位に照射され、液晶B3
へ入射したレーザー光は液晶B3の光学的状態に応じて
偏光した後、光反射NB2で反射されて液晶外へ出る。
Next, the operation of the above configuration will be explained. For example, the image on the object illuminated by the writing light source E is the projection lens F.
The light enters the liquid crystal light valve B after being magnified or enlarged/reduced, and is imaged on the photoconductive layer B1, but since the impedance of the photoconductive layer B1 changes in accordance with the intensity of the light at each coordinate, The optical pattern projected onto the photoconductive layer B1 is converted into a charge pattern and immediately transmitted to the liquid crystal B3. The charge pattern transmitted to the liquid crystal B3 changes the optical state of the liquid crystal B3 due to the electro-optic effect, and when reading light is irradiated, the image of the subject is detected as its intensity distribution. Therefore, for example, if the polarization direction of the reading light incident on the liquid crystal is defined in advance by a polarizer, and the reading light after passing through the liquid crystal is measured via an analyzer arranged in an appropriate polarization relationship with the polarizer, the polarization direction of the liquid crystal B3 can be measured. The optical state can now be determined. The accuracy of the optical image of the subject formed on the liquid crystal B3 in this way depends on the resolution of the liquid crystal light valve, but even with the current technology it is 501 p/mm.
It is already possible to produce a device with a size of about 200 mm x 200 mm, so it is fully expected that about 10,000 x lO,000 pixels can be obtained on one light receiving surface. This number of pixels is much larger than the 480 x 512 pixels of a conventional standard image pickup tube.For example, if the resolution is the same as that of a conventional image pickup tube, you can view an area hundreds of times larger at once. On the other hand, if the field of view is limited, it is possible to achieve a resolution 2 to 30 times that of the conventional method, and it is understood that inspection of the object can be performed with high accuracy and a wide field of view. The optical image formed on the liquid crystal B3 is irradiated to each coordinate unit via the half mirror G by a laser beam whose polarization direction is defined by a polarizer and whose traveling direction is controlled by an appropriate mechanism.
The laser beam incident on the liquid crystal B3 is polarized according to the optical state of the liquid crystal B3, and then reflected by the light reflection NB2 and exits from the liquid crystal.

液晶外へ出たレーザー光は、たとえば往路と同一の帰路
を辿って直進し、前記ハーフミラ−Gで反射した後、検
光子を介して受光・画像処理機構に入射して解析処理さ
れるものである。以上の如く全ての座標をレーザー光で
スキャニングすれば液晶の各座標の光学的状態に対応す
る電気信号が得られることとなり、さらに得られた電気
信号をディジタル処理した後、コンピューターなどによ
り解析処理すれば被検体の表面状態などが正確に検査で
きることになる。レーザー光は指向性に優れ、分解能も
高くスキャニング操作も、ミラー等の制御で容易に実現
できるので液晶B3の光学像に正確に対応した高精度な
画像情報が得られるものである。
The laser light that exits the liquid crystal goes straight, for example, following the same return path as the outgoing path, and after being reflected by the half mirror G, it enters the light receiving and image processing mechanism via an analyzer and is analyzed. be. As described above, by scanning all the coordinates with a laser beam, an electrical signal corresponding to the optical state of each coordinate of the liquid crystal can be obtained, and after digitally processing the obtained electrical signal, it is analyzed by a computer etc. This means that the surface condition of the object can be accurately inspected. Laser light has excellent directivity, high resolution, and scanning operations can be easily realized by controlling mirrors, etc., so that highly accurate image information that accurately corresponds to the optical image on the liquid crystal B3 can be obtained.

第2図は液晶ライトバルブとして透過式のものを使用し
た場合の簡略概念図であり、反射式ライトバルブより光
反射層を取り除き、レーザー光を液晶ライトバルブ内で
反射させずに透過させて図中左側で受光するものである
。この場合は読み取り光が、光導電層B1に投影された
被検体投影像を書き換ないことが必須条件となり、した
がって読み取り光としては光導電層B1の素材である硫
化亜鉛に対し感度を有しない光、たとえばヘリウムイオ
ンレーザ−などの可視光線レーザを用いることが好まし
いものである。また透過式においては、偏光子、検光子
の配置角度を適宜調節することにより得られる光学像を
ポジ像とするかネガ像とするかは容易に選択できるので
、たとえばもう一つの液晶ライトバルブを適所に配置し
て比較となるべき標準光像を結像しておき、両者をポジ
、ネガの関係で光学的に重合すれば両者の相違箇所が光
学的に自明となるなど種々の応用も考えられる。
Figure 2 is a simplified conceptual diagram when a transmission type liquid crystal light valve is used. Light is received on the left side of the center. In this case, it is essential that the reading light does not rewrite the projected image of the subject projected onto the photoconductive layer B1, and therefore the reading light has no sensitivity to zinc sulfide, which is the material of the photoconductive layer B1. It is preferred to use light, for example a visible laser such as a helium ion laser. In addition, in the transmission type, it is easy to select whether the optical image obtained is a positive image or a negative image by appropriately adjusting the arrangement angle of the polarizer and analyzer. Various applications are being considered, such as placing a standard light image in an appropriate location to form a comparison, and then optically polymerizing the two in a positive/negative relationship, making the differences between the two optically obvious. It will be done.

次に本発明の詳細を図示した実施例にもとづいて説明す
る。第3図は反射式液晶ライトバルブを使用した場合の
表面検査法の概略図である。液晶ライトバルブ5を図中
中央として図中左側、すなわち光導電層5a前方にハー
フミラ−4を介して投影レンズ2、被検体1をたとえば
一直線上に並設し、該直線上に近接して書き込み光1f
iX3を配置し、上記ハーフミラー−4で反射した照明
光が被検体lを照射し得るよう構成されている。他方図
中右側、すなわち液晶5b後方には読み取り用光源とし
てのレーザー発振器13が前段にレーザーX−Yスキャ
ニング機構12、偏光子11、集光レンズ10を、たと
えばその光路が直線となるよう配置して設けられ、ハー
フミラ−9を透過したレーザー光が液晶5bの光学像を
各座標単位に照射し得るよう配置されている。又液晶5
bからの反射光を受光し得る位置には検光子を前方に配
して、レーザー光の波長に対して高速応答可能で且つ高
感度の光電子増倍管を使用した受光部が設けら゛れ、さ
ら パに該受光部には、該受光部より出力される電気信
号をディジタル処理した後、各処理を実行する画像処理
装置が接続されている。
Next, details of the present invention will be explained based on illustrated embodiments. FIG. 3 is a schematic diagram of a surface inspection method using a reflective liquid crystal light valve. With the liquid crystal light valve 5 in the center of the figure, the projection lens 2 and the subject 1 are arranged side by side in a straight line through a half mirror 4 on the left side in the figure, that is, in front of the photoconductive layer 5a, and writing is performed close to the straight line. light 1f
iX3 is arranged so that the illumination light reflected by the half mirror 4 can illuminate the subject l. On the other hand, on the right side in the figure, that is, behind the liquid crystal 5b, a laser oscillator 13 as a reading light source is preceded by a laser X-Y scanning mechanism 12, a polarizer 11, and a condensing lens 10, arranged so that the optical path thereof is a straight line. The half mirror 9 is provided so that the laser beam transmitted through the half mirror 9 can irradiate an optical image of the liquid crystal 5b in each coordinate unit. Also liquid crystal 5
An analyzer is placed in front of the analyzer at a position where it can receive the reflected light from the laser beam, and a light receiving section using a highly sensitive photomultiplier tube that can respond quickly to the wavelength of the laser beam is installed. Furthermore, the light receiving section is connected to an image processing device that digitally processes the electrical signals output from the light receiving section and then executes various processes.

次に本実施例における作動態様について述べる。Next, the operating mode in this embodiment will be described.

所定位置に配置されたたとえばtCチップや7°リント
基板などの被検体1は、書き込み光源3より発した、た
とえば紫外線により照射され、その表面の投影像を光導
電層Sa上に結像する。この投影像を被検体1の等倍像
とするか拡大、縮小像とするかは被検体の大きさや検査
内容によって適宜選択すれば良く、たとえば投影レンズ
2を調節することによりプリント基板では低倍率とし、
ICやLSIチップでは拡大するなどして、光導電層5
a上に投影すれば良い。前述したように、液晶ライトバ
ルブの画素数は現行技術でも1oooo xi。
A subject 1, such as a tC chip or a 7° lint substrate, placed at a predetermined position is irradiated with, for example, ultraviolet light emitted from a writing light source 3, and a projected image of its surface is formed on a photoconductive layer Sa. Depending on the size of the subject and the content of the test, it is appropriate to select whether this projected image is a same-size image of the subject 1, an enlarged image, or a reduced image.For example, by adjusting the projection lens 2, a printed circuit board with a low magnification year,
In IC and LSI chips, the photoconductive layer 5 is
It is sufficient to project it onto a. As mentioned above, the number of pixels of the liquid crystal light valve is 1oooo xi even with the current technology.

OOO画素程度は実現可能なので被検体像を拡大投影し
ても、通常は被検体像が液晶ライトバルブの視野から逸
脱することはなく、被検査体像は一括して光導電層5a
上に投影できるものである。光導電層5aに被検体1の
形象が投影されると液晶5bにも電気光学効果により投
影像に対応した光学像が形成され、該光学像をレーザー
スキャニングすることにより被検体1の表面検査が間接
的に可能となるが、液晶5b上の光学像のスキャニング
は次の方法による。たとえばレーザー発振器13より発
振されたヘリウムネオンレーザ−などのレーザー光はレ
ーザーX−Yスキャニング機構12により照射角度を制
御され、偏光子を通過させて直線偏光となし、集光レン
ズで光束を収束させてハーフミラ−9を透過させた後、
液晶5b上の光学像を各座標ごとに照射する。液晶5b
に入射したレーザー光は液晶各部の光学的状態に対応し
て光学的変調を受けた後、光反射層で反射して、たとえ
ば往路と同一経路を逆に経て液晶5b外へ出る。
Since OOO pixels can be realized, even if the image of the object to be examined is enlarged and projected, the image of the object to be examined usually does not deviate from the field of view of the liquid crystal light valve, and the image of the object to be examined is collectively projected onto the photoconductive layer 5a.
It can be projected onto the surface. When the image of the object 1 is projected onto the photoconductive layer 5a, an optical image corresponding to the projected image is formed on the liquid crystal 5b due to the electro-optic effect, and the surface of the object 1 can be inspected by laser scanning the optical image. Although it is possible to scan the optical image on the liquid crystal 5b indirectly, the following method is used to scan the optical image on the liquid crystal 5b. For example, a laser beam such as a helium neon laser oscillated by a laser oscillator 13 has its irradiation angle controlled by a laser X-Y scanning mechanism 12, passes through a polarizer to become linearly polarized light, and is converged by a condensing lens. After passing through half mirror 9,
An optical image on the liquid crystal 5b is irradiated for each coordinate. LCD 5b
The incident laser light is optically modulated in accordance with the optical state of each part of the liquid crystal, and then reflected by the light reflection layer and exits the liquid crystal 5b, for example, through the same path as the forward path in the opposite direction.

液晶5bへ出たレーザー光は前記ハーフミラ−9でたと
えば進路と直角方向に反射した後検光子8を通過して受
光部7へ入射する。検光子8は前記偏光子11と固有の
関係で配置されているので、検光子8を通過して受光部
7へ入射するレーザー光の光量を測定すれば液晶5b内
での偏光状態が分析でき、さらには液晶5bの光学的状
態が特定できるものである。受光部7へ入射したレーザ
ー光の情報は電気信号に変換されて後段に接続された画
像処理装置6へ出力され、ディジタル処理されることに
より、たとえば被検体表面の欠陥箇所や汚損箇所などが
検出できるものである。尚、図示しないが、被検体が透
光性物質である場合には書き込み光源3を図中左側へ移
動して被検査体を背後より照明し、被検体を通過した透
過光で光導電層5a上に投影像を結像すれば、該投影像
は被検体の内部性状を二次元的に表現したものとなるの
で、該投影像に対応して液晶5bに表われる光学像を適
宜手段により分析すれば透光性被検体の内部性状を検査
することもでき、たとえばガラス内部の傷や水溶液中の
不純物検出なども可能となるものである。また画像処理
過程の全部または一部をソフトウェア上で管理するとと
もに該ソフトウェアを適宜交換可能とすれば、ソフトウ
ェアの取り替えで種々の検査にも対応可能となり、IC
やLSIチップの回路検査等の検査にとどまらず、印刷
物の検査や被検体上の特定物の識別など多種多用な検査
への対応が期待できるものである。また図示しないが、
さらに−組の上記装置部の必要部分を併設して被検体か
ら得られる画像情報と比較し、両者の相違点を検知する
方法なども任意に採用されうるちのである。
The laser beam emitted to the liquid crystal 5b is reflected by the half mirror 9, for example, in a direction perpendicular to its path, and then passes through the analyzer 8 and enters the light receiving section 7. Since the analyzer 8 is arranged in a unique relationship with the polarizer 11, the polarization state within the liquid crystal 5b can be analyzed by measuring the amount of laser light that passes through the analyzer 8 and enters the light receiving section 7. Furthermore, the optical state of the liquid crystal 5b can be specified. Information on the laser light incident on the light receiving unit 7 is converted into an electrical signal and output to the image processing device 6 connected to the subsequent stage, where it is digitally processed to detect, for example, defects or stains on the surface of the object. It is possible. Although not shown, if the object to be inspected is a translucent material, the writing light source 3 is moved to the left side in the figure to illuminate the object from behind, and the transmitted light that has passed through the object is used to illuminate the photoconductive layer 5a. If a projected image is formed on the top, the projected image becomes a two-dimensional representation of the internal properties of the subject, so the optical image appearing on the liquid crystal 5b corresponding to the projected image is analyzed by appropriate means. This makes it possible to inspect the internal properties of a translucent specimen, such as detecting scratches inside glass or impurities in an aqueous solution. In addition, if all or part of the image processing process is managed on software and the software can be replaced as appropriate, it will be possible to handle various inspections by replacing the software, and IC
It can be expected to be applicable not only to inspections such as circuit inspections and LSI chip inspections, but also to a wide variety of inspections such as inspection of printed matter and identification of specific objects on objects. Also, although not shown,
Furthermore, a method may be arbitrarily adopted in which the necessary parts of the above-mentioned apparatus sections of the set are installed side by side and compared with the image information obtained from the subject to detect differences between the two.

第4図は透過式液晶ライトバルブを用いた場合の実施例
であり、第3図と異なるのはレーザー光の読み取り位置
である。本実施例ではレーザー光は液晶5bに入射した
後、液晶5bの光学的状態に対応して偏光し、そのまま
直進することにより光導電Nb3内を透過して液晶ライ
トバルブ外へ出ることとなる。したがってレーザー光を
受光部7へ反射案内するハーフミラ−9は液晶ライトバ
ルブ5と書き込み光の反射案内用ハーフミラ−4との間
に配置され、この場合書き込み光と読み取り光は光導電
層5aとハーフミラ−9間で同一光路をとるので、光導
電層5aはレーザー光に感度を有さす、また受光部7は
書き込み光に対し感度を有さないことが望ましいもので
ある。尚、反射式、透過式ともに各装置の配置は他にも
いろいろ考えられるが、被検体の形象を液晶ライトバル
ブに書き込み、それに対応して液晶上に形成される光学
像をレーザースキャニングにより読み取ることが可能で
あれば、各種レンズ、偏光子、検光子、各装置、書き込
み光源、読み取り光源の数や配置、さらには種類は任意
に採用され得るものである。
FIG. 4 shows an embodiment using a transmissive liquid crystal light valve, and the difference from FIG. 3 is the reading position of the laser beam. In this embodiment, after the laser beam is incident on the liquid crystal 5b, it is polarized according to the optical state of the liquid crystal 5b, and travels straight, passing through the photoconductive Nb3 and exiting the liquid crystal light valve. Therefore, the half mirror 9 for reflecting and guiding the laser beam to the light receiving section 7 is disposed between the liquid crystal light valve 5 and the half mirror 4 for reflecting and guiding the writing light. Since the same optical path is taken between -9 and 9, it is desirable that the photoconductive layer 5a has sensitivity to laser light, and that the light receiving section 7 has no sensitivity to writing light. Although there are many other possible arrangements for both reflective and transmissive devices, it is possible to write the shape of the object on the liquid crystal light valve and read the corresponding optical image formed on the liquid crystal using laser scanning. If possible, the number, arrangement, and type of various lenses, polarizers, analyzers, devices, writing light sources, and reading light sources may be arbitrarily adopted.

本発明によれば、液晶ライトバルブを媒介として被検体
像を間接的にレーザースキャニングすることにより、従
来の撮像管や固体撮像素子では困難であった解像度の良
い被検体の検査が、視野を限定されることなく容易に可
能となるものである。
According to the present invention, by indirect laser scanning of the object image using a liquid crystal light valve, inspection of the object with good resolution, which was difficult with conventional image pickup tubes and solid-state image sensors, is possible due to the limited field of view. This is easily possible without having to do so.

またレーザースキャニングもミラー等の操作で高速且つ
連続してなされるので、従来のように撮像管と被検体の
位置関係を機械的に移動する必要もなく、検査時間が大
幅に短縮できるものであり、さらに得られる電気信号も
コンピューターなどで解析処理することにより検査内容
によってはリアルタイムな検査が可能となるものである
。また検査方法も非接触であるので被検体像が光導電層
に投影し得るものでありさえずれば被検体の大きさや形
状、表面状態によって検査対象が限定されることもなく
、さらに被検体が透光性のものであれば表面性状の検査
にとどまらず内部性状の検査も可能となるので従来、検
査内容や被検体の属性の相違により別々の装置でなされ
ていた広範な検査が同一装置で可能となるものである。
In addition, since laser scanning is performed continuously and at high speed by operating mirrors, there is no need to mechanically move the positional relationship between the image pickup tube and the subject as in the past, and the inspection time can be significantly shortened. Furthermore, by analyzing and processing the obtained electrical signals using a computer or the like, real-time inspection becomes possible depending on the inspection content. In addition, since the inspection method is non-contact, the image of the subject can be projected onto the photoconductive layer, and the subject to be inspected is not limited by the size, shape, or surface condition of the subject. If it is translucent, it is possible to inspect not only surface properties but also internal properties, so a wide range of inspections that were previously performed using separate devices due to differences in inspection content and attributes of the test object can now be performed using the same device. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反射式の液晶ライトバルブを使用したときの本
発明の簡略概念図、第2図は透過式の液晶ライトバルブ
を使用したときの本発明の筒路4既念図、第3図は反射
式の液晶ライトバルブを使用したときの実施例、第4図
は透過式の液晶ライトバルブを使用したときの実施例で
ある。 A:被検体、   B;液晶ライトバルブ、B1:光導
電層、 Bl光反射層、 B3:液晶、   C:受光・画像処理機構、D=レー
ザー発振・制御機構、 E;書き込み光源、F:投影レンズ、 G:ハーフミラ−, 1:被検体、   2:投影レンズ、 3:書き込み光源、4:ハーフミラ−,5:液晶ライト
バルブ、 5a:光導電層、 5b:液晶、 6:画像処理機構、7:受光部、 8;検光子、   9:ハーフミラ−、lO:集光レン
ズ、 11:偏光子、 12:レーザーX−Yスキャニング機構、13:レーザ
ー発振器。 特許出願人 ダックエンジニアリング株式会社第3図 第4図 槃 1 図 第2図 日
Fig. 1 is a simplified conceptual diagram of the present invention when a reflective liquid crystal light valve is used, Fig. 2 is a conceptual diagram of the present invention when a transmissive liquid crystal light valve is used, and Fig. 3 is a conceptual diagram of the present invention when a transmissive liquid crystal light valve is used. 4 shows an example in which a reflective liquid crystal light valve is used, and FIG. 4 shows an example in which a transmissive liquid crystal light valve is used. A: Object, B: Liquid crystal light valve, B1: Photoconductive layer, Bl light reflective layer, B3: Liquid crystal, C: Light reception/image processing mechanism, D=Laser oscillation/control mechanism, E: Writing light source, F: Projection Lens, G: half mirror, 1: object, 2: projection lens, 3: writing light source, 4: half mirror, 5: liquid crystal light valve, 5a: photoconductive layer, 5b: liquid crystal, 6: image processing mechanism, 7 : Light receiving section, 8; Analyzer, 9: Half mirror, IO: Condensing lens, 11: Polarizer, 12: Laser X-Y scanning mechanism, 13: Laser oscillator. Patent applicant Duck Engineering Co., Ltd. Figure 3 Figure 4 Figure 1 Figure 2 Date

Claims (1)

【特許請求の範囲】 1)被検体を液晶ライトバルブに投影し、その投影像を
レーザースキャニングし、投影画像に対応した電気信号
を得ることを特徴とする被検体の非接触検査方法。 2)透光性被検体を背後より照明し、透過光を液晶ライ
トバルブに投影して内部性状検査を行うことを特徴とす
る前記特許請求の範囲第1項記載の被検体の非接触検査
方法。 3)IC回路、LSI回路等が描画されたウェハーやプ
リント基板のパターンを被検体とする前記特許請求の範
囲第1項記載の被検体の非接触検査方法。 4)液晶ライトバルブとして反射式あるいは透過式を用
いることを特徴とする前記特許請求の範囲第1項記載の
被検体の非接触検査方法。 5)液晶ライトバルブの光導電層として硫化亜鉛を使用
し、書き込み光として紫外線を用い、読み取り光として
可視光線を用いることを特徴とする前記特許請求の範囲
第1項記載の被検体の非接触検査方法。 6)液晶ライトバルブ上の投影像を標準品より得られる
情報と比較することにより、被検体の検査を行うことを
特徴とする前記特許請求の範囲第1項記載の被検体の非
接触検査方法。
[Scope of Claims] 1) A non-contact inspection method for a subject, which comprises projecting the subject onto a liquid crystal light valve, scanning the projected image with a laser, and obtaining an electrical signal corresponding to the projected image. 2) A non-contact inspection method for a subject as claimed in claim 1, characterized in that the internal property inspection is performed by illuminating the translucent subject from behind and projecting the transmitted light onto a liquid crystal light valve. . 3) A non-contact inspection method for a test object according to claim 1, wherein the test object is a pattern of a wafer or a printed circuit board on which an IC circuit, an LSI circuit, or the like is drawn. 4) A non-contact inspection method for a subject as claimed in claim 1, characterized in that a reflective type or a transmissive type is used as the liquid crystal light valve. 5) Non-contact testing of a subject according to claim 1, characterized in that zinc sulfide is used as the photoconductive layer of the liquid crystal light valve, ultraviolet rays are used as writing light, and visible light is used as reading light. Inspection method. 6) A method for non-contact inspection of a subject according to claim 1, characterized in that the subject is inspected by comparing a projected image on a liquid crystal light valve with information obtained from a standard product. .
JP13860885A 1985-06-24 1985-06-24 Method for inspecting object to be inspected in non-contact state Pending JPS61296243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13860885A JPS61296243A (en) 1985-06-24 1985-06-24 Method for inspecting object to be inspected in non-contact state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13860885A JPS61296243A (en) 1985-06-24 1985-06-24 Method for inspecting object to be inspected in non-contact state

Publications (1)

Publication Number Publication Date
JPS61296243A true JPS61296243A (en) 1986-12-27

Family

ID=15226060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13860885A Pending JPS61296243A (en) 1985-06-24 1985-06-24 Method for inspecting object to be inspected in non-contact state

Country Status (1)

Country Link
JP (1) JPS61296243A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599049A (en) * 1979-01-24 1980-07-28 Toshiba Corp Defect detector
JPS5651604A (en) * 1979-10-03 1981-05-09 Dainippon Printing Co Ltd Pattern checking method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599049A (en) * 1979-01-24 1980-07-28 Toshiba Corp Defect detector
JPS5651604A (en) * 1979-10-03 1981-05-09 Dainippon Printing Co Ltd Pattern checking method

Similar Documents

Publication Publication Date Title
KR0174570B1 (en) Scanning type probe microscope
US7580124B2 (en) Dual stage defect region identification and defect detection method and apparatus
US8351683B2 (en) Inspection apparatus and inspection method
US20100014075A1 (en) Method and Apparatus for Inspecting Defects
KR20010034323A (en) Optical inspection method and apparatus
KR102248091B1 (en) Automatic optical inspection method
US4123170A (en) Apparatus for detecting defects in patterns
KR100876257B1 (en) Optical measuring method and device therefor
US4448527A (en) Method and apparatus for detecting surface defects in mechanical workpieces
JPH1097053A (en) Inspection device for pattern defect
JPH0798216A (en) Method and device for inspecting appearance of semiconductor device
GB2095398A (en) Detecting surface defects in workpieces
JPS61296243A (en) Method for inspecting object to be inspected in non-contact state
KR100416497B1 (en) Pattern Inspection System
JP2924289B2 (en) Method and apparatus for measuring glass amount of circuit board
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JPH1130590A (en) Foreign matter and defect inspecting device, and manufacture of semiconductor device
US7457454B1 (en) Detailed grey scale inspection method and apparatus
JPH10293103A (en) Method and equipment for optical measurement and optical measuring equipment for patterned substrate
Baker Surface damage metrology: precision at low cost
JPH04344447A (en) Detecting device for defect in transparent glass substrate
JP3572545B2 (en) Pass / fail judgment method of substrate
JPH02201208A (en) Defect inspector
JP2021167794A (en) Defect inspection apparatus, defect inspection method, and scattered light detection system
JPH11190699A (en) Translucent material nonuiformity inspection method and device therefor