JPS61295616A - Electromagnetic device - Google Patents

Electromagnetic device

Info

Publication number
JPS61295616A
JPS61295616A JP13857085A JP13857085A JPS61295616A JP S61295616 A JPS61295616 A JP S61295616A JP 13857085 A JP13857085 A JP 13857085A JP 13857085 A JP13857085 A JP 13857085A JP S61295616 A JPS61295616 A JP S61295616A
Authority
JP
Japan
Prior art keywords
waveform
amorphous magnetic
capacitor
magnetic flux
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13857085A
Other languages
Japanese (ja)
Inventor
Hidenori Kakehashi
英典 掛橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13857085A priority Critical patent/JPS61295616A/en
Publication of JPS61295616A publication Critical patent/JPS61295616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the magnetostrictions of the amorphous magnetic thin bands into 0 or the vicinity of 0 and to maintain the symmetrical property of the hysteresis curve generating in each amorphous magnetic thin band by a method wherein a capacitor is provided bteween the intermediate lead-out conductor of the primary winding of an oscillating transformer and the grounding conductor thereof. CONSTITUTION:A capacitor C is provided between the intermediate lead-out conductor of the primary winding of an oscillating transformer ST, which is constituted of saturable cores consisting of amorphous magnetic thin bands, and the grounding conductor thereof. However, when a DC electric power E is being impressed on the circuits and the electric power E is turned OFF, the oscillation operation is made to gradually extinguish by the charge being stored in the capacitor C and the residual magnetic flux is dwindled into 0 or the vicinity of 0. As the residual magnetic flux Br is left to stand in 0 by the circuits, the symmetrical property of the hysteresis waveform is held and the effect of preventing an abnormal waveform from generating can be obtained. The symmetrical property of the hysteresis waveform is maintained in such a way, and at the same time, the waveform is a high-angle type and can be obtained in low loss because of the amorphous magnetic thin bands, and furthermore, the waveform distortion is eliminated, and moreover, the highly reliable saturable cores can be realized.

Description

【発明の詳細な説明】 [技術分野] 本発明は、アモルファス磁性薄帯を用いた電磁装置に関
するものである。
Detailed Description of the Invention [Technical Field] The present invention relates to an electromagnetic device using an amorphous magnetic ribbon.

[背景技術J 一般に可飽和リアクトル、磁気増幅器等に用いられる可
飽和コア材料としては角型特性が要求されることから、
高周波ではパーマロイ等が用いられ、フェライトは適当
でない。アモルファス磁性薄帯は角型特性に優れ、且つ
高周波損失がパーマロイよりも低いことから可飽和コア
に最適である。
[Background Art J Since square characteristics are generally required for saturable core materials used in saturable reactors, magnetic amplifiers, etc.
For high frequencies, permalloy or the like is used, and ferrite is not suitable. Amorphous magnetic ribbons have excellent square properties and lower high frequency loss than permalloy, making them ideal for saturable cores.

アモルファス磁性薄帯の組成は一般lご、メタル元素(
Fe、 Co、 Ni)及びメタロイド元素(S i。
The composition of an amorphous magnetic ribbon is generally the same as metal elements (
Fe, Co, Ni) and metalloid elements (Si.

P、C,8%)の元素の複数の組み合わせからなり、例
えばF etas i+oB 12、Co s i C
r 26 C+ s等がある。アモルファス磁性薄帯の
製法は、高速急冷法という独特の製法で、前記の組成の
合金を溶融し、急速に冷却させて、その構造を結晶のな
い非晶質状態に凍結するものである。
P, C, 8%), for example, Fetas i+oB 12, Cos i C
There are r 26 C+ s, etc. The manufacturing method for amorphous magnetic ribbon is a unique manufacturing method called the high-speed quenching method, in which an alloy having the above composition is melted and rapidly cooled to freeze its structure into an amorphous state with no crystals.

アモルファス磁性薄帯の形状(厚み、幅、表面状態)は
、急速な冷却条件に依存するが、厚みは5μlI〜10
0μ鎗と薄く、このことが渦電流損を減少させ、高周波
特性を向上させる原因のひとつになっている。また、急
冷後、可飽和コアとしての特性を大幅に向上させるため
に通常焼鈍が行なわれる。焼鈍は、焼鈍時間、温度、昇
温速度、降温速度、磁場等の条件の設定が必要で、アモ
ルファス磁性薄帯の組成、使用コアの目的等に応じて種
々の条件が設定される。磁歪がOあるいはO近傍の組成
のものは焼鈍を適性に行なうことにより、極めて角型性
のよい可飽和コアに最適なものが実現できるものである
The shape (thickness, width, surface condition) of the amorphous magnetic ribbon depends on the rapid cooling conditions, but the thickness ranges from 5 μl to 10 μl.
It is as thin as 0μ, which is one of the reasons for reducing eddy current loss and improving high frequency characteristics. Further, after quenching, annealing is usually performed to significantly improve the properties as a saturable core. Annealing requires setting of conditions such as annealing time, temperature, temperature increase rate, temperature decrease rate, magnetic field, etc., and various conditions are set depending on the composition of the amorphous magnetic ribbon, the purpose of the core used, etc. If the composition has a magnetostriction of O or near O, an optimum saturable core with extremely good squareness can be realized by appropriately annealing.

磁歪0の組成は、Fe4.sCo、o、sS i+sB
 +osF elco72P +8s aA O,3、
CotoMnsB j、5s iz、s等がある0例と
してCot6MnsB 9.5s i+4.5を用い、
焼鈍条件を、昇温速度20℃/winで昇温し、420
℃ 20分温度を保持し、その後、水中冷却して磁気特
性を調査したところ、第3図(CoyoMnsB 9.
5s iz、s)に示すように周波数20kH2の交流
磁気特性は、角型比94%と極めて角型性に優れ、且つ
保磁力250m0eと低損失なコアを実現することがで
きた。尚、IJ&3図において横軸を磁化力H(+mO
e)、縦紬を磁束密度B(KG)とし、図中の81゜は
飽和磁束密度、Brは残留磁束密度、Haは保磁力であ
る。ここで、第3図においで、飽和磁束密度B、、#8
.4KG、残留磁束密度Br#7.9KG、保磁力Hc
# 250 m。
The composition of magnetostriction 0 is Fe4. sCo, o, sS i+sB
+osF elco72P +8s aA O,3,
Using Cot6MnsB 9.5s i+4.5 as an example with CotoMnsB j, 5s iz, s, etc.,
The annealing conditions were to raise the temperature at a temperature increase rate of 20°C/win, and to
The temperature was maintained at ℃ for 20 minutes, and then the magnetic properties were investigated by cooling in water.
As shown in Fig. 5s iz, s), the AC magnetic properties at a frequency of 20 kHz were extremely excellent in squareness with a squareness ratio of 94%, and a core with a coercive force of 250 m0e and low loss could be realized. In addition, in the IJ&3 diagram, the horizontal axis is the magnetizing force H (+mO
e), vertical pongee is assumed to have a magnetic flux density B (KG), 81° in the figure is the saturation magnetic flux density, Br is the residual magnetic flux density, and Ha is the coercive force. Here, in Fig. 3, the saturation magnetic flux density B, #8
.. 4KG, residual magnetic flux density Br#7.9KG, coercive force Hc
#250m.

e1角型比B r / B lo # 94%である。e1 squareness ratio B r / B lo # is 94%.

上記のような可飽和コアをスイッチングレギエレータ、
インバータ、α灯装置へ適用すると、従来のパーマロイ
に比べ優れた電気特性を有する。しかしながら、機器へ
アモルファス磁、性薄帯を応用すると、磁気特性の劣化
が問題を引ト起こすことになる。
Reggiator switching saturable core, like above
When applied to inverters and alpha lamp devices, it has superior electrical properties compared to conventional permalloy. However, when amorphous magnetic ribbons are applied to equipment, problems arise due to deterioration of magnetic properties.

第4図は前述のCo7oMngBsa5siz+sの組
゛成のアモルファス磁性薄帯を用いた可飽和コアにて発
振トランスSTを構成し、この発振トランスSTを用い
た2石のブロッキング発振器の回路図を示すものである
。このブロッキング発振器は直流電源Eを電源とし、2
つのトランジスタT r、。
Fig. 4 shows a circuit diagram of a two-stone blocking oscillator using an oscillation transformer ST configured with a saturable core using an amorphous magnetic ribbon of the aforementioned Co7oMngBsa5siz+s composition. be. This blocking oscillator uses DC power supply E as a power source, and
one transistor T r,.

Tr2、抵抗R,,R2、上記発振トランジスタ等から
構成され、発振トランスSTの出力側巻線n。からの出
力電圧をダイオードプリ7ノDB’t’整流し、さらに
コンデンサCIで平滑して負荷1に電源を供給している
The output winding n of the oscillation transformer ST is composed of Tr2, resistors R, , R2, the above-mentioned oscillation transistors, etc. The output voltage is rectified by the diode pre-7 DB't' and further smoothed by the capacitor CI to supply power to the load 1.

直流電源Eの電圧が加わると、スイッチSWを介してi
3.12、i、の3つの経路で電流が流れ、トランジス
タTrlyTr2のベース電流となるが、トランジスタ
Tr、とTr2のベース・エミッタ電圧とベース電流の
特性(Vaε−Is)は全く同じではないために、トラ
ンジスタTr、とTr2のコレクタ電流には大小の差が
生じる。今、トランジスタTr1のコレクタ電流が大き
いと仮定すれば、可飽和コアからなる発振トランスST
の巻線■−■−〇間には図示した点線の方向に電圧が誘
起する。この電圧はトランジスタTr、のべ一入電流を
増加させ、トランジスタTr2のベース電流を減少させ
るため、電流ic、は増加し、電流ic2は減少する。
When the voltage of DC power supply E is applied, i
3.12, The current flows in the three paths i, and becomes the base current of the transistor TrlyTr2, but the base-emitter voltage and base current characteristics (Vaε-Is) of the transistors Tr and Tr2 are not exactly the same. Furthermore, a difference in magnitude occurs between the collector currents of the transistors Tr and Tr2. Now, assuming that the collector current of transistor Tr1 is large, an oscillation transformer ST consisting of a saturable core
A voltage is induced between the windings ■-■-〇 in the direction of the dotted line shown in the figure. This voltage increases the total input current of the transistor Tr and decreases the base current of the transistor Tr2, so the current ic increases and the current ic2 decreases.

すると、さらに点線方向の誘起電圧は増加し、トランジ
スタTr、はオン、トランジスタTr2はオフとなる。
Then, the induced voltage in the direction of the dotted line further increases, transistor Tr is turned on, and transistor Tr2 is turned off.

第5図は可飽和コアの交流ヒステリシス曲線を示すもの
であり、上記トランジスタT「1がオン、トランジスタ
Tr2がオフの状態は、第5図のOX開に相当する。f
jfJ5図のX点に達すると磁気飽和状態になり、発振
トランスSTの巻線■−■−■開には電圧が誘起せず、
電流iclは減少し、さらに■−■間に生じる誘起電力
が発生し、トランジスタTr2のベース電流を流す結果
になり、トランジスタTr、がオフ、トランジスタTr
2がオンとなる。この状態では第5図でX点からY点に
ループをたどる。Y点に達すると、先と同じ原理でトラ
ンジスタTr2がオフ、トランジスタTrlがオンとな
り、Y点からX点へ移行し、以下発振を繰り返す。
FIG. 5 shows the AC hysteresis curve of the saturable core, and the state where the transistor T1 is on and the transistor Tr2 is off corresponds to OX open in FIG.
When the X point in the jfJ5 diagram is reached, magnetic saturation occurs, and no voltage is induced in the windings of the oscillation transformer ST.
The current icl decreases, and an induced power is generated between ■ and ■, causing the base current of the transistor Tr2 to flow, turning off the transistor Tr, and turning off the transistor Tr.
2 is turned on. In this state, a loop is traced from point X to point Y in FIG. When the point Y is reached, the transistor Tr2 is turned off and the transistor Trl is turned on according to the same principle as before, and the transition is made from the Y point to the X point, and the oscillation is repeated thereafter.

上述の原理により発振を行なうが、電源を断とルなとき
に発振トランスSTの可飽和コアの特性に影響が生じる
。すなわち、第5図で飽和状態、すなわちX点で電源が
切れた場合、磁化力HはOとなり、磁束密度Brの状態
で発振が停止する。
Although oscillation is performed according to the above-mentioned principle, the characteristics of the saturable core of the oscillation transformer ST are affected when the power is cut off. That is, when the power is turned off at the saturation state in FIG. 5, that is, at point X, the magnetizing force H becomes O, and oscillation stops at the magnetic flux density Br.

可飽和コアのアモルファス磁性薄帯には残留磁束が存在
する。この状態で放置されると、第6図に示すようにヒ
ステリシスループの形状が変化し、非対称な形状とな“
ることを発見した。第6図(a)は残留磁束密度Brで
放置した場合の波形、同図(b)は残留磁束がなく原点
で放置した場合の波形である。第6図(a)においてイ
は初期特性を、口は残留磁束密度にて放置した場合の特
性を夫々示し、第6図(b)においてイは初期特性を、
口は原点で放置した場合の特性を夫々示す。残留磁束密
度B「、原点放置の場合ともに保磁力の増加が認められ
るが、原点放置の場合は波形は対称で、残留磁束密度B
r放置の場合は非対称となっている。この原因について
は明らかではないが、残留磁束密度Br放置の状態で磁
壁の固着化が生じているためだと考えられる。ヒステリ
シス波形の非対称は、発振周波数、出力等電気特性に悪
影響が出るためこの対策が重要且つ必要である。
Residual magnetic flux exists in the amorphous magnetic ribbon of the saturable core. If left in this state, the shape of the hysteresis loop will change and become asymmetrical, as shown in Figure 6.
I discovered that. FIG. 6(a) shows the waveform when left at the residual magnetic flux density Br, and FIG. 6(b) shows the waveform when left at the origin without residual magnetic flux. In Fig. 6(a), A indicates the initial characteristics, and the opening indicates the characteristics when left at the residual magnetic flux density, and in Fig. 6(b), A indicates the initial characteristics.
Each mouth shows the characteristics when left at the origin. Residual magnetic flux density B ", an increase in coercive force is observed in both cases when the origin is left, but when the origin is left, the waveform is symmetrical, and the residual magnetic flux density B
When r is left alone, it is asymmetrical. The cause of this is not clear, but it is thought that it is because the magnetic domain walls are fixed when the residual magnetic flux density Br is left undisturbed. Asymmetry in the hysteresis waveform has an adverse effect on electrical characteristics such as oscillation frequency and output, so countermeasures against this are important and necessary.

[発明の目的] 本発明は上述の点に鑑みて提供したものであって、消磁
手段によりアモル77ス磁性薄帯の磁歪をOまたはO近
傍にし、よってヒステリシスカーブの対称性を維持する
ようにした電磁装置を提供することを目的とするもので
ある。
[Object of the Invention] The present invention has been provided in view of the above-mentioned points, and has a method of reducing the magnetostriction of the Amol 77 magnetic ribbon to O or near O by a degaussing means, thereby maintaining the symmetry of the hysteresis curve. The object of the present invention is to provide an electromagnetic device that has the following characteristics.

[発明の開示1 以下、本発明の実施例を図面により説明する。[Disclosure of the invention 1 Embodiments of the present invention will be described below with reference to the drawings.

上述のようにヒステリシスカーブが非対称となることは
、原点以外の残留磁束が存在した場合に発生する。従っ
て、対称性を得るには電源を断った場合に、原点すなわ
ち残留磁束が0となるように回路の機能つまり消磁手段
を持たせることで実現できるものである。この消磁手段
を実施例を用いて説明する。第1図がその具体回路図で
、2石のブロッキング発振器であり、第4図の回路との
相異は直流電源Eと並列にコンデンサCを接続したとこ
ろにある。つまり、7モル7Tス磁性薄帯からなる可飽
和コアで構成した発振トランスSTの1次巻線の中間引
出線と接地線との開にコンデンサCを設けたものである
As described above, the hysteresis curve becomes asymmetric when there is residual magnetic flux other than the origin. Therefore, symmetry can be achieved by providing a circuit function, that is, a demagnetizing means, so that when the power is turned off, the origin, that is, the residual magnetic flux becomes zero. This degaussing means will be explained using an example. FIG. 1 is a specific circuit diagram of this circuit, which is a two-stone blocking oscillator, and the difference from the circuit shown in FIG. 4 is that a capacitor C is connected in parallel with a DC power source E. That is, a capacitor C is provided between the intermediate lead wire of the primary winding of the oscillation transformer ST, which is composed of a saturable core made of a 7M 7T magnetic ribbon, and the ground wire.

しかして、直流1[tEが回路に印加されている場合は
上述と同様であり、電源Eがオフになった場合、コンデ
ンサC1,:W積された電荷により徐々に発振動作を消
滅させ、残留磁束をOないし0近傍にするものである。
Therefore, when DC 1 [tE is applied to the circuit, it is the same as described above, and when the power supply E is turned off, the oscillation operation is gradually extinguished by the charge accumulated on the capacitor C1,:W, and the remaining The magnetic flux is set to O or near zero.

第2図はこの状態を示すものである。この回路によって
残留磁束Brが0で放置されるため、ヒステリシス波形
の対称性は保たれ、異常波形防止に効果がある。このよ
うに、ヒステリシス波形の対称性が維持されると共に、
アモル77ス磁性薄帯により、高角型で低損失且つ波形
歪がなく、しかも、信頼度の高い可飽和コアを実現する
ことができるものである。尚、本発明の主たる発想は、
残留磁束を0または0近傍で動作停止を行なわせること
により、波形歪を防止することであり、回路的、構成的
に制限を受けないことはもちろんである。
FIG. 2 shows this state. Since this circuit leaves the residual magnetic flux Br at 0, the symmetry of the hysteresis waveform is maintained, which is effective in preventing abnormal waveforms. In this way, the symmetry of the hysteresis waveform is maintained, and
By using the Amol 77 magnetic ribbon, it is possible to realize a highly reliable saturable core that has a high square shape, low loss, and no waveform distortion. The main idea of the present invention is
By stopping the operation when the residual magnetic flux is 0 or near 0, waveform distortion is prevented, and it goes without saying that there are no limitations in terms of circuitry or configuration.

[発明の効果] 本発明は上述のように、アモルファス磁性薄帯と、この
アモルファス磁性薄帯の磁歪を磁歪0または磁歪O近傍
とする消磁手段とを有しているものであるから、消磁手
段によりアモルファス磁性薄帯の磁歪を磁歪Oまたは磁
歪0近傍とすることで、アモルファス磁性薄帯のヒステ
リシス波形の対称性を維持することができ、従って、例
えばこのアモルファス磁性薄帯にて可飽和コアを構成し
た場合には、高角型で低損失且つ波形歪がなく、しかも
、信頼度の高い可飽和コアを実現できる効果を奏するも
のである。
[Effects of the Invention] As described above, the present invention includes an amorphous magnetic ribbon and a demagnetizing means for setting the magnetostriction of the amorphous magnetic ribbon to 0 magnetostriction or around 0 magnetostriction. By setting the magnetostriction of the amorphous magnetic ribbon to O or near magnetostriction 0, it is possible to maintain the symmetry of the hysteresis waveform of the amorphous magnetic ribbon. In this case, it is possible to realize a saturable core having a high square shape, low loss, no waveform distortion, and high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の具体回路図、第2図は同上の
説明図、第3図はアモルファス磁性薄帯の交流磁気特性
図、!$4図は従来例の具体回路図、第5図は同上の説
明図、第6図(a)(b)は同上の動作説明図である。 STは発振トランス、Cはコンデンサを示す。 代理人 弁理士 石 1)長 七 111図 113図 樋采り寂B(KG)
FIG. 1 is a specific circuit diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the same as the above, and FIG. 3 is an AC magnetic characteristic diagram of an amorphous magnetic ribbon. FIG. 4 is a specific circuit diagram of the conventional example, FIG. 5 is an explanatory diagram of the same, and FIGS. 6(a) and 6(b) are explanatory diagrams of the same operation. ST indicates an oscillation transformer, and C indicates a capacitor. Agent Patent Attorney Ishi 1) Chief 7111 Figure 113 Hijika Rijaku B (KG)

Claims (2)

【特許請求の範囲】[Claims] (1)アモルファス磁性薄帯と、このアモルファス磁性
薄帯の磁歪を磁歪0または磁歪0近傍とする消磁手段と
を有する電磁装置。
(1) An electromagnetic device comprising an amorphous magnetic ribbon and a demagnetizing means for making the magnetostriction of the amorphous magnetic ribbon zero or close to zero.
(2)アモルファス磁性薄帯で可飽和コアを形成し、こ
の可飽和コアにてブロッキング発振回路の発振トランス
を構成し、該発振トランスの1次巻線の中間引出線と接
地線との間にコンデンサを設けたことを特徴とする特許
請求の範囲第1項記載の電磁装置。
(2) Form a saturable core with an amorphous magnetic ribbon, configure an oscillation transformer of a blocking oscillation circuit with this saturable core, and connect it between the intermediate lead wire of the primary winding of the oscillation transformer and the ground wire. 2. The electromagnetic device according to claim 1, further comprising a capacitor.
JP13857085A 1985-06-25 1985-06-25 Electromagnetic device Pending JPS61295616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13857085A JPS61295616A (en) 1985-06-25 1985-06-25 Electromagnetic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13857085A JPS61295616A (en) 1985-06-25 1985-06-25 Electromagnetic device

Publications (1)

Publication Number Publication Date
JPS61295616A true JPS61295616A (en) 1986-12-26

Family

ID=15225220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13857085A Pending JPS61295616A (en) 1985-06-25 1985-06-25 Electromagnetic device

Country Status (1)

Country Link
JP (1) JPS61295616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239907A (en) * 1987-03-27 1988-10-05 Toshiba Corp Magnetic core for oscillation transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239907A (en) * 1987-03-27 1988-10-05 Toshiba Corp Magnetic core for oscillation transformer

Similar Documents

Publication Publication Date Title
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
US5032947A (en) Method of improving magnetic devices by applying AC or pulsed current
JPS5946084B2 (en) magnetic core
US4834816A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JPS6332244B2 (en)
JPS61295616A (en) Electromagnetic device
EP0482064B1 (en) Iron-rich metallic glasses having high saturation induction and superior soft ferromagnetic properties at high magnetization rates
JPS61261451A (en) Magnetic material and its production
US4745536A (en) Reactor for circuit containing semiconductor device
Major et al. Development of amorphous Fe-B based alloys for choke and inductor applications
US5062909A (en) Iron rich metallic glasses having saturation induction and superior soft ferromagnetic properties at high magnetization rates
JPS6396252A (en) Heat treatment of toroidal amorphous magnetic core
JPH0257683B2 (en)
Yagi et al. Switching characteristics and domain structures in amorphous toroidal cores
US5296049A (en) Iron rich metallic glasses having high saturation induction and superior soft ferromagnetic properties at high magnetization rates
JPS62167840A (en) Magnetic material and its manufacture
JPS61181114A (en) Manufacture of rolled iron core
JPS6059708A (en) Magnetic core
SU743048A1 (en) Current transformer magnetic core
JPH03238806A (en) Swinging choke coil
Smith et al. Thickness dependence of magnetic losses in amorphous FeBSiC ribbon under step dB/dt magnetization
JPS6267804A (en) Co radical amorphous magnetic core for analogue signal transmission transformer
Ohmori et al. High frequency iron loss of sendust thin ribbons made by a rapid quenching method
JPH0296308A (en) Reactor for semiconductor circuit
Finke et al. A new type of differential transformer core for ground fault circuit interrupters