JPS61293018A - Gate circuit - Google Patents

Gate circuit

Info

Publication number
JPS61293018A
JPS61293018A JP13476985A JP13476985A JPS61293018A JP S61293018 A JPS61293018 A JP S61293018A JP 13476985 A JP13476985 A JP 13476985A JP 13476985 A JP13476985 A JP 13476985A JP S61293018 A JPS61293018 A JP S61293018A
Authority
JP
Japan
Prior art keywords
potential
inverter
output
vcc
rises
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13476985A
Other languages
Japanese (ja)
Inventor
Toshio Oura
利雄 大浦
Toshikazu Chiba
千葉 俊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13476985A priority Critical patent/JPS61293018A/en
Publication of JPS61293018A publication Critical patent/JPS61293018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the number of elements and to reduce the occupation area using a transfer gate composed of a single-conduction type MOSFET, an inverter circuit, and an opposite-conduction type MOSFET. CONSTITUTION:When an A1 rises from L to H while a B1 is at an H level (VCC), the output of an inverter 1 begins to fall according to input/output characteristics of the inverter 1 as a potential of the 2 rises because an N channel type MOSFETQ1 is on, and when the output drops down to a potential Vcc-VTP, a P channel type MOSFETQ5 begins to turn on, so that the potential of the 2 is raised through a Q5. Consequently, the output of the inverter 1 further drops and the Q5 turns on, thereby raising the potential at 2 abruptly. The potential of the 2 rises up to the VCC and the output of the inverter 1 falls to zero V through said positive feedback operation. At this time, the potential of the 2 is not an intermediate potential, but at the level VCC, so no stationary through current flows through the inverter 1. Then, when the input signal A1 falls from H to L, a potential of the 1 rises up to VCC-VTP in the reverse process similarly and then the Q5 turns off completely, so that the potential of the 2 becomes as high as the potential of the A1.

Description

【発明の詳細な説明】 〔利用分野〕 本発明はCMOSトランジスタで構成されたゲート回路
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a gate circuit composed of CMOS transistors.

〔従来技術〕[Prior art]

従来、CMO8購成のトランスファーゲートはNチャン
ネル型MO8FETとPチャンネル型MOf9FETの
それぞれを1組にして並列に接続して構成するものであ
った。第5図は従来の複数のトランスファーゲートを含
むトランスファーゲート回路を示す。C1,02,C3
,Cnはそれぞれゲート回路への入力信号で、DI、D
2.D3.Dnはトランスファー制御信号で、20,2
1,22.23はCMOSインバータで、Q2oI Q
1121 Quy Q10はNチャンネル型MO8PE
T、Q2+、(hs、(hs、Q訂はPチャンネル型M
O8FETである。Dlが1 i 1でD2+ D3.
Dnがlogの時はQ10と(htは共にONI、、Q
zz t Q23 s Qu sQ2g + Q26 
r Q27はOFF t、、出力10には入力信号C1
が出力される。同様に他のトランスファー制御信号の1
つだけが111で残りのトランスファー制御信号群が1
01の時も、対応した入力信号だけが出力10に出力さ
れる。
Conventionally, a CMO8-purchased transfer gate has been configured by connecting each of an N-channel type MO8FET and a P-channel type MOf9FET in parallel. FIG. 5 shows a conventional transfer gate circuit including a plurality of transfer gates. C1,02,C3
, Cn are input signals to the gate circuit, respectively, and DI, D
2. D3. Dn is a transfer control signal, 20,2
1, 22, 23 are CMOS inverters, Q2oI Q
1121 Quy Q10 is N-channel type MO8PE
T, Q2+, (hs, (hs, Q version is P channel type M
It is O8FET. Dl is 1 i 1 and D2+ D3.
When Dn is log, Q10 and (ht are both ONI, , Q
zz t Q23 s Qu sQ2g + Q26
r Q27 is OFF t,, output 10 has input signal C1
is output. Similarly, one of the other transfer control signals
Only one is 111 and the remaining transfer control signal group is 1
01, only the corresponding input signal is output to the output 10.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

従来のトランスファーゲート回路はn個の入力信号から
1つを選択する場合n個のインバータと、n個のNチャ
ンネル型IGFETと、n個のPチャンネル型MO8F
ETが必要で、合計2n+n+n=4n個の素子が必要
であった。このため、トランスファーゲート回路の面積
が大きくなるという欠点があった。
When selecting one of n input signals, a conventional transfer gate circuit requires n inverters, n N-channel type IGFETs, and n P-channel type MO8Fs.
ET was required, and a total of 2n+n+n=4n elements were required. Therefore, there was a drawback that the area of the transfer gate circuit became large.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は、並列又は直並列で接続されている複数の入力
用第1の導電型の絶縁ゲート型電界効果トランジスタ群
の各出力端に前記導電型と相補の第2の導電型の絶縁ゲ
ート型電界効果トランジスタの一端及びインバータの入
力端を接続し、前記インバータの出力で前記第2の導電
型の絶縁ゲート型電界効果トランジスタのゲートを制御
するようにしたものである。この結果、従来と同じ動作
を非常に少ない素子数で実現でき、占有面積を大幅に縮
少することができる。
The present invention provides an insulated gate field effect transistor of a second conductivity type complementary to the conductivity type at each output end of a plurality of input insulated gate field effect transistors of a first conductivity type connected in parallel or series-parallel. One end of the field effect transistor is connected to an input end of an inverter, and the gate of the second conductivity type insulated gate field effect transistor is controlled by the output of the inverter. As a result, the same operation as in the past can be achieved with a very small number of elements, and the occupied area can be significantly reduced.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のCMO8)ランスファーゲ
ートである。1はCMOSインバータ、Q+、Q−、Q
s、Q4はNチャンネル型MO8FET%Q5はPチャ
ンネル型IGFET%Al、A2.A3.Anはゲート
回路への入力信号、Bl 、B2 、B3 、Bnはそ
れぞれQx 、 Qz、 Qg、 Qnのソースに接続
され、QIt Q2 rQs、Qnのドレインはノード
2で共通接続され、更にQsのドレインにも接続され、
インバータ1の入力に接続されている。インバータ1か
らとり出される出力0はQsのゲートに帰還接続され、
QsのソースはVccに接続されている。
FIG. 1 shows a CMO8) transfer gate according to an embodiment of the present invention. 1 is CMOS inverter, Q+, Q-, Q
s, Q4 is an N-channel type MO8FET%Q5 is a P-channel type IGFET%Al, A2. A3. An is an input signal to the gate circuit; Bl, B2, B3, and Bn are connected to the sources of Qx, Qz, Qg, and Qn, respectively; the drains of QIt, Q2, and Qn are commonly connected at node 2; is also connected to
Connected to the input of inverter 1. Output 0 taken out from inverter 1 is feedback connected to the gate of Qs,
The source of Qs is connected to Vcc.

B1が”H” (Vcc)レベル、B2.B3.Bnが
1L′(0■)レベルであるとQlはオン、Q、 、Q
s、Q、はオフし、入力信号A1がQlを通して出力点
2ヘトランスフアーしようとする。出力点2が″Lルベ
ルでインバータ1が1HルベルでQsがオフしている状
態でBlが1H1になっている時、入力信号A1がlL
′から’H”Kなった時と1H1→l L lになった
時の出力点2と出力Oの波形について第2図を用いて説
明する。第・2図で(a)はB1の波形、(b)はAI
の波形、(C)は2の波形、(d)は1の出力波形を示
す。
B1 is at "H" (Vcc) level, B2. B3. When Bn is at 1L' (0■) level, Ql is on, Q, ,Q
s, Q are turned off, and input signal A1 attempts to transfer to output point 2 through Ql. When output point 2 is ``L level, inverter 1 is 1H level, Qs is off, and Bl is 1H1, input signal A1 is 1L level.
The waveforms of output point 2 and output O when the change from ' to 'H'K and from 1H1 to l L l will be explained using Fig. 2. In Fig. 2, (a) is the waveform of B1. , (b) is AI
(C) shows the waveform of 2, and (d) shows the output waveform of 1.

B1がHレベル(Vcc)の時、AIがi L w→”
H”になるとNチャンネル型MO8FETQtがオンし
ているので、2の電位はVCC−(VTN+ΔVTN)
(V)址で上昇しようとする。VTNはNチャンネル型
MOS F ETのスレッシュホールド電圧、ΔVTN
はバックゲート効果によるVTNの上昇分。2の電位が
上昇するにつれ、第3図に示すインバータ1の入出力特
性に従いインバータ1の出力は下降し始め、Vcc −
VTPの電位まで下がると、Pチャンネル型MO8FE
TQ5がオンし始めsChを通して2の電位を上昇させ
る。その結果、インバータ1の出力は更に下降し、Qs
は益々オンし、2の電位を急激に引き上げる。
When B1 is at H level (Vcc), AI is i L w→”
When it becomes H”, the N-channel MO8FETQt is on, so the potential of 2 is VCC-(VTN+ΔVTN)
(V) Attempt to rise at a certain point. VTN is the threshold voltage of N-channel MOS FET, ΔVTN
is the increase in VTN due to the backgate effect. As the potential of inverter 2 rises, the output of inverter 1 begins to fall in accordance with the input/output characteristics of inverter 1 shown in FIG.
When the potential drops to VTP, the P-channel type MO8FE
TQ5 starts to turn on and increases the potential of 2 through sCh. As a result, the output of inverter 1 further decreases and Qs
turns on more and more, raising the potential of 2 rapidly.

以上の正帰還動作により、2の電位はVccレベルまで
上昇し、インバータlの出力は0■になる。
Due to the positive feedback operation described above, the potential of inverter 2 rises to the Vcc level, and the output of inverter l becomes 0.

この時2の電位は中間電位でな(Vccレベルになって
いるのでインバータ1には定常的な貫通電流は流れない
At this time, the potential of inverter 2 is at an intermediate potential (Vcc level), so no steady through current flows through inverter 1.

次に入力信号A1が@H“→l L lレベルになると
、Vccよりs QstQtを通してA1に向かって電
流が流れる。A1の接地側への出力インピーダンスとQ
sのインピーダンスの和をQsのインピーダンスのル型
MO8FETQ、のスレッシュホールド電圧。Alの下
降につれて、2の電位はVccより下降し始め、2の電
位がVcc −■rpになると、インバータ1の出力が
わずかに上昇しs QsのON電流はわずかに減少しs
 Qsのインピーダンスがわずかに大ぎくなり、2の電
位は更に下降する。2の電位が下降するとインバータ1
の出力は更に上昇し% Qsのオン電流が更に減少し、
Qsのインピーダンスが更に大きくなり、正帰遅がかか
り2の電位は益々下降し、1の出力は益々上昇し、1の
電位がVcc −VTPの電圧まで上昇するとQsは完
全にオフし、2の電位はAlの電位と同電位になる。Q
l、 Q2 、 Qs 、 Q4がPチャンネ′ル型M
08FETでQsがNチャンネル型MO8FETでも同
様に動作する。
Next, when the input signal A1 becomes @H"→l L l level, a current flows from Vcc to A1 through sQstQt.The output impedance to the ground side of A1 and Q
The threshold voltage of the MO8FETQ is the sum of the impedances of s and the impedance of Qs. As Al falls, the potential of 2 begins to fall below Vcc, and when the potential of 2 reaches Vcc - ■rp, the output of inverter 1 rises slightly, and the ON current of s Qs slightly decreases.
The impedance of Qs becomes slightly larger, and the potential of 2 further falls. When the potential of inverter 2 decreases, inverter 1
The output of % Qs further decreases, and the on-current of Qs further decreases.
The impedance of Qs further increases, a positive return delay occurs, the potential of 2 falls more and more, the output of 1 rises more and more, and when the potential of 1 rises to the voltage Vcc - VTP, Qs is completely turned off, and the potential of 2 becomes more and more. The potential is the same as that of Al. Q
l, Q2, Qs, Q4 are P channel type M
08FET with Qs of N-channel type MO8FET operates in the same manner.

以上の動作を要約すると、トランスファーゲートが単一
導電型のみのMOSFETで構成されていながら、トラ
ンス7アーゲートに接続されるインバータと、反対の導
電型の八fO8FETで構成される正帰還ループによっ
て、トランスファーゲート出力が中間電位とはならず、
入力信号と同相の出力が出力され、インバータの出力に
は入力信号と逆相の出力が出力される。
To summarize the above operation, although the transfer gate is composed of MOSFETs of only a single conductivity type, the transfer gate is Gate output is not at intermediate potential,
An output that is in phase with the input signal is output, and an output that is in phase opposite to the input signal is output at the output of the inverter.

また第4図に示される他の実施例のようにQsvQ7.
Qsを直列接続しても、Fl、F2.F3が同時に“H
”レベル(VcりになるとQs、QI、Qsはオンし、
Elが第2図の(b)に示す波形であると、3及び40
波形はそれぞれ第2図(C)及びfd)の波形になり、
第1図の実施例と同様な動作が行なわれる。この場合、
A1の接地側への出力インピーダンスとQs vQ、、
Qsのインピーダンスの和がQoのインビーダン要に応
じて、トランスファーゲートに反対の導電型のMOSF
ETを付加してもよい。
Also, as in another embodiment shown in FIG. 4, QsvQ7.
Even if Qs are connected in series, Fl, F2 . F3 is “H” at the same time
”When the level (Vc) becomes low, Qs, QI, Qs turn on,
When El has the waveform shown in FIG. 2(b), 3 and 40
The waveforms are as shown in Figure 2 (C) and fd), respectively.
The same operation as in the embodiment of FIG. 1 is performed. in this case,
Output impedance to the ground side of A1 and Qs vQ,,
The sum of the impedances of Qs is a MOSF of the opposite conductivity type to the transfer gate depending on the impedance of Qo.
ET may be added.

〔発明の効果〕〔Effect of the invention〕

本発明によれば単一導電型MO8FB’l’で構成され
るトランスファーゲートとインバータ1個、反対の導電
型のMOSFET1個で構成できるので、第5図の従来
のものと第1図の本発明実施例でMOSFET数を比較
すると本発明は従来のものよ御信号のインバータ20.
21.22.23の出力線がそれぞれQ21 + Q2
3 + Q25 t Q26に対して必要なので、その
ような出力線で占める面積が従来のものが必要であるの
に対し、本発明ではそれがないので、面積はMOSFE
T数が減った以上に小さくなるのである。以上のように
本発明のCMOSゲート回路は従来のCMOSゲート回
路に比べ、格段に占有面積を小さくできる大きな利点が
あり、低コストのCMO8LSIを提供できる。
According to the present invention, it can be constructed with a transfer gate composed of a single conductivity type MO8FB'l', one inverter, and one MOSFET of the opposite conductivity type, so that the conventional one shown in FIG. 5 and the present invention shown in FIG. Comparing the number of MOSFETs in the embodiment, the present invention has a control signal inverter of 20.
The output lines of 21, 22, and 23 are respectively Q21 + Q2
3 + Q25 t Since it is necessary for Q26, the area occupied by such an output line is required in the conventional case, whereas in the present invention there is no such area, so the area is
This decreases more than the decrease in the number of T. As described above, the CMOS gate circuit of the present invention has the great advantage of occupying a much smaller area than the conventional CMOS gate circuit, and can provide a low-cost CMO8LSI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の回路図、第2図は本発明の
実施例の動作波形図、第3図はインバータの入出力特性
図、第4図は本発明の他の実施例の回路図、第5図は従
来の回路図である。 QI T Q2 + Q3 + Q4 + Q6! Q
7+Qa+ Q9+Q10 y Q20 + Q22 
tQ24 r Q2I、・・・・・・Nチャンネル型M
O8FET%Qs t Qn 。 Q211 Qzs T Q25 t Qrr・・・・−
・Pチャンネル型MO8FET。 1 、4 、20 、21 、22 、23・−・−イ
ンバータ、Vcc・・・・−・高電位側電源、2,3,
10・・・−・−トランスファーゲートの出力。 一9= 華 II!I ■ □峰同 第 Z 図 入h@圧 茅 3 閃 $ 4 潤
Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is an operating waveform diagram of an embodiment of the invention, Fig. 3 is an input/output characteristic diagram of an inverter, and Fig. 4 is another embodiment of the invention. FIG. 5 is a conventional circuit diagram. QIT Q2 + Q3 + Q4 + Q6! Q
7+Qa+ Q9+Q10 y Q20 + Q22
tQ24 r Q2I,...N-channel type M
O8FET%Qs t Qn. Q211 Qzs T Q25 t Qrr・・・・−
・P channel type MO8FET. 1 , 4 , 20 , 21 , 22 , 23 --- Inverter, Vcc --- High potential side power supply, 2, 3,
10...--Transfer gate output. 19 = Hana II! I ■ □Bone Dodai Z Zuirih@Otsuka 3 Sen$ 4 Jun

Claims (1)

【特許請求の範囲】[Claims] 並列又は直並列に接続されている入力用の複数の第1の
導電型の絶縁ゲート型電界効果トランジスタ群の出力端
に前記導電型と相補の第2の導電型の絶縁ゲート型電界
効果トランジスタの一端及びインバータの入力端を接続
し、前記インバータの出力で前記第2の導電型の絶縁ゲ
ート型電界効果トランジスタのゲートを制御することを
特徴とするゲート回路。
An insulated gate field effect transistor of a second conductivity type complementary to the conductivity type is connected to the output terminal of a plurality of insulated gate field effect transistors of a first conductivity type for input connected in parallel or in series and parallel. A gate circuit, wherein one end and an input end of an inverter are connected, and the gate of the second conductivity type insulated gate field effect transistor is controlled by the output of the inverter.
JP13476985A 1985-06-20 1985-06-20 Gate circuit Pending JPS61293018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13476985A JPS61293018A (en) 1985-06-20 1985-06-20 Gate circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13476985A JPS61293018A (en) 1985-06-20 1985-06-20 Gate circuit

Publications (1)

Publication Number Publication Date
JPS61293018A true JPS61293018A (en) 1986-12-23

Family

ID=15136131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13476985A Pending JPS61293018A (en) 1985-06-20 1985-06-20 Gate circuit

Country Status (1)

Country Link
JP (1) JPS61293018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172532B1 (en) 1994-04-20 2001-01-09 Hitachi, Ltd. Gate circuit and semiconductor circuit to process low amplitude signals, memory, processor and information processing system manufactured by use of them
US6621300B1 (en) * 2002-04-23 2003-09-16 Silicon Graphics, Inc. System and method for improving speed of operation of integrated circuits

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172532B1 (en) 1994-04-20 2001-01-09 Hitachi, Ltd. Gate circuit and semiconductor circuit to process low amplitude signals, memory, processor and information processing system manufactured by use of them
US6462580B2 (en) 1994-04-20 2002-10-08 Hitachi, Ltd. Gate circuit and semiconductor circuit to process low amplitude signals, memory, processor and information processing system manufactured by use of them
US6657459B2 (en) 1994-04-20 2003-12-02 Hitachi, Ltd. Gate circuit and semiconductor circuit to process low amplitude signals, memory, processor and information processing system manufactured by use of them
US6621300B1 (en) * 2002-04-23 2003-09-16 Silicon Graphics, Inc. System and method for improving speed of operation of integrated circuits

Similar Documents

Publication Publication Date Title
US3541353A (en) Mosfet digital gate
US4181862A (en) High speed resettable dynamic counter
KR900005455A (en) Output buffer circuit with level shift function
KR910015114A (en) Semiconductor digital circuits
US5140190A (en) Output circuit for a bipolar complementary metal oxide semiconductor
US4587446A (en) Field effect transistor output circuit operable by a reduced amount of current
JPS61293018A (en) Gate circuit
JPH07111448A (en) Interface circuit and voltage virtical circuit therewith
EP0059722B1 (en) Clocked igfet logic circuit
US4360742A (en) Synchronous binary-counter and programmable rate divider circuit
US5146109A (en) Circuit for driving a floating circuit in response to a digital signal
JPH0567964A (en) Complementary mos logic circuit
US4649290A (en) Pulse generating circuit
US5162673A (en) Bi-CMOS logic circuit
JPH07307663A (en) Complementary energy recovery logil circuit and formation thereof
JPS6134690B2 (en)
US3916217A (en) Integrated logical circuit device
JPH02123826A (en) Cmos inverter circuit
JPS61214817A (en) Cmos integrated circuit
JPH0683051B2 (en) Output circuit
JP2692347B2 (en) Logic circuit
JPH0777343B2 (en) Output buffer circuit
JP2699496B2 (en) Output circuit
JPS6199413A (en) Output circuit device
JPH04239810A (en) Single phase static latch circuit