JPS6129217B2 - - Google Patents

Info

Publication number
JPS6129217B2
JPS6129217B2 JP55035946A JP3594680A JPS6129217B2 JP S6129217 B2 JPS6129217 B2 JP S6129217B2 JP 55035946 A JP55035946 A JP 55035946A JP 3594680 A JP3594680 A JP 3594680A JP S6129217 B2 JPS6129217 B2 JP S6129217B2
Authority
JP
Japan
Prior art keywords
water
induction motor
energy
speed
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55035946A
Other languages
Japanese (ja)
Other versions
JPS56133942A (en
Inventor
Shuichi Tanyoshi
Kazuyuki Sato
Akira Hosono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3594680A priority Critical patent/JPS56133942A/en
Publication of JPS56133942A publication Critical patent/JPS56133942A/en
Publication of JPS6129217B2 publication Critical patent/JPS6129217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Protection Of Generators And Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 本発明は高炉冷却系の流水落差エネルギ回収方
法及び装置、特に比較的低落差でかつ流量変動の
ある高炉冷却系の冷却水のエネルギを電気エネル
ギとして電源側に回収することのできる電力回収
方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for recovering the energy of flowing water head in a blast furnace cooling system, and in particular, for recovering the energy of cooling water in a blast furnace cooling system that has a relatively low head and fluctuates in flow rate as electrical energy to the power source side. The present invention relates to a method and device for recovering power.

各種の産業施設において設備の冷却あるいは浄
化作用のために流水が用いられ、ポンプ等により
汲上げた水を必要な施設場所へ圧送して所望の冷
却その他の作用が行われる。これらの流水利用施
設では汲上げられた水自体が位置エネルギを有し
また圧送水はそれ自体大きな圧力エネルギを有す
る。この種の施設の好適な一例として製鉄所が挙
げられ高層建築物である高炉等の冷却には大量の
流水が用いられまた高炉以外の水滓設備にも大量
の水が用いられている。しかしながら、通常の場
合、これらの流水は冷却あるいは浄化に供された
後に無為に自然落下されてその一部が再び汲上げ
られまたその一部が放流される。従つて、従来に
おいては、これら流水の有する膨大な位置エネル
ギあるいは圧力エネルギが何ら利用されずに捨て
られているというのが実状であつた。
BACKGROUND OF THE INVENTION Flowing water is used in various industrial facilities to cool or purify equipment, and the water is pumped up by a pump or the like and sent under pressure to the required facility location to perform the desired cooling or other effects. In these running water utilization facilities, the pumped water itself has potential energy, and the pumped water itself has large pressure energy. A suitable example of this type of facility is a steel mill, where large amounts of running water are used to cool high-rise buildings such as blast furnaces, and large amounts of water are also used for slag equipment other than blast furnaces. However, in normal cases, these running waters are used for cooling or purification and then are allowed to naturally fall, a portion of which is pumped up again, and a portion of which is discharged. Therefore, in the past, the reality was that a huge amount of potential energy or pressure energy contained in the flowing water was wasted without any use.

従来より前述した流水を用いて水力発電を行い
前述したエネルギを電気エネルギとして回収する
ことが検討されたが、これら施設における流水は
低落差でありかつ流量変動が大きいので通常の発
電機の利用は全体効率が悪く実用化が困難である
という問題があり、特に通常の同期発電機では前
述した低落差変動流量の流水から採算のとれる電
力回収を行なうことが困難であつた。更に、流水
を一旦貯水池に溜めることによつて安定した発電
作用を行なうことも提案されているが、設備が大
型となりまた流水自体の冷却あるいは浄化作用の
効率が低下するという問題があつた。
Conventionally, it has been considered to use the aforementioned running water to generate hydroelectric power and recover the aforementioned energy as electrical energy, but since the running water in these facilities has a low head and large fluctuations in flow rate, the use of regular generators is not possible. There is a problem in that the overall efficiency is poor and it is difficult to put it into practical use, and in particular, with ordinary synchronous generators, it is difficult to recover electricity profitably from the aforementioned flowing water with a low head and fluctuating flow rate. Furthermore, it has been proposed to produce stable power generation by temporarily storing flowing water in a reservoir, but this has the problem of increasing the size of the equipment and reducing the efficiency of cooling or purifying the flowing water itself.

本発明は上記従来の課題に鑑みなされたもので
あり、その目的は、簡単な付加機構を設けること
によつて効率よく高炉冷却系の冷却水エネルギを
電気エネルギとして回収し採算のとれる電力回収
方法及び装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide a profitable power recovery method that efficiently recovers the cooling water energy of the blast furnace cooling system as electric energy by providing a simple additional mechanism. and equipment.

上記目的を達成するために、本発明に係る方法
は、流水エネルギを水車の回転エネルギに変換
し、前記水車の回転エネルギを誘導電動機の同期
速度を越える過回転により電気エネルギに変換し
て電源側に回収し、前記誘導電動機の回転数が同
期速度より低下すると誘導電動機と電源側との接
続が遮断され、誘導電動機の回転数を制御するた
めに流水に流量制御が行われていることを特徴と
する。
In order to achieve the above object, the method according to the present invention converts flowing water energy into rotational energy of a water wheel, and converts the rotational energy of the water wheel into electric energy by over-rotating the induction motor beyond the synchronous speed, and converting the rotational energy of the water wheel into electrical energy on the power source side. When the rotational speed of the induction motor decreases below the synchronous speed, the connection between the induction motor and the power source is cut off, and the flow rate of the flowing water is controlled to control the rotational speed of the induction motor. shall be.

また、本発明に係る装置は流水路に設けられ流
水にて回転される水車と、水車を回転させる流水
硫量を制御する制御弁と、水車に接続された回転
子と電源側に接続可能な固定子とを有する誘導電
動機と、誘導電動機の固定子と電源側との接続を
制御する開閉器と、誘導電動機の回転数が同期速
度以下に低下したときに開閉器を開放させる切替
信号を検出する切替信号検出器と、を含み、流水
エネルギが誘導電動機を発電機領域で回転可能な
エネルギであるときのみ開閉器を閉成して誘導電
動機を誘導発電機として作用させて流水エネルギ
を電気エネルギとして電源側へ回収することを特
徴とする。
Further, the device according to the present invention includes a water wheel installed in a water channel and rotated by flowing water, a control valve that controls the amount of water sulfur that rotates the water wheel, a rotor connected to the water wheel, and a rotor that can be connected to a power source. An induction motor having a stator, a switch that controls the connection between the stator of the induction motor and the power supply side, and a switching signal that opens the switch when the rotational speed of the induction motor drops below the synchronous speed. a switching signal detector for converting the flowing water energy into electrical energy by closing the switch and causing the induction motor to act as an induction generator only when the flowing water energy is enough to rotate the induction motor in the generator region. It is characterized by being recovered to the power source side.

以下図面に基づいて本発明に好適な実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

以下の説明において、高炉冷却系の冷却水は高
炉々体冷却水、高炉付帯設備及び周辺設備に用い
る冷却水又は熱風炉の冷却水を含む。
In the following description, the cooling water of the blast furnace cooling system includes cooling water for blast furnace bodies, cooling water used for blast furnace auxiliary equipment and peripheral equipment, or cooling water for a hot blast furnace.

第1図には製鉄所における高炉冷却用流水路に
本発明に係る流水落差エネルギ回収装置を付設し
た実施例が示され、流水路10内には高炉冷却後
の流水12が位置エネルギ及び圧力エネルギを有
した状態で落下している。本発明においては、こ
の流水エネルギを回転エネルギに変換するため
に、流水路10の一部に水車14が設けられ、流
水12にて水車14が回転駆動されている。そし
て、流水路10の水車14から上流側には流水1
2の流量を制御することのできる制御弁16が設
けられている。そして、前記水車14には誘導電
動機18が接続され、更に詳細には、水車14の
回転軸14aに誘導電動機18の回転子18aが
連結され、水車14の回転エネルギが誘導電動機
18の電気エネルギに変換される。誘導電動機1
8の固定子は電源側、実施例においては商用周波
数電源20に開閉器22を介して電気的に接続さ
れており、開閉器22の開閉作用によつて誘導電
動機18と電源20との接続状態が制御され、誘
導電動機18はその回転数が同期速度以下の場合
電動機として作用し、また同期速度を越えると発
電機として作用することが理解される。なお、誘
導電動機18の固定子巻線の結合相順は水車14
の回転方向と同方向に設定されている。
FIG. 1 shows an embodiment in which a flowing water head energy recovery device according to the present invention is attached to a flow channel for cooling a blast furnace in a steelworks. It is falling with a . In the present invention, in order to convert this flowing water energy into rotational energy, a water wheel 14 is provided in a part of the flowing water channel 10, and the water wheel 14 is rotationally driven by the flowing water 12. Then, on the upstream side from the water wheel 14 of the waterway 10, there is flowing water 1.
A control valve 16 is provided that can control the flow rate of 2. An induction motor 18 is connected to the water turbine 14, and more specifically, a rotor 18a of the induction motor 18 is connected to a rotating shaft 14a of the water turbine 14, so that the rotational energy of the water turbine 14 is converted into electrical energy of the induction motor 18. converted. induction motor 1
The stator 8 is electrically connected to the power supply side, in the embodiment, a commercial frequency power supply 20 via a switch 22, and the connection state between the induction motor 18 and the power supply 20 is changed by the switching action of the switch 22. It is understood that the induction motor 18 acts as an electric motor when its rotational speed is below the synchronous speed, and acts as a generator when it exceeds the synchronous speed. In addition, the coupling phase order of the stator winding of the induction motor 18 is the water turbine 14.
is set in the same direction as the rotation direction.

ここで、本発明に用いられる誘導電動機の速度
(スリツプS)とトルク(T)、電力(W)特性を
第2図を参照しながら説明する。
Here, the speed (slip S), torque (T), and power (W) characteristics of the induction motor used in the present invention will be explained with reference to FIG.

一般に、誘導電動機が負荷を負つて運転してい
る時に負荷を次第に減ずると滑りSも減少し速度
は同期速度nsに近づき、理想的な無負荷状態で
は滑りSが零となり同期速度nsにて回転する。
そして、電動機軸に機械力を加えて今までと同方
向に同期速度より速く回転させる過回転時には回
転子導体の磁束を切る方向も反対となり、回転子
巻線に誘起する起電力は電動機の場合と反対方向
になる。従つて、回転子電流も反対向に流れるの
で、トルクも電動領域と反対となり回転に逆らう
トルクを生じるようになる。以上のように、誘導
電動機に機械力を加え、電動機と同じ回転方向に
同期速度より速く回す場合には、この電動機は機
械力をとつて電力を出すように働くすなわち誘導
電動機として作用し、前記機械力として流水12
にる水車14の回転を利用すれば、流水エネルギ
を電源20側に電気エネルギとして回収すること
が可能となる。この時の誘導電動機の回転は同期
速度以下で回ろうとする逆トルクと同期速度以上
で回そうとする水車14側の発生するトルクとが
平衡する点には安定し、電動機18は誘導発電機
として運転を継続することになる。
Generally, when an induction motor is operating under a load, if the load is gradually reduced, the slip S will also decrease and the speed will approach the synchronous speed ns . Under ideal no-load conditions, the slip S will be zero and the synchronous speed will reach the synchronous speed ns . and rotate.
When mechanical force is applied to the motor shaft to rotate it in the same direction as before and faster than the synchronous speed, the direction in which the magnetic flux of the rotor conductor is cut is also reversed, and the electromotive force induced in the rotor winding is goes in the opposite direction. Therefore, since the rotor current also flows in the opposite direction, the torque is also opposite to the motorized region, producing a torque that opposes rotation. As described above, when applying mechanical force to an induction motor and rotating it in the same rotational direction as the motor faster than the synchronous speed, this motor works to generate electric power by taking mechanical force, that is, it acts as an induction motor. Flowing water as mechanical power12
By utilizing the rotation of the water wheel 14, it is possible to recover flowing water energy to the power source 20 side as electrical energy. At this time, the rotation of the induction motor is stable to the point where the reverse torque that attempts to rotate at a synchronous speed or less and the torque generated by the water turbine 14 that attempts to rotate at a synchronous speed or higher are balanced, and the motor 18 functions as an induction generator. I will continue driving.

今、流水路10に流水12が無い状態で、開閉
器22を閉成すると、誘導電動機18は電動機と
してその極性で定まる同期速度nsに対し水車1
4側の無負荷トルクに応じた滑りSにて回転し、
第2図において、電動機発生トルクTと水車14
の無負荷トルクTlとの交点が運転点となり、こ
の時の速度がnnそしてトルク及び使用電力がT
n,Wnとなる。
Now, when the switch 22 is closed with no flowing water 12 in the water channel 10, the induction motor 18 operates as an electric motor at a synchronous speed n s determined by its polarity, and the water turbine 1
It rotates with a slip S according to the no-load torque on the 4th side,
In Fig. 2, the electric motor generated torque T and the water turbine 14
The intersection with the no-load torque T l becomes the operating point, the speed at this time is n n , and the torque and power used are T
n , W n .

次に流水路10へ流水12を導き落下させ水車
14を無負荷トルクTn以上のトルクで回転させ
ると、この時の誘導電動機18の回転速度はnG
となり、前述した誘導発電機として作用する発電
機領域が得られる。この時の運転点は流水12に
より回転される水車14のトルク曲線Tl′とトル
クTとの交点により定まり、回転速度はnGに、
そしてこの時の逆発生トルクはTG更に回生電力
はWGとなり、この電力WGが電源20へ回収され
ることとなる。
Next, when the flowing water 12 is introduced into the flowing waterway 10 and dropped, and the water wheel 14 is rotated with a torque greater than or equal to the no-load torque T n , the rotational speed of the induction motor 18 at this time is n G
Thus, a generator region that acts as the induction generator described above is obtained. The operating point at this time is determined by the intersection of the torque curve T l ' of the water turbine 14 rotated by the flowing water 12 and the torque T, and the rotation speed is n G.
At this time, the reverse generated torque becomes T G , and the regenerated power becomes W G , and this power W G is recovered to the power source 20 .

以上のようにして、本発明によれば、汎用の誘
導電動機18を用いて低落差及び流量変動のある
流水からも小さな原動力で電力を回収することが
可能となり、従来一般に用いられる同期発電機を
利用する方式と比較して、同期速度以外の速度で
も運転が可能となり同期外れの現象がなく安定な
電力回収を行うことができ、また始動同期運転が
簡単で、かつ励磁機を必要としない等特徴を有
し、採算のとれる簡単な電力回収を行うことが可
能となる。
As described above, according to the present invention, it is possible to recover electric power with a small driving force even from flowing water with a low head and flow rate fluctuation using the general-purpose induction motor 18, and it is possible to recover electric power with a small driving force using the general-purpose induction motor 18. Compared to the conventional method, it is possible to operate at a speed other than the synchronous speed, there is no synchronization phenomenon, and stable power recovery can be performed, and the start-up synchronization operation is easy and an exciter is not required. This feature makes it possible to perform simple and profitable power recovery.

もちろん、本発明においても流水エネルギを用
いて誘導電動機18は同期速度以上の速度で回転
されなければならず、この速度が同期速度以下に
低下すると電動機としての作用によつて本発明の
方式は電源20から無用な電力を取込むこととな
るので、流水エネルギが所定値以上にある時のみ
誘導電動機18と電源20とを電気的に接続しな
ければならない。このために、前述した開閉器2
2の正確な開閉制御を行わなければならない。ま
た、実際の使用状態において、発電機領域中の選
択された所定の回転速度領域にて電動機18を回
転することが本発明において好適であり、理論上
最大電力を回収可能な速度nMが電力回収には最
も効率がよいが、この速度nM近辺では水車14
のトルクTl′と電動機18の発生トルクTとの平
衡点が2点以上となり運転が不安定となる欠点が
あり、また水車14の逸走が生じ極端な場合発電
機18が制動領域に突入する虞れがあり、実際上
の安定な運転は速度nMよりαで示される若干低
い速度nk以下の速度範囲で制御することが好適
である。
Of course, in the present invention as well, the induction motor 18 must be rotated at a speed higher than the synchronous speed using flowing water energy, and when this speed decreases below the synchronous speed, the method of the present invention Since the induction motor 18 and the power source 20 must be electrically connected only when the energy of the flowing water exceeds a predetermined value, the induction motor 18 and the power source 20 must be electrically connected. For this purpose, the above-mentioned switch 2
2.Accurate opening/closing control must be performed. Furthermore, in the actual usage state, it is preferable in the present invention to rotate the electric motor 18 in a predetermined rotational speed region selected in the generator region, and the speed n M at which the theoretical maximum power can be recovered is the power Although it is the most efficient for recovery, at this speed n M , the water turbine 14
There is a drawback that the equilibrium point between the torque T l ' of the motor 18 and the torque T generated by the electric motor 18 becomes two or more points, making the operation unstable, and the water turbine 14 runs away, and in extreme cases, the generator 18 enters the braking region. Therefore, in practice, stable operation is preferably controlled within a speed range of a speed n k or less, which is slightly lower than the speed n M and is indicated by α.

以下に前述した各制御を行うための本発明の実
施例を第1図により説明する。
An embodiment of the present invention for performing each of the above-mentioned controls will be described below with reference to FIG.

電力回収制御を行うために、実施例においては
制御装置24が設けられ、該制御装置24には操
作者による運転指令信号が供給される操作盤26
が接続されている。制御装置24の出力は前記制
御弁16及び開閉器22へ供給され、流水12の
流量を制御弁16の開度により制御し、また開閉
器22を開閉制御して電動機18と電源20との
接続を制御する。そして本発明においては、電動
機18の回転数が同期速度以下に低下したことを
検出して前記開閉器22を開放させる切替信号を
検出する切替信号検出器が設けられ、実施例にお
ける切替信号検出器は電力潮流方向検出器28か
ら成り、電動機18が電動機領域にあるかあるい
は発電機領域にあるかを直接検出してこの検出信
号により制御装置24を介して開閉器22の開閉
制御が行われる。すなわち、電動機18の回転数
が同期速度以下である場合には電源20から電動
機18へ駆動電流が供給され、一方、電動機18
の回転数が同期速度以上であると、電動機18か
ら回生電力が電源20へ回収されるので、電動機
18と電源20との接続線の潮流方向を検出する
ことによつて切替信号を検出することができる。
実施例における電力潮流方向検出器28は計器用
変圧器30及び計器用変流器32を含み、この電
圧及び電流値にて電力計あるいは電力量計を作動
させ、これら計器の針あるいは円盤の回転方向を
検出することにより潮流方向を検出することが可
能となる。もちろん、本発明において、電力潮流
方向検出器28は、前記電力値及び電流値を波形
整形して両波形間の位相差にて電力潮流方向を識
別することも可能である。以上のようにして、電
力潮流方向検出器28からの切替信号によつて制
御装置24は開閉器22を開閉制御して電動機1
8を発電機領域でのみ作動させることが可能とな
る。なお、制御装置24にはタイマ回路を設け、
電力潮流方向が一定の設定時間以上継続した時に
切替信号を出力する構成とし、同期速度近傍にお
ける微妙なハンチングを除去することが好適であ
る。
In order to perform power recovery control, a control device 24 is provided in the embodiment, and the control device 24 includes an operation panel 26 to which operation command signals from an operator are supplied.
is connected. The output of the control device 24 is supplied to the control valve 16 and the switch 22, and controls the flow rate of the flowing water 12 by the opening degree of the control valve 16, and also controls the opening and closing of the switch 22 to connect the electric motor 18 and the power source 20. control. In the present invention, a switching signal detector is provided that detects a switching signal that opens the switch 22 by detecting that the rotational speed of the electric motor 18 has decreased below the synchronous speed. consists of a power flow direction detector 28, which directly detects whether the motor 18 is in the motor region or the generator region, and controls the opening and closing of the switch 22 via the control device 24 based on this detection signal. That is, when the rotation speed of the electric motor 18 is below the synchronous speed, the drive current is supplied from the power supply 20 to the electric motor 18;
When the rotational speed of the motor 18 is equal to or higher than the synchronous speed, regenerative power is recovered from the electric motor 18 to the power source 20. Therefore, the switching signal can be detected by detecting the current direction of the connection line between the electric motor 18 and the power source 20. I can do it.
The power flow direction detector 28 in the embodiment includes an instrument transformer 30 and an instrument current transformer 32, and uses the voltage and current values to operate a wattmeter or a watt-hour meter, thereby controlling the rotation of the needle or disk of these meters. By detecting the direction, it becomes possible to detect the current direction. Of course, in the present invention, the power flow direction detector 28 can also waveform shape the power value and current value and identify the power flow direction based on the phase difference between the two waveforms. As described above, the control device 24 controls the opening and closing of the switch 22 based on the switching signal from the power flow direction detector 28 to control the opening and closing of the electric motor 1.
8 can be operated only in the generator area. Note that the control device 24 is provided with a timer circuit,
It is preferable to have a configuration in which a switching signal is output when the power flow direction continues for a certain set time or more to eliminate subtle hunting near the synchronous speed.

また、実施例においては、流水路10内の流水
12流量を検出するために、圧力スイツチ34が
設けられ、制御装置24へ流量信号として供給さ
れ、また電動機18の回転速度がタコジエネレー
タ等から成る速度検出器36によつて検出され制
御装置24へ供給される。
In the embodiment, a pressure switch 34 is provided to detect the flow rate of the flowing water 12 in the flow channel 10, and is supplied as a flow rate signal to the control device 24, and the rotational speed of the electric motor 18 is controlled by a tachometer generator or the like. It is detected by a detector 36 and supplied to the control device 24.

本発明の好適な実施例は以上の構成から成り、
以下にそのエネルギ回収作用を詳細に説明する。
A preferred embodiment of the present invention has the above configuration,
The energy recovery effect will be explained in detail below.

開閉器22が開放状態において操作盤26に運
転指令が入力されると、圧力スイツチ34からの
圧力信号によつて制御装置24は流水12の流量
あるいは圧力情報を取込む。運転開始時におい
て、制御弁16は全閉状態となつており、前記運
転指令とともに制御装置24は制御弁16を徐々
に開制御する。この時の開制御速度は水車14の
回転速度上昇に遅れの生じない速度以下に抑制さ
れている。制御弁16の開動作に伴い、水車14
及び電動機18の回転子が回転を開始し、その回
転速度が同期速度ns以下に設定された起動速度
lに達すると制御装置24は開閉器22に投入
指令を与え、開閉器22の閉成によつて電動機1
8は電気的に電源20と接続される。前記起動速
度nlは水車14から与えられる機械力によつて
電動機18が発電機領域に入り得る速度であり、
電動機18の固定子巻線が開放されている状態で
は、この速度nlは同期速度nsより低いが、開閉
器22の閉成によつて電源20から電動機18へ
固定子電流が供給されると、直ちに電動機18の
回転速度は同期速度ns以上となり、電動機18
は誘導発電機としての作用を開始し流水エネルギ
を電気エネルギとして電源20側へ回収すること
ができる。前記起動速度nlは実験的に定めら
れ、この起動速度nlに対応する基準設定電圧と
速度検出器36からの検出信号とを制御装置24
により比較演算して開閉器22の閉成制御信号が
出力される。
When an operation command is input to the operation panel 26 while the switch 22 is in an open state, the control device 24 receives flow rate or pressure information of the flowing water 12 based on a pressure signal from the pressure switch 34. At the start of operation, the control valve 16 is in a fully closed state, and together with the operation command, the control device 24 gradually opens the control valve 16. The opening control speed at this time is suppressed to a speed at which there is no delay in increasing the rotational speed of the water turbine 14. With the opening operation of the control valve 16, the water turbine 14
When the rotor of the electric motor 18 starts rotating and its rotational speed reaches a starting speed n l set below the synchronous speed n s , the control device 24 gives a closing command to the switch 22 and closes the switch 22 . Electric motor 1
8 is electrically connected to a power source 20. The starting speed n l is the speed at which the electric motor 18 can enter the generator region by the mechanical force applied from the water turbine 14,
When the stator winding of the motor 18 is open, this speed n l is lower than the synchronous speed n s , but stator current is supplied from the power supply 20 to the motor 18 by closing the switch 22. Immediately, the rotation speed of the electric motor 18 becomes equal to or higher than the synchronous speed n s , and the rotation speed of the electric motor 18
starts functioning as an induction generator and can recover running water energy to the power source 20 side as electrical energy. The starting speed n l is determined experimentally, and the reference setting voltage corresponding to this starting speed n l and the detection signal from the speed detector 36 are transmitted to the control device 24 .
A comparison operation is performed by , and a closing control signal for the switch 22 is output.

以上のようにして、発電機領域での電力回収作
用を継続しながら、制御弁16は回転速度が前述
したnkに達するまで開動作を続ける。そして、
制御弁16の開度増加あるいは流水12の流量増
加によつて電動機18の回転速度がnk以上とな
ると、制御装置24はこの時の速度検出器36の
出力と速度nkに対応する設定電圧とを比較演算
して、制御弁16に閉作動指令を与え、回転速度
がnk以下となるまで、この閉動作が継続され
る。なお、この速度nkにおける制御弁16の開
閉動作時にハンチング作用が生じることを防止す
るために速度nkの前後にnk1,nk2なるヒスリシ
ス領域を設けることが好適である。
As described above, the control valve 16 continues to open until the rotational speed reaches the aforementioned n k while continuing the power recovery action in the generator region. and,
When the rotational speed of the electric motor 18 becomes equal to or higher than n k due to an increase in the opening degree of the control valve 16 or an increase in the flow rate of the flowing water 12, the control device 24 adjusts the output of the speed detector 36 at this time and the set voltage corresponding to the speed n k A closing operation command is given to the control valve 16, and this closing operation is continued until the rotational speed becomes equal to or less than n k . In order to prevent hunting from occurring during the opening/closing operation of the control valve 16 at this speed n k , it is preferable to provide hysteresis regions n k1 and n k2 before and after the speed n k .

以上にようにして、本発明の方式によれば、電
動機18の速度がnsからnkの範囲において電力
の回収を行うことができ、特に流水12の流量が
充分にある時には電動機18をほぼnkなる速度
にて回転させ、効率のよい電力回収を行うことが
可能となる。
As described above, according to the method of the present invention, electric power can be recovered when the speed of the electric motor 18 is in the range from n s to n k , and especially when the flow rate of the running water 12 is sufficient, the electric motor 18 can be recovered almost immediately. By rotating at a speed of n k , it is possible to efficiently recover power.

前記電力回収状態において、流水12のエネル
ギ減少例えば流量あるいは圧力減少によつて制御
弁16を全開としても発電機領域の維持が不可能
となる場合には、電力潮流方向検出器28から制
御装置24へ切替信号が供給され、開閉器22が
開放され、電動機18を電動機領域で作動させ無
用な電力を電源20から取込むことが防止され
る。
In the power recovery state, if it becomes impossible to maintain the generator area even if the control valve 16 is fully opened due to a decrease in the energy of the flowing water 12, such as a decrease in flow rate or pressure, the power flow direction detector 28 sends a signal to the control device 24. A switching signal is supplied to the switch 22 to open the switch 22, thereby preventing the motor 18 from operating in the motor region and drawing unnecessary power from the power supply 20.

以上のようにして、本発明においては流水エネ
ルギが誘導電動機を発電機領域で回転可能なエネ
ルギである時のみ開閉器22を閉成して誘導電動
機18を誘導発電機として作用させ流水エネルギ
を電気エネルギとして電源20側へ回収すること
が可能となる。
As described above, in the present invention, only when the flowing water energy is enough to rotate the induction motor in the generator region, the switch 22 is closed, the induction motor 18 acts as an induction generator, and the flowing water energy is converted into electricity. It becomes possible to recover energy to the power source 20 side.

なお、実施例においては、操作盤26に停止指
令が入力されると開閉器22は直ちに開放されま
た制御弁16は全閉状態まで閉動作される。
In the embodiment, when a stop command is input to the operation panel 26, the switch 22 is immediately opened and the control valve 16 is closed until it is fully closed.

前述した実施例においては、電動機18の発生
トルクTが同期速度nsの近傍にて急激に変化す
るため、水車14の発生トルクTl′が減少した時
に電動機18が発電機領域と電動機領域間をハン
チングするという問題がある。そこで、発明にお
いては、巻線形の誘導電動機18を用い、発電機
領域にて速度が同期速度nsに近づいた場合、電
動機18の二次抵抗38の抵抗値を増加するよう
に制御することが好適であり、制御装置24から
破線で示される制御信号により二次抵抗38を増
加させ第2図の電動機発生トルクTを破線で示さ
れるT′とし、水車トルクがTl″に低下した場合に
おいても同期速度nsより速い安定した運転点に
回転速度を移すことが可能となる。この実施例に
よれば、水車14の回転エネルギが低下した場合
においても安定な電力回収を行うことが可能とな
る。前記抵抗制御は速度検出器36の検出信号に
基づいて制御装置24が行うことができる。
In the embodiment described above, since the torque T generated by the electric motor 18 changes rapidly near the synchronous speed n s , when the torque T l ' generated by the water turbine 14 decreases, the electric motor 18 moves between the generator region and the motor region. There is a problem of hunting. Therefore, in the invention, a wound type induction motor 18 is used, and when the speed approaches the synchronous speed n s in the generator region, the resistance value of the secondary resistance 38 of the motor 18 is controlled to increase. It is preferable that the secondary resistance 38 is increased by a control signal shown by a broken line from the control device 24, and the motor generated torque T in FIG . It becomes possible to shift the rotational speed to a stable operating point faster than the synchronous speed n s . According to this embodiment, even when the rotational energy of the water turbine 14 decreases, it is possible to perform stable power recovery. The resistance control can be performed by the control device 24 based on the detection signal of the speed detector 36.

なお、本発明においては、前述したごとく発電
機として巻線型誘導電動機を用い、更にこの電動
機は二次抵抗を有し冷却水の流量変動に対応でき
るとともに回収トルクと回収電力は前記二次抵抗
を変化させて電動機のすべりSを可変として運転
の安定性を保持して前述した各実施例において
は、誘導電動機18の同期速度nsが一定である
ために、流水12のエネルギ変動によつて電力回
収がしばしば中断される場合が生じるが、同期速
度ns自体を電動機18の実回転速度より低い値
に制御すれば流水エネルギ変動に拘らず常に電力
回生を行うことが可能となり、水車14及び電動
機18を高効率にて運転することが可能となる。
第1図にはこのための破線で示される同期速度可
変回路40が電動機18に接続され、第3図にそ
の一例が示されている。第3図に示される同期速
度可変回路40は周知の可変電圧可変周波数イン
バータ装置からなり、電源20から電動機18へ
供給される電圧及び周波数(v/=一定)を制
御して電動機18の同期速度nsを変化させるこ
とができる。すなわち、第3図において、電動機
18の回転速度を速度検出器36にて検出し、こ
の検出信号によつて速度設定を行い、これに基づ
く電圧と周波数を定めれば極めて高精度に同期速
度を実回転速度以下に制御することが可能とな
る。
In addition, in the present invention, as described above, a wound type induction motor is used as a generator, and furthermore, this motor has a secondary resistance and can cope with fluctuations in the flow rate of cooling water, and the recovered torque and recovered power are determined by the secondary resistance. In each of the above-described embodiments in which the slip S of the motor is varied to maintain stability of operation, the synchronous speed n s of the induction motor 18 is constant, so the electric power is Although recovery is often interrupted, if the synchronous speed n s itself is controlled to a value lower than the actual rotational speed of the electric motor 18, it becomes possible to constantly regenerate electric power regardless of fluctuations in flowing water energy. 18 can be operated with high efficiency.
A variable synchronous speed circuit 40, shown in broken lines in FIG. 1, is connected to the motor 18, an example of which is shown in FIG. The synchronous speed variable circuit 40 shown in FIG. 3 is composed of a well-known variable voltage variable frequency inverter device, and controls the voltage and frequency (v/=constant) supplied from the power source 20 to the motor 18 to control the synchronous speed of the motor 18. n s can be varied. That is, in FIG. 3, if the rotational speed of the electric motor 18 is detected by the speed detector 36, the speed is set based on this detection signal, and the voltage and frequency are determined based on this, the synchronous speed can be set with extremely high accuracy. It becomes possible to control the rotation speed below the actual rotation speed.

なお、前述した同期速度可変回路40は可変電
圧可変周波数インバータ装置以外に極数変換装置
あるいは二次励磁装置等によつて行うことも可能
である。
The variable synchronous speed circuit 40 described above can also be implemented by a pole number converter, a secondary excitation device, or the like in addition to the variable voltage variable frequency inverter device.

更に、前述した各実施例においては、流水12
の流出方向を一定としているが、流水利用施設例
えば製鉄所内の各種施設に対して流水を圧送する
場合、流水路10内にて水の逆流が生じる場合が
あり、例えば圧送ポンプの停止時に流水路内の残
留水に戻り現象が生じる場合がある。前述した各
実施例においては、この逆流水に対しては水車1
4を空転させていたが、本発明において、第1図
に破線で示される逆転用開閉器42を付設するこ
とにより、残留水の逆流時には電動機18の結合
相順を逆向とするように接続して電動機18の回
転方向を反転させれば、この逆流時における流水
エネルギをも電源20側へ回収することが可能と
なる。
Furthermore, in each of the embodiments described above, the running water 12
However, when flowing water is pumped to various facilities in a steelworks, for example, a backflow of water may occur in the water channel 10. For example, when the pressure pump is stopped, the flow channel 10 The residual water inside the tank may return and cause a phenomenon. In each of the embodiments described above, the water turbine 1 is used to deal with this backflow water.
However, in the present invention, by attaching a reversing switch 42 shown by a broken line in FIG. 1, the motor 18 can be connected so that the coupled phase order of the motor 18 is reversed when the residual water flows backward. By reversing the rotational direction of the electric motor 18, the energy of the flowing water during this reverse flow can also be recovered to the power source 20 side.

以上説明したように、本発明によれば、高炉冷
却系における流水の有するエネルギを高効率で電
力回収することができ、特に低落差及び流量変動
の激しい流水に対しても採算のとれる電力回収方
式を提供することが可能となり、製鉄所その他に
おける省エネルギに極めて有効である。
As explained above, according to the present invention, the energy contained in flowing water in the blast furnace cooling system can be recovered as electricity with high efficiency, and the power recovery method is particularly profitable even for flowing water with a low head and large flow rate fluctuations. It is extremely effective for energy saving in steel works and other places.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る高炉冷却系の冷却水の落
差エネルギ回収装置の好適な実施例を示すブロツ
ク図、第2図は第1図における誘導電動機の特性
図、第3図は本発明の他の実施例を示す要部ブロ
ツク図である。 10……流水路、12……流水、14……水
車、16……制御弁、18……誘導電動機、20
……商用周波数電源、22……開閉器、28……
電力潮流方向検出器。
FIG. 1 is a block diagram showing a preferred embodiment of the cooling water head energy recovery device for a blast furnace cooling system according to the present invention, FIG. 2 is a characteristic diagram of the induction motor in FIG. 1, and FIG. FIG. 7 is a main part block diagram showing another embodiment. 10...Flow channel, 12...Flowing water, 14...Water wheel, 16...Control valve, 18...Induction motor, 20
... Commercial frequency power supply, 22 ... Switch, 28 ...
Power flow direction detector.

Claims (1)

【特許請求の範囲】 1 高炉を冷却する冷却水の流水落差エネルギを
水車の回転エネルギに変換し、前記水車回転駆動
中に順次流水量を増加して水車回転速度を上昇制
御し、前記水車に接続されている誘動電動機の回
転速度が同期速度以下に設定された起動速度に達
したときに電動機に電源を接続して誘導電動機を
発電機として用い、前記水車に供給される流水量
を誘導電動機から最大電力を回収可能な速度とな
るように増加制御し、過回転により流水落差エネ
ルギを電源側に電気エネルギとして回収し、前記
誘導電動機の回転速度が同期速度が同期速度より
低下すると一定時限後誘導電動機と電源との接続
を遮断し、流水落差エネルギを水車及び誘導電動
機にて電気エネルギに変換して回収することを特
徴とする高炉冷却系の流水落差エネルギ回収方
法。 2 高炉を冷却する冷却水の流水路に設けられ流
水落差エネルギにて回転駆動される水車と、前記
水車に供給される冷却水の流量を制御し水車の回
転速度を可変する制御弁と、前記水車に接続され
二次抵抗を可変としてすべり制御される回転子と
電源に接続可能な固定子とを有する巻線型誘導電
動機と、前記誘導電動機の固定子と電源との接続
を開閉制御する開閉器と、前記誘導電動機が電力
潮流方向を検出して電動機領域となつてから一定
時限後に前記開閉器を開放する切替信号を出力す
る切替信号検出器と、を含み、誘導電動機の二次
抵抗を調節してすべり制御を行い、流水落差エネ
ルギが大きいときには誘導電動機と電源とを開閉
器により接続して誘導電動機を発電機として作用
させて流水落差エネルギを電気エネルギとして電
源へ回収し、流水落差エネルギが小さいときには
開閉器を開放して誘導電動機と電源とを遮断する
ことを特徴とする高炉冷却系の流水落差エネルギ
回収装置。
[Scope of Claims] 1. Converting the head energy of the cooling water that cools the blast furnace into the rotational energy of the waterwheel, and controlling the rotational speed of the waterwheel by increasing the amount of water flowing sequentially while the waterwheel is being driven to rotate the waterwheel. When the rotational speed of the connected induction motor reaches a starting speed set below the synchronous speed, a power supply is connected to the motor and the induction motor is used as a generator to induce the amount of water supplied to the water turbine. Increase control is performed so that the maximum power can be recovered from the motor, and the running water head energy due to overspeed is recovered as electrical energy to the power supply side, and when the rotational speed of the induction motor becomes lower than the synchronous speed, a fixed time limit is applied. A method for recovering flowing water head energy in a blast furnace cooling system, characterized in that the connection between a rear induction motor and a power source is cut off, and the flowing water head energy is converted into electrical energy and recovered by a water turbine and an induction motor. 2. A water wheel provided in a flow channel of cooling water that cools the blast furnace and driven to rotate by the energy of the head of the water; a control valve that controls the flow rate of the cooling water supplied to the water wheel and varies the rotational speed of the water wheel; A wire-wound induction motor has a rotor that is connected to a water turbine and is slidably controlled by varying secondary resistance, and a stator that can be connected to a power source, and a switch that controls opening and closing of the connection between the stator of the induction motor and the power source. and a switching signal detector that outputs a switching signal to open the switch after a certain period of time after the induction motor detects the power flow direction and enters the motor region, and adjusts the secondary resistance of the induction motor. When the flowing water head energy is large, the induction motor and the power source are connected with a switch, the induction motor acts as a generator, and the flowing water head energy is recovered as electrical energy to the power source, and the flowing water head energy is A water head energy recovery device for a blast furnace cooling system, which is characterized by opening a switch to cut off an induction motor and a power source when it is small.
JP3594680A 1980-03-21 1980-03-21 Power recovering method and device for water flow utilizing facility Granted JPS56133942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3594680A JPS56133942A (en) 1980-03-21 1980-03-21 Power recovering method and device for water flow utilizing facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3594680A JPS56133942A (en) 1980-03-21 1980-03-21 Power recovering method and device for water flow utilizing facility

Publications (2)

Publication Number Publication Date
JPS56133942A JPS56133942A (en) 1981-10-20
JPS6129217B2 true JPS6129217B2 (en) 1986-07-05

Family

ID=12456149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3594680A Granted JPS56133942A (en) 1980-03-21 1980-03-21 Power recovering method and device for water flow utilizing facility

Country Status (1)

Country Link
JP (1) JPS56133942A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566613C1 (en) * 2014-12-15 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Device for hydraulic turbine protection against journal bearing failure

Also Published As

Publication number Publication date
JPS56133942A (en) 1981-10-20

Similar Documents

Publication Publication Date Title
US4656413A (en) Stabilized control system and method for coupling an induction generator to AC power mains
JP4641881B2 (en) Induction generator power generator
JPS6129217B2 (en)
US4538097A (en) Process and apparatus for recovering energy, in the form of electric energy, from a motor test bench
JPS5956893A (en) Controlling method for synchronous motor
SU780142A1 (en) Wind-electric plant
JP2524575B2 (en) Braking device for variable speed generator motor in variable speed pumped storage generator
JP2006141112A (en) Hydraulic turbine generating system and inverter
KR100206657B1 (en) Cooling device of a generator
JPS6022496A (en) High efficiency operating speed control system for ac motor
JP3375888B2 (en) Control device of variable speed induction generator and control method thereof
CN2541996Y (en) Rotor series resistance speed governer of a.c wound induction motor
JP2526605B2 (en) Variable speed power generation control device
CN2541997Y (en) Four-quad cascade control power brake
SU1010712A1 (en) Method of control of dc motor
JPS60209669A (en) Starting of water turbine for hydraulic electric power generation
JP2002354695A (en) Conduit type power generating system
JPH0768936B2 (en) How to stop pumping operation of variable speed pump
JPS58151897A (en) Driving device for motor
SU1023600A1 (en) Dc electric drive
JPH0323834Y2 (en)
JPS6258061A (en) Wind power generating device
JPS605800A (en) Output power regulator of generator
CN114268249A (en) High-voltage synchronous frequency conversion soft starting equipment and starting method thereof
JPH08158813A (en) Waste heat utilizing facility