JPS61293451A - Artificial blood vessel - Google Patents
Artificial blood vesselInfo
- Publication number
- JPS61293451A JPS61293451A JP60113784A JP11378485A JPS61293451A JP S61293451 A JPS61293451 A JP S61293451A JP 60113784 A JP60113784 A JP 60113784A JP 11378485 A JP11378485 A JP 11378485A JP S61293451 A JPS61293451 A JP S61293451A
- Authority
- JP
- Japan
- Prior art keywords
- artificial blood
- blood vessel
- tube
- annular
- polyurethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Prostheses (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は合成高分子、特に弗素含有合成高分子又はポリ
ウレタンを構成成分とする人工血管に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an artificial blood vessel comprising a synthetic polymer, particularly a fluorine-containing synthetic polymer or polyurethane.
本発明は、合成樹脂製の人工血管において、人工血管チ
ューブの外周部に外周に沿って環状突起を設け、この環
状突起の平均半値幅、この環状突起の平均高さ、人工血
管チューブの肉厚及び前記環状突起の数を一定範囲に規
定しすることにより、
キンキング現象(曲げたときの折れる現象)なしに曲げ
られ、破裂強度が大きく、長期開存性の優れた人工血管
を得るようにしたものである。The present invention provides an artificial blood vessel made of synthetic resin, in which an annular projection is provided along the outer periphery of the artificial blood vessel tube, and the average half width of the annular projection, the average height of this annular projection, and the wall thickness of the artificial blood vessel tube are provided. By specifying the number of annular protrusions within a certain range, it is possible to obtain an artificial blood vessel that can be bent without kinking (a phenomenon of breaking when bent), has high bursting strength, and has excellent long-term patency. It is something.
現在、人工血管としては、ポリエステル繊維の編織物で
構成された人工血管と弗素樹脂系の人工血管が主として
用いられている。ポリエステル系の人工血管は、ポリエ
チレンテレフタレートの化学構造をもつ繊維からなり、
キンキング現象を防止するために蛇腹状にクリンプをつ
けて用いられている。一方、弗素樹脂系の人工血管はポ
リテトラフルオロエチレンを構成成分、とじ、これを熱
延伸して血液接触面をフィブリル化(小繊維群化)して
用いられている。Currently, as artificial blood vessels, artificial blood vessels made of knitted fabrics of polyester fibers and artificial blood vessels made of fluororesin are mainly used. Polyester-based artificial blood vessels are made of fibers with a chemical structure of polyethylene terephthalate.
It is used with a bellows-shaped crimp to prevent the kinking phenomenon. On the other hand, fluororesin-based artificial blood vessels are used by binding polytetrafluoroethylene as a component and hot stretching it to form fibrils (fine fibers) on the blood contact surface.
弗素樹脂系の人工血管はポリエステル系の人工血管より
も、小口径人工血管で長期開存性に優れているが、大き
い欠点も有している。それは製造において血液接触面を
フィブリル化する際に、延伸を行っており、この延伸に
よって分子が延伸方向に配向してしまうため、延伸方向
、すなわち人工血管チューブの長さの方向に沿ってさけ
目が出来やすいことである。実際に実験室的にテストし
てみても、又実用してみても人工血管の長さ方向にそっ
ての破裂が生じたり、ちょうど動脈音のように一部が膨
張し、この膨張部分は極めてさけ易くなる。これは人体
における静脈留、動脈音発生に相当する現象であり、実
用に際してこれらの欠点を克服することは極めて重要で
ある。Although fluororesin-based artificial blood vessels are small-diameter artificial blood vessels and have superior long-term patency than polyester-based artificial blood vessels, they also have major drawbacks. When fibrillating the blood-contacting surface during manufacturing, stretching is performed, and this stretching causes the molecules to be oriented in the stretching direction. This is something that is easy to do. Even in actual laboratory tests and practical tests, rupture along the length of the artificial blood vessel occurs, or a part of the artificial blood vessel swells just like an arterial sound, and this swollen part is extremely It becomes easier to avoid. This phenomenon corresponds to venous retention and arterial sound generation in the human body, and it is extremely important to overcome these drawbacks in practical use.
従来弗素樹脂よりなる人工血管においては、この現象を
防止するために、別に延伸した同種のテープ状のものを
、弗素樹脂人工血管の長さ方向と実質的にほぼ直角に、
前記人工血管に巻きつけるようにし、人工血管壁を、長
さ方向と、長さ方向に実質的にほぼ直角的に配向した二
層より構成させてこれを防止する方策がとられている。Conventionally, in artificial blood vessels made of fluororesin, in order to prevent this phenomenon, a separately stretched tape-like material of the same type is stretched substantially perpendicular to the length direction of the fluororesin artificial blood vessel.
Measures have been taken to prevent this by wrapping the artificial blood vessel around the artificial blood vessel and making the artificial blood vessel wall composed of two layers, one in the length direction and one oriented substantially at right angles to the length direction.
あるいは又、長さ方向に分子が配列して縦方向(人工血
管の長さ方向)にそってさけ易くなったことを防止する
ため、たとえばポリプロピレン製の糸をこの人工血管の
外周に螺旋状に巻つけてこの目的を達成しようとする試
みもあるが、これらの方法ではまだ充分に安心して弗素
樹脂系の人工血管を、圧力のかかる動脈系に用いること
に不安がある。Alternatively, in order to prevent the molecules from arranging in the length direction and making it easy to avoid them along the longitudinal direction (the length direction of the artificial blood vessel), for example, polypropylene threads may be spirally wrapped around the outer periphery of the artificial blood vessel. Some attempts have been made to achieve this goal by wrapping the fluororesin-based artificial blood vessels in arterial systems that are subject to high pressure.
現在開発されつつあるポリウレタン系の人工血管も同様
の危険性を秘めており、これらの改良がつよく望まれて
いる。いまひとつの問題点は、キンキング現象である。Polyurethane-based artificial blood vessels that are currently being developed have similar risks, and improvements in these are highly desired. Another problem is the kinking phenomenon.
このキンキング現象は人工血管を末梢血管代用に用いる
とき、ひざやひじの曲げに対して容易に生じ、かなりの
曲率で曲げてもこのキンキング現象をおこさない人工血
管の出現がつよく要望されていた。When an artificial blood vessel is used as a substitute for a peripheral blood vessel, this kinking phenomenon easily occurs when the knee or elbow is bent, and there has been a strong desire for an artificial blood vessel that does not cause this kinking phenomenon even when bent to a considerable degree of curvature.
本発明者は上に提示した問題点の解決のために構造的な
面らか検討し、種々の試みを重ねた結果、本発明に到達
した。In order to solve the above-mentioned problems, the present inventors studied structural aspects and made various attempts, and as a result, they arrived at the present invention.
本発明の要旨とするところは、合成樹脂、殊に弗素樹脂
系又はポリウレタン系の人工血管であって、第1図に示
すように、人工血管チューブ1の外周部2に、該人工血
管の長さ方向に実質的に直角方向に外周に沿って環状突
起3を設け、この環状突起は該人工血管チューブと同種
の素材から構成されており、該人工血管の内径1 (a
m) 、該人工血管チューブの肉厚d (mu) 、該
環状突起の平均の高さ丁(龍)、該環状突起の平均半値
幅マ(、、)及びj2(mu)間隔内の前記環状突起の
平均数丁の間に
一≦マ≦2T −・−・・−・−−−−−一一一一・・
−(1)0.21≦T≦51−・・−−一−・−−−−
−(2)0.1 d≦≦10d−・−一−−・・・〜
(3)なる関係を有することを特徴とする人工血管に間
前記環状突起の幅w(mm)である。環状突起3は外周
部2に形成される環状突起3は前記人工血管チューブ1
と一体に成形されており、上記(1)弐の条件とともに
、この環状突起の数nが、人工血管の内径J(mm)と
、この人工血管の長さl1内の環状突起の平均の数7と
の間に上記(2)式の条件をみたし、かつ人工血管チュ
ーブ1の厚みd(mm)と環状突起の平均半価幅(關)
との間に上記(3)式の条件をみたすと曲げに対して抗
ギンキング性を発揮しかつ強い破裂強度を示すことを本
発明者は見出した。すなわち環状突起の数nが内径lに
対して上記条件より少いと曲げに対する順応性がなくて
キンキング現象を生じて不自然となり、又余りに突起部
分の数が多いと伸縮性に欠けて、あたかも肉厚のチュー
ブのようになって曲げられない。よって上記(2)式の
条件を満たせば容易に急角度に曲げることが出来る。本
発明における環状突起3は該人工血管チューブと同種の
素材で出来ている。The gist of the present invention is to provide an artificial blood vessel made of synthetic resin, particularly fluororesin or polyurethane, in which, as shown in FIG. An annular projection 3 is provided along the outer periphery in a direction substantially perpendicular to the lateral direction, the annular projection 3 is made of the same material as the artificial blood vessel tube, and has an inner diameter 1 (a) of the artificial blood vessel.
m), the wall thickness d (mu) of the artificial blood vessel tube, the average height of the annular process (dragon), the average half-width of the annular process m (,,), and the annular shape within the interval j2 (mu). Between the average number of protrusions, 1≦Ma≦2T −・−・・−・−−−−−1111・・
−(1)0.21≦T≦51−・・−−1−・−−−
−(2) 0.1 d≦≦10d−・−1−−・・・~
(3) The width w (mm) of the annular protrusion is the width of the annular protrusion. The annular protrusion 3 is formed on the outer peripheral part 2 and the annular protrusion 3 is attached to the artificial blood vessel tube 1.
In addition to the condition (1) 2 above, the number n of these annular protrusions is determined by the inner diameter J (mm) of the artificial blood vessel and the average number of annular protrusions within the length l1 of this artificial blood vessel. 7 and satisfy the conditions of formula (2) above, and the thickness d (mm) of the artificial blood vessel tube 1 and the average half-width (mm) of the annular protrusion
The present inventors have discovered that when the condition of the above formula (3) is satisfied between the above conditions, it exhibits anti-ginking properties against bending and exhibits strong bursting strength. In other words, if the number n of annular protrusions is less than the above condition relative to the inner diameter l, there will be no bending flexibility and a kinking phenomenon will occur, resulting in an unnatural appearance.If the number of protrusions is too large, the elasticity will be lacking, making it look like flesh. It becomes like a thick tube and cannot be bent. Therefore, if the condition of the above formula (2) is satisfied, it can be easily bent to a steep angle. The annular projection 3 in the present invention is made of the same material as the artificial blood vessel tube.
(1)式は更に好ましくは一≦マ≦T・・・−−−一−
−・−(1)′の範囲にある。The formula (1) is more preferably 1≦ma≦T...---1-
It is in the range of −・−(1)′.
(2)式は更に好ましくは
0.2N≦7≦41−・−・−・・・・−(2) ’の
範囲にあり、
(3)式は更に好ましくは
0.3 d≦≦5 d−−−−−−−−・−・・−・・
(3)゛の間にある。また人工血管は手術での場合、
縫合に際して、人工血管壁の薄い方が容易であり、その
縫合仕上げの良し悪しによって長期開存性が左右される
ので、吻合し易いこと、縫合しやすいことは大変重要で
ある。吻合や縫合の容易さは人工血管の肉厚によって決
り、薄い方が吻合、縫合に適している。ところが、薄く
なると破裂強度かよりくなって欠点を露呈する・。そこ
で、(3)式に示すように肉厚dと環状突起の半値幅を
規定すると、破裂強度も充分で縫合性、吻合性に優れ、
しかもキンキング現象なしに曲率半径を小さく曲げるこ
とが出来る。本発明は力学的性能に優れ極めて小さい曲
率半径でキンキング現象なしに曲げることが出来る新し
い人工血管を提供するものである。The formula (2) is more preferably in the range of 0.2N≦7≦41--(2)', and the formula (3) is more preferably in the range of 0.3 d≦≦5 d −−−−−−−−・−・・−・・
(3) Between ゛. In addition, when artificial blood vessels are used surgically,
Thinner walls of the artificial blood vessel are easier to suture, and long-term patency is determined by the quality of the suture finish, so it is very important that the anastomosis and suturing are easy. The ease of anastomosis and suturing is determined by the thickness of the artificial blood vessel, and the thinner the wall, the more suitable for anastomosis and suturing. However, as it becomes thinner, its bursting strength becomes weaker, exposing its shortcomings. Therefore, by defining the wall thickness d and the half-width of the annular protrusion as shown in equation (3), the bursting strength is sufficient and the suturing and anastomotic properties are excellent.
Moreover, the radius of curvature can be bent to a small value without any kinking phenomenon. The present invention provides a new artificial blood vessel that has excellent mechanical performance and can be bent with an extremely small radius of curvature without any kinking phenomenon.
本発明は別の表現をすると、人工血管の環状突起物の断
面幅に対して環状突起物の突起高を一定範囲に規制し、
人工血管の直径に対しである範囲の環状突起の数を規定
し、人工血管の肉厚に対して環状突起の断面幅をある範
囲に規制すれば、破裂強度が強(キンキング現象なしに
急カーブに曲げられる人工血管となることを見出したの
である。Expressed in another way, the present invention regulates the protrusion height of the annular protrusion within a certain range with respect to the cross-sectional width of the annular protrusion of the artificial blood vessel,
By specifying the number of annular protrusions within a certain range for the diameter of the artificial blood vessel, and regulating the cross-sectional width of the annular protrusions within a certain range for the wall thickness of the artificial blood vessel, the bursting strength is strong (it is possible to make sharp curves without kinking). They discovered that it can be used as an artificial blood vessel that can be bent.
本発明によれば、内径1(mm)の人工血管においては
該人工血管の中心線4(第2図参照)の曲率半径r(m
u)が1.51以下、更に1.O1以下、更に0.8β
以下にまでキンキング現象なしに曲げることが可能であ
る。これは、本発明に示したように人工血管を構成する
ことによって人工血管が各部とも夫々可なりの自由度を
もって伸縮出来るので、曲げた場合人工血管の曲げの曲
率中心側(内側)は縮みうるし、外側(曲げの中心すな
わち曲率中心より遠い方向)は伸びうる性質が付与され
たためである。According to the present invention, in an artificial blood vessel with an inner diameter of 1 (mm), the radius of curvature r (m
u) is 1.51 or less, and further 1. O1 or less, further 0.8β
It is possible to bend the following without kinking phenomenon. This is because by configuring the artificial blood vessel as shown in the present invention, each part of the artificial blood vessel can expand and contract with a considerable degree of freedom, so when the artificial blood vessel is bent, the center of curvature side (inside) of the bending of the artificial blood vessel can shrink. This is because the outer side (direction far from the center of bending, that is, the center of curvature) is given the property of being stretchable.
このようにキンキング現象なしに小さい曲率半径で曲げ
うるためにはさらにこの人工血管が伸縮性を有すること
が望ましく、第3A図の無負荷状態の自然長L0に対し
て第3B図のように人工血管の長さ方向に圧縮したとき
の長さり、との間に0.1L、≦Lp≦0.7 L。In order to be able to bend the artificial blood vessel with a small radius of curvature without the kinking phenomenon, it is desirable that the artificial blood vessel has elasticity. The length when compressed in the longitudinal direction of the blood vessel is 0.1 L, ≦Lp≦0.7 L.
好ましくは
0.3 L o ≦LP ≦0.6LQ更に好ましく
は
0.3LO≦L2≦0.5 L。Preferably 0.3 L o ≦LP ≦0.6LQ, more preferably 0.3LO≦L2≦0.5L.
の範囲に圧縮可能な人工血管が好ましい。An artificial blood vessel that can be compressed within the range of
本発明の人工血管の環状突起3は規則正しく整然とした
ものよりも不規則な方が好ましく、人工血管の周囲を一
周する間に隣接する環状突起との間に少くとも3ケ所に
おいて交絡して一体化して形成されていることが好まし
い。その理由は、不規則に交絡した方があらゆる方向に
応ノ]が伝達して、高い破裂抵抗を示すからである。言
いかえると、破裂は局所的に力がかかり、機械的に弱い
ところに切裂が生じるのであるから環状突起がランダム
に構成されている方が局所的な欠陥を補い易い。It is preferable that the annular protrusions 3 of the artificial blood vessel of the present invention be irregular rather than regular, and that the annular protrusions 3 intertwine and integrate with adjacent annular protrusions at at least three places while going around the artificial blood vessel. It is preferable that the The reason for this is that if the particles are irregularly intertwined, the reaction force will be transmitted in all directions, resulting in higher burst resistance. In other words, since a rupture is caused by a localized force and a tear occurs in a mechanically weak area, it is easier to compensate for local defects if the annular protrusions are arranged randomly.
本発明の人工血管においては、さらに平均半値幅(龍)
に対して、隣接する環状突起間の平均間隔D(鶴)を
0.3≦D≦157
の間に設定することが好ましい。In the artificial blood vessel of the present invention, the average half width (dragon)
In contrast, it is preferable to set the average distance D (crane) between adjacent annular projections to a range of 0.3≦D≦157.
このようなものは、あとで実施例でのべるように弗素樹
脂系では成形加工条件を適当に変えてつくることができ
るし、ポリウレタンの場合も加工時に環状突起付与の間
隔を適当にあければよい。Such a product can be made by appropriately changing the molding conditions in the case of a fluororesin, as will be described later in the examples, and in the case of polyurethane, the intervals between the annular protrusions may be appropriately spaced during processing.
本発明に用いる弗素樹脂はポリテトラフルオロエチレン
が用いられ、改質の目的で他の物質、たとえばアクリル
系樹脂やポリウレタンを添加してもよい。又はポリテト
ラフルオロエチレン共重合体たとえば四弗化エチレンn
フルオロアルコキシビニルエーテル共重合体、四弗化エ
チレン−エチレン共重合体、四弗化エチレン−プロピレ
ン共重合体、三弗化エチレン塩化エチレン、弗化ビニリ
デンであってもよい。The fluororesin used in the present invention is polytetrafluoroethylene, and other substances such as acrylic resin or polyurethane may be added for the purpose of modification. or polytetrafluoroethylene copolymers such as tetrafluoroethylene n
It may be a fluoroalkoxy vinyl ether copolymer, a tetrafluoroethylene-ethylene copolymer, a tetrafluoroethylene-propylene copolymer, trifluoroethylene ethylene chloride, or vinylidene fluoride.
ポリウレタンはポリエステル系、ポリエーテル系のポリ
ウレタンウレア又はポリウレタンがいずれも用いられる
。ポリウレタンとしてはソフトセグメント成分にポリテ
トラメチレンオキシドを含むものが力学的性質の点から
殊に有用である。As the polyurethane, either polyester-based, polyether-based polyurethane urea or polyurethane can be used. As polyurethanes, those containing polytetramethylene oxide as a soft segment component are particularly useful from the viewpoint of mechanical properties.
本発明に示された手段を人工血管に付与することにより
、破裂強度が大きく、小さい曲率半径で曲げることが出
来る新しい性能を付与した人工血管の提供が可能となり
、動脈系に使用出来る合成樹脂製の長期開存性に優れた
人工血管の提供が可能となったものである。By adding the means shown in the present invention to an artificial blood vessel, it is possible to provide an artificial blood vessel with new performance such as high burst strength and bendability with a small radius of curvature. This makes it possible to provide an artificial blood vessel with excellent long-term patency.
以下実施例によって本発明の詳細な説明する。 The present invention will be explained in detail below with reference to Examples.
(実施例 1〜6)
分子11600の両末端水酸基のポリテトラメチレング
リコールと4,4′ジフエニルメチレンジイソシアネー
トをジメチルアセトアミド中で反応させて、両末端イソ
シアネートのプレポリマーをつくり、これを常法によっ
てエチレンジアミンで鎖延長してポリウレタンウレアを
合成した。次いで、メタノールを加えて沈殿させ、沈殿
物を再びジメチルアセトアミドにとかし、不溶のゲル状
物質を除いた後、メタノールを加えて沈殿させた。(Examples 1 to 6) Polytetramethylene glycol having hydroxyl groups at both ends of molecule 11600 and 4,4' diphenylmethylene diisocyanate were reacted in dimethylacetamide to produce a prepolymer of isocyanate at both ends, and this was prepared by a conventional method. Polyurethane urea was synthesized by chain extension with ethylenediamine. Next, methanol was added to cause precipitation, and the precipitate was dissolved again in dimethylacetamide to remove insoluble gel-like substances, and then methanol was added to cause precipitation.
このポリウレタンを再びジメチルアセトアミドにとかし
て16%の溶液とし、これを環状スリットから押し出し
て直接又は空気層を通した後水中に導き凝固させて、内
径(1)が夫々3 w、4fi、5層層、1llll、
10讃m、13m1のポリウレタンチューブ6をつくっ
た(第4図参照)。これらのチューブの内腔に略密着す
るようにステンレス棒7を差込み、ステンレス棒7を長
さ方向を回転軸として回転させ、第4図に示すように、
ポリウレタン濃厚溶液8を一定の速さでノズル9から押
し出してポリウレタンチューブ6の外壁に押し出し、こ
のステンレス棒を一定方向に移動させて乾燥炉1(に導
く。塗布されたポリウレタン溶液は遠心力によって回転
軸に対して直角方向に伸び、これが乾燥炉に入って溶媒
が蒸発し、炉から出たチューブには螺旋状の環状突起1
1が形成された。This polyurethane was dissolved in dimethylacetamide again to make a 16% solution, which was extruded through an annular slit and solidified into water either directly or after passing through an air layer to form three layers with inner diameters (1) of 3W, 4FI, and 5 layers, respectively. layer, 1llll,
A polyurethane tube 6 with a length of 10 cm and 13 m1 was made (see Fig. 4). The stainless steel rods 7 are inserted into the inner cavities of these tubes so as to be in close contact with each other, and the stainless steel rods 7 are rotated with the length direction as the rotation axis, as shown in FIG.
A concentrated polyurethane solution 8 is extruded at a constant speed from a nozzle 9 onto the outer wall of the polyurethane tube 6, and this stainless steel rod is moved in a constant direction and guided into the drying oven 1.The applied polyurethane solution is rotated by centrifugal force. The tube extends perpendicularly to the axis, enters the drying oven, the solvent is evaporated, and the tube that comes out of the oven has a spiral annular protrusion 1.
1 was formed.
この場合、ポリウレタン濃厚溶液吐出ノズル9をチュー
ブ6の長さ゛方向に移動させつつ押し出してチューブに
つけると、隣接した環状突起が互いに交絡するようにさ
せることが出来る。このようにして出来た人工血管の寸
法は夫々第1表に示す通りであった。In this case, by moving the concentrated polyurethane solution discharging nozzle 9 in the longitudinal direction of the tube 6 and extruding it onto the tube, adjacent annular protrusions can be intertwined with each other. The dimensions of the artificial blood vessels thus produced were as shown in Table 1.
(注)表中の各記号の意味は次の通りである。(Note) The meaning of each symbol in the table is as follows.
T: 環状突起の平均の高さく1鳳)
マ: 環状突起の平均の半値幅(、■)丁: 内径A’
(u+)の時、人工血管の長さIB間隔内の環状突起の
平均数
d: 人工血管チューブの肉厚(龍)
!!二 人工血管の内径(鶴)
D: 環状突起間の平均間隔(龍)
r:キンキングなしに曲げられる最小の曲率半径(wm
)(実施例7)
鎖延長剤としてブタンジオールを用いた他は実施例1と
同様にして合成したポリウレタンを用いて内径6璽粛の
ポリウレタンデユープをつくり、これに実施例1と同様
にステンレスの棒を内挿し、このステンレス棒を長さ方
向中心線で回転しつつ、ポリウレタン濃厚溶液を不規則
に間欠的にチューブの長さ方向に適時移動させつつ吐出
してポリウレタンデユープの外壁に帯状につけ、隣接し
ているポリウレタン帯が互いに交絡するようにした。T: Average height of the annular projection (1) M: Average half-width of the annular projection (,■) D: Inner diameter A'
When (u+), the average number of annular protrusions within the length IB interval of the artificial blood vessel d: Thickness of the artificial blood vessel tube (dragon)! ! 2. Inner diameter of artificial blood vessel (Tsuru) D: Average distance between annular protrusions (Dragon) r: Minimum radius of curvature that can be bent without kinking (wm
) (Example 7) A polyurethane duplex with an inner diameter of 6 mm was made using polyurethane synthesized in the same manner as in Example 1, except that butanediol was used as a chain extender, and the polyurethane duplex was treated in the same manner as in Example 1. A stainless steel rod is inserted, and while the stainless steel rod is rotated along its longitudinal center line, the concentrated polyurethane solution is irregularly and intermittently moved in the length direction of the tube and discharged to coat the outer wall of the polyurethane duplex. The polyurethane strips were applied in strips so that adjacent polyurethane strips were intertwined with each other.
ポリウレタンデユープ」二についたポリウレタンの濃厚
溶液部分は遠心力によって遠心力方向に、すなわちチュ
ーブの長さ方向に対して直角の方向に伸びる。この状態
でステンレス心棒を乾燥炉に導いて溶媒を除くと、互い
に交絡しつつ、チューブの長さ方向に略直角の環状突起
を有する人工血管となった。The concentrated polyurethane solution portion of the polyurethane duplex is stretched by centrifugal force in the direction of the centrifugal force, ie, perpendicular to the length of the tube. In this state, the stainless steel mandrel was introduced into a drying oven to remove the solvent, resulting in an artificial blood vessel having annular projections that were intertwined with each other and were approximately perpendicular to the length direction of the tube.
この人工血管の環状突起の高さは平均1.5朋、長さ6
龍中の突起の数は7、平均半値幅は0 、5 龍、環状
突起間の平均間隔(D)は0.81、肉厚(d)は0.
81である。The average height of the annular protrusion of this artificial blood vessel is 1.5 mm, and the length is 6 mm.
The number of protrusions in the dragon is 7, the average half-width is 0, the average distance (D) between the 5 dragons, the annular protrusions is 0.81, and the wall thickness (d) is 0.
It is 81.
この場合のLP/ L oは0.40であった。LP/L o in this case was 0.40.
(実施例El−12)(第5図参照)
市販の四弗化エチレン樹脂(三井フロロケミカル社製テ
フロン)1kgと押し出し助剤(液状潤滑剤)としての
ホワイトオイル(スモイルP−55゜打栓石油社製)2
60ccとをタンブラ−で均一に混合し、これを加圧予
備成形後、ラム押し出し機でチューブ状に押し出した。(Example El-12) (See Figure 5) 1 kg of commercially available tetrafluoroethylene resin (Teflon manufactured by Mitsui Fluorochemical Co., Ltd.) and white oil (Sumoil P-55° capper) as an extrusion aid (liquid lubricant) (manufactured by Sekiyusha) 2
60 cc were uniformly mixed in a tumbler, preformed under pressure, and then extruded into a tube shape using a ram extruder.
次いでホワイトオイルをその沸点以下の温度で加熱し°
ζ充分除去した。The white oil is then heated to a temperature below its boiling point.
ζ was sufficiently removed.
この状態のチューブ12の内腔に略密着する状態にステ
ンレス棒13を挿入し、これを回転しつつ、鋭利な刃物
14でチューブの内壁より一部を残して切れ口15を入
れる。In this state, the stainless steel rod 13 is inserted into the inner cavity of the tube 12 so as to be in close contact therewith, and while rotating the stainless steel rod 13, a cut 15 is made with a sharp knife 14 leaving a part of the inner wall of the tube.
切れ口15は完全に円周せず、ところどころに切れ目を
つくる。このとき切れ目のないところ16を一円周当り
3ケ所つくるようにする。切れ目と切れ目との横間隔は
正確にしても又故意に不正確にしでもよい。The cut 15 is not completely circumferential, but cuts are made here and there. At this time, three unbroken areas 16 are created per circumference. The lateral spacing between cuts may be precise or intentionally inaccurate.
このチューブを327℃以下の温度で1.2倍〜lO倍
に延伸するが200℃位が適当である。本例では20c
mのチューブを200’Cに加熱した状態で急速にlo
Ocmに延伸した。この処置によって切れ目の部分が強
度に延伸され、切れ目と切れ目の間には力がかからない
ので延伸されず、第3A図の如き本発明の構造となる。This tube is stretched 1.2 times to 10 times at a temperature of 327°C or lower, but approximately 200°C is suitable. In this example, 20c
m tube heated to 200'C and rapidly lo
It was stretched to 0 cm. By this treatment, the cut portions are strongly stretched, and since no force is applied between the cuts, they are not stretched, resulting in the structure of the present invention as shown in FIG. 3A.
延伸後のチューブが収縮しないように両端を固定し、チ
ューブの端に冷却空気を導入するパイプを接続し、他端
を閉じ、温度をあげて320℃になったとき0.4kg
/ctacv空気圧を急激に導入し、この空気圧を保持
しながら温度を上昇させ400℃に達すると今度は急激
に冷やして室温にもどした。このようにして以下の内径
と形態の人工血管をつくった。この人工血管は極めて小
さい曲率でキンキングなしに曲げることが出来る。Fix both ends of the stretched tube to prevent it from shrinking, connect a pipe to introduce cooling air to one end of the tube, close the other end, raise the temperature, and when it reaches 320℃, it will weigh 0.4kg.
/ctacv air pressure was rapidly introduced, the temperature was raised while maintaining this air pressure, and when it reached 400° C., it was then rapidly cooled down to room temperature. In this way, artificial blood vessels with the following inner diameters and shapes were created. This artificial blood vessel can be bent with extremely small curvature without kinking.
結果を以下の第2表に一括した。The results are summarized in Table 2 below.
本発明によって弗素樹脂系及びポリウレタン系の如き合
成樹脂よりなる人工血管で破裂強度が大きくて充分動脈
用の血管として使用出来、しかも小さい曲率半径でキン
キングなしに曲げられ、末梢血管代用に使用出来、長期
開存性に優れた人工血管の提供が可能となった。According to the present invention, an artificial blood vessel made of synthetic resin such as fluororesin or polyurethane has a high bursting strength and can be used as an arterial blood vessel, and has a small radius of curvature and can be bent without kinking, so it can be used as a substitute for a peripheral blood vessel. It has become possible to provide artificial blood vessels with excellent long-term patency.
第1A図は本発明の人工血管の一実施例を示す斜視図、
第1B図は第1A図の人工血管の縦断面図、第2図は第
1図の人工血管を折り曲げた状態で示す部分正面図、第
3A図は第1図の人工血管の無負荷状態の概略正面図、
第3B図は第3A図の人工血管を圧縮した状態の概略正
面図、第4図と第5図は本発明の人工血管を製造する方
法を説明するための図である。
なお図面に用いた符号において、
1・−・−・−・・・〜−−−−−−−−人工血管チュ
ーブ2−・・−・・−−−一一〜−一・−外周部3.1
1・−・−・・−一一一一・−・環状突起である。FIG. 1A is a perspective view showing an embodiment of the artificial blood vessel of the present invention;
Figure 1B is a longitudinal sectional view of the artificial blood vessel shown in Figure 1A, Figure 2 is a partial front view of the artificial blood vessel shown in Figure 1 in a bent state, and Figure 3A is a view of the artificial blood vessel shown in Figure 1 in an unloaded state. Schematic front view,
FIG. 3B is a schematic front view of the artificial blood vessel shown in FIG. 3A in a compressed state, and FIGS. 4 and 5 are diagrams for explaining the method of manufacturing the artificial blood vessel of the present invention. In addition, in the codes used in the drawings, 1. .1
1・−・−・・−1111−・It is an annular projection.
Claims (1)
周部に外周に沿って環状の突起を設けてあり、この環状
突起は該人工血管チューブと同種の素材から構成されて
おり、該人工血管の内径l(mm)、該人工血管チュー
ブの肉厚d(mm)、該環状突起の平均の高さ@h@(
mm)、該環状突起の平均半値巾@w@(mm)、及び
lmm間隔内の前記環状突起の平均数nの間に @h@/10≦@w@≦2@h@……………(1)0.
21≦@n@≦5l……………(2) 0.1d≦@w@≦10d……………(3)なる関係を
有することを特徴とする人工血管。[Claims] An artificial blood vessel made of synthetic resin, in which an annular protrusion is provided along the outer periphery of the artificial blood vessel tube, and the annular protrusion is made of the same material as the artificial blood vessel tube. The inner diameter l (mm) of the artificial blood vessel, the wall thickness d (mm) of the artificial blood vessel tube, and the average height of the annular protrusion @h@(
mm), the average half-width @w@(mm) of the annular protrusion, and the average number n of the annular protrusions within lmm interval @h@/10≦@w@≦2@h@…… ...(1)0.
An artificial blood vessel characterized by having the following relationship: 21≦@n@≦5l (2) 0.1d≦@w@≦10d (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60113784A JPS61293451A (en) | 1985-05-27 | 1985-05-27 | Artificial blood vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60113784A JPS61293451A (en) | 1985-05-27 | 1985-05-27 | Artificial blood vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61293451A true JPS61293451A (en) | 1986-12-24 |
Family
ID=14621012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60113784A Pending JPS61293451A (en) | 1985-05-27 | 1985-05-27 | Artificial blood vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61293451A (en) |
-
1985
- 1985-05-27 JP JP60113784A patent/JPS61293451A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2685454C (en) | Eptfe crimped graft | |
US5628782A (en) | Method of making a prosthetic vascular graft | |
US5910168A (en) | Prosthetic vascular graft | |
US4475972A (en) | Implantable material | |
US4474630A (en) | Method for the production of synthetic blood vessel prostheses | |
US5607464A (en) | Prosthetic vascular graft with a pleated structure | |
US4604762A (en) | Arterial graft prosthesis | |
CA2243477C (en) | A radially supported polytetrafluoroethylene vascular graft | |
EP0699424B1 (en) | A method to introduce external coil support to PTFE implantable tubular prosthesis and implantable tubular prosthesis | |
US4300244A (en) | Cardiovascular grafts | |
US3337673A (en) | Uniformly corrugated prosthesis and process of making same | |
JP2004141679A (en) | Superelastic alloy braiding structure | |
JP6863295B2 (en) | Cylindrical woven fabric | |
GB2115776A (en) | Implantable material | |
JP2003275228A (en) | Medical tubular material and its manufacturing method | |
JPS61293451A (en) | Artificial blood vessel | |
WO1996032077A1 (en) | Artificial graft prosthesis | |
JPS61272047A (en) | Artificial blood vessel | |
JPS61293450A (en) | Artificial blood vessel | |
US5462704A (en) | Method for preparing a porous polyurethane vascular graft prosthesis | |
JPS62343A (en) | Fluorocarbon resin type artificial blood vessel and its production | |
JPS61293452A (en) | Fluororesin artificial blood vessel and its production | |
EP0596905A1 (en) | Vascular prosthesis | |
JP2005152181A (en) | Embedding-type tubular treating tool | |
JPS62152467A (en) | Production of tubular organ prosthetic material |