JPS6129201B2 - - Google Patents

Info

Publication number
JPS6129201B2
JPS6129201B2 JP53107057A JP10705778A JPS6129201B2 JP S6129201 B2 JPS6129201 B2 JP S6129201B2 JP 53107057 A JP53107057 A JP 53107057A JP 10705778 A JP10705778 A JP 10705778A JP S6129201 B2 JPS6129201 B2 JP S6129201B2
Authority
JP
Japan
Prior art keywords
circuit
contact
capacitor
switch element
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53107057A
Other languages
Japanese (ja)
Other versions
JPS5534832A (en
Inventor
Mine Ozeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP10705778A priority Critical patent/JPS5534832A/en
Publication of JPS5534832A publication Critical patent/JPS5534832A/en
Publication of JPS6129201B2 publication Critical patent/JPS6129201B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は電気車の制御回路に係り、特に大容量
電気車における保護回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for an electric vehicle, and particularly to a protection circuit for a large-capacity electric vehicle.

電気車たとえばフオークリフトにおいては、10
トン級の比較的大容量のものになると走行モータ
相当大きくなり、その出力も大となる。これに基
いてモータの回転力を伝達するためのシヤフト、
ギヤー等の動力伝達機構も大形のものとなる。し
かし、伝達機構を大形にしても走行モータに大電
流が流れて急激に大トルクが発生した場合には伝
達機構が破損する恐れを有している。そして大電
流が流れる時点は、チヨツパ回路の短絡用接点が
投入されモータに全電圧が印加されている時に多
発する。
For electric vehicles, for example, forklifts, 10
If the capacity is relatively large, such as the ton class, the traveling motor will be considerably large and its output will also be large. Based on this, a shaft for transmitting the rotational force of the motor,
The power transmission mechanism such as gears is also large-sized. However, even if the transmission mechanism is made large, there is a risk that the transmission mechanism will be damaged if a large current flows through the travel motor and a large torque is suddenly generated. The point in time when a large current flows occurs frequently when the short circuit contact of the chopper circuit is closed and the full voltage is applied to the motor.

すなわち第1図は電気車の一般的な主回路を示
したもので、1は直流電源、2は走行用電動機
で、界磁巻線F、フライホイールダイオード
DF1,DF2および切換用接点MR,MFを有してい
る。3はチヨツパ回路で、このチヨツパ回路3に
は図示省略されたアクセレータの踏込角が一定角
度以上となつたとき励磁される電磁石4の接点4
aが並列に接続されている。すなわち5はキース
イツチ、6はアクセルの踏込角が一定角度以上に
なつたとき閉じるアクセルスイツチ、S1はサイリ
スタであつて、これらは電磁石4に直列に接続さ
れている。
In other words, Figure 1 shows the general main circuit of an electric car, where 1 is a DC power supply, 2 is a running motor, field winding F, and a flywheel diode.
It has DF 1 , DF 2 and switching contacts MR and MF. 3 is a chopper circuit, and this chopper circuit 3 includes a contact 4 of an electromagnet 4 that is excited when the depression angle of an accelerator (not shown) exceeds a certain angle.
a are connected in parallel. That is, 5 is a key switch, 6 is an accelerator switch that closes when the depression angle of the accelerator exceeds a certain value, and S1 is a thyristor, which are connected to the electromagnet 4 in series.

しかして電気車の走行制御は、アクセルの踏込
角に応じて出力する発振器(図示省略)の出力に
てチヨツパ回路3の導通率を制御することによつ
て行なわれ、更にスピードを出したいときにはア
クセルを更に踏込んで接点4aを投入し、チヨツ
パ回路3を短絡する。したがつて電動機2には全
電圧が印加されることになつて電気車は最高スピ
ードにて走行することになるが、この走行中車輪
が溝に落ち込んだ場合のように何らかの理由にて
負荷が増大すると、接点4aが投入されているた
め電圧調整のためのチヨツパ回路3が不動作状態
であり負荷電流が急増してトルクも急激に増大
し、そのシヨツクにより伝達機構の破損事故が発
生する。このため従来では伝達機構の強度を高め
るために大形となつているが、しかし大形化にも
限度があり、大容量電動機使用の場合には運転状
態によつては破損事故は避けられない問題点を有
している。
Therefore, running control of an electric vehicle is performed by controlling the conductivity of the chopper circuit 3 using the output of an oscillator (not shown) that outputs according to the depression angle of the accelerator. is further depressed to close the contact 4a and short-circuit the chopper circuit 3. Therefore, full voltage will be applied to the electric motor 2, and the electric car will run at maximum speed, but if the load is reduced for some reason, such as when a wheel falls into a groove while running, the electric car will run at maximum speed. When the voltage increases, the chopper circuit 3 for voltage regulation is inactive since the contact 4a is closed, and the load current and torque increase rapidly, causing damage to the transmission mechanism. For this reason, in the past, the transmission mechanism was made larger to increase its strength, but there is a limit to increasing the size, and when using a large-capacity electric motor, damage accidents are inevitable depending on the operating conditions. There are problems.

本発明はかかる点に鑑み、大電流が流れたとき
にはチヨツパ回路に並列接続された接点を直ちに
開放し、チヨツパ運転に移行させることによつて
大電流を抑制し、上述した欠点を除去するように
した制御回路を提供せんとするものである。
In view of this, the present invention is designed to suppress the large current by immediately opening the contacts connected in parallel to the chopper circuit and shift to chopper operation when a large current flows, thereby eliminating the above-mentioned drawbacks. The purpose of this invention is to provide a control circuit that provides a controlled control circuit.

以下第2図に基いて本発明の一実施例を詳述す
る。なお第2図において、第1図と同符号のもの
は同一名称もしくは相当部分を示す。
An embodiment of the present invention will be described in detail below with reference to FIG. In FIG. 2, the same symbols as in FIG. 1 indicate the same names or corresponding parts.

7は電流検出回路で、この電流検出回路7は負
荷電流を検出するための検出抵抗Rと、基準電圧
抵抗R2,R3、入力抵抗R4,R5及び比較器8より
なつている。9は定電圧回路で抵抗R6、ゼナー
ダイオードZD1より構成されており、抵抗R6とゼ
ナーダイオードZD1はキースイツチ5とアクセル
スイツチ6の接続点と電源1の負極側間で直列に
接続されている。
7 is a current detection circuit, and this current detection circuit 7 consists of a detection resistor R for detecting the load current, reference voltage resistors R 2 and R 3 , input resistors R 4 and R 5 , and a comparator 8. Reference numeral 9 denotes a constant voltage circuit, which is composed of a resistor R 6 and a zener diode ZD 1 , and the resistor R 6 and the zener diode ZD 1 are connected in series between the connection point of the key switch 5 and accelerator switch 6 and the negative pole side of the power supply 1. It is connected.

電流検出回路7においては、電流検出抵抗R1
は接点4aに直列接続され、抵抗R2,R3はゼナ
ーダイオードZD1に並列接続されている。また比
較器8の一方の入力端子8aは抵抗R4を介して
抵抗R2とR8の接続点に接続され、他方の端子8
bは抵抗R5を介して接点4aと抵抗R1の接続点
に接続されている。
In the current detection circuit 7, the current detection resistor R 1
are connected in series to the contact 4a, and resistors R 2 and R 3 are connected in parallel to the zener diode ZD 1 . Also, one input terminal 8a of the comparator 8 is connected to the connection point between the resistors R2 and R8 via the resistor R4 , and the other terminal 8a is connected to the connection point between the resistors R2 and R8 .
b is connected to the connection point between the contact 4a and the resistor R1 via the resistor R5 .

S1は第1のスイツチング素子ここではサイリス
タであり、アクセルスイツチ6、電磁石4および
サイリスタS1によつて接点4aの投入回路10が
構成され、またサイリスタS1の点弧回路11とし
て、例えば抵抗R7、コンデンサC1、ゼナーダイ
オードZD1及び抵抗R8を備えている。12は接点
4aの離落回路で、前記電磁石4とサイリスタS1
との直列回路と並列に接続された抵抗R9と第2
のスイツチング素子ここではサイリスタS2の直列
回路と、各サイリスタS1,S2のアノード間に接続
された転流コンデンサC2より構成されている。
そしてD1はゼナーダイオードZD2の出力端子とサ
イリスタS2のアノード間に接続されたダイオード
である。
S 1 is a first switching element, here a thyristor, and the accelerator switch 6, the electromagnet 4 and the thyristor S 1 constitute a closing circuit 10 for the contact 4a. R 7 , capacitor C 1 , zener diode ZD 1 and resistor R 8 . 12 is a dropout circuit of the contact 4a, which connects the electromagnet 4 and the thyristor S 1
resistor R 9 and the second connected in series circuit with
The switching element here consists of a series circuit of thyristors S 2 and a commutating capacitor C 2 connected between the anodes of each thyristor S 1 and S 2 .
And D 1 is a diode connected between the output terminal of zener diode ZD 2 and the anode of thyristor S 2 .

上記の如く構成された本発明の回路においてそ
の動作を説明する。
The operation of the circuit of the present invention configured as described above will be explained.

電気車を前進させるときは、キースイツチ5を
投入し、アクセルを踏込むことによつて図示省略
の接点MF用電磁石が付勢され、切換スイツチ
MFは点線で示す位置に切換り、これと同時に発
振器(図示省略)も駆動されてチヨツパ回路3が
動作し、電動機2に電圧が印加されることによつ
て電気車は走行する。アクセルの踏込角を徐々に
大きくし、一定値以上踏込むことにより投入回路
10のアクセルスイツチ6が投入され、キースイ
ツチ5―アクセルスイツチ6―電磁石4抵抗R7
を通してコンデンサC1に充電電流が流れ込む。
この充電による充電電圧が、ゼナーダイオード
ZD2のゼナー電圧値以上となると、ゼナーダイオ
ードZD2を介してサイリスタS1のゲートに印加さ
れ、サイリストS1が導通し、電磁石4が付勢させ
られることによつてその接点4aが投入される。
これによりチヨツパ回路3が短絡されることによ
り、電気車は最高スピードで走行する。なお、サ
イリスタS1導通時には、離落回路12のコンデン
サC2には図示極性で充電されている。
When moving the electric vehicle forward, by turning on the key switch 5 and depressing the accelerator, the electromagnet for contact MF (not shown) is energized, and the changeover switch is activated.
The MF is switched to the position shown by the dotted line, and at the same time, the oscillator (not shown) is also driven, the chopper circuit 3 is operated, and voltage is applied to the electric motor 2, thereby causing the electric vehicle to run. Gradually increase the depression angle of the accelerator, and by depressing the accelerator beyond a certain value, the accelerator switch 6 of the closing circuit 10 is closed, and the key switch 5 - accelerator switch 6 - electromagnet 4 resistor R 7
Charging current flows into capacitor C1 through.
The charging voltage from this charging is the Zener diode
When the zener voltage value exceeds the zener voltage value of ZD 2 , it is applied to the gate of thyristor S 1 via the zener diode ZD 2 , thyristor S 1 becomes conductive, and the electromagnet 4 is energized, so that its contact 4a is Injected.
As a result, the chopper circuit 3 is short-circuited, and the electric vehicle runs at maximum speed. Note that when the thyristor S1 is conductive, the capacitor C2 of the falling circuit 12 is charged with the illustrated polarity.

かかる状態において、今何等かの理由によつて
負荷が増大し、検出抵抗R1によつて検出された
負荷電流の比例値が比較器8において前もつて設
定されていた基準値以上となると比較器8は出力
を発生し、その出力信号にてサイリスタS2を点弧
する。サイリスタS2の導通によつてコンデンサ
C2に蓄えられていた電荷が放電してサイリスタ
S1を不導通となし、接点4aを強制的に離落させ
てチヨツパ運転に移行させる。ここで、サイリス
タS2がオンにされ、サイリスタS1がオフ状態とな
ると、アクセルスイツチ6が例え投入されたまま
であつても、ダイオードD1の働きによりサイリ
スタS2がオフとならないかぎり、コンデンサC2
には充電されず、電磁石4が再度投入されるよう
なことはない。
In such a state, if the load increases for some reason and the proportional value of the load current detected by the detection resistor R1 exceeds the reference value previously set in the comparator 8, the comparison is performed. The device 8 generates an output, and the output signal fires the thyristor S2 . Capacitor by conduction of thyristor S 2
The charge stored in C2 is discharged and the thyristor
S1 is made non-conductive, contact 4a is forcibly separated, and the operation is shifted to chopper operation. Here, when the thyristor S 2 is turned on and the thyristor S 1 is turned off, even if the accelerator switch 6 remains on, the capacitor C is turned off unless the thyristor S 2 is turned off by the action of the diode D 1 . 2
The electromagnet 4 is not charged and the electromagnet 4 is not turned on again.

電気車では一般にはチヨツパ運転時においても
重負荷時の電動機電流を制限するために過電流制
限回路を設けてチヨツパ回路の導通率を制限する
方法がとられているが、本発明においては、前記
接点4aを強制的に離落させてチヨツパ運転に移
行させると同時に、このチヨツパ回路3の導通率
を、前記過電流制限回路により過電流制限をかけ
る程度にするようにしたものである。
In electric vehicles, a method is generally adopted in which an overcurrent limiting circuit is provided in order to limit the motor current under heavy load even during chopper operation, and the conductivity of the chopper circuit is limited. The contact 4a is forcibly separated to shift to chopper operation, and at the same time, the conductivity of the chopper circuit 3 is set to such a level that overcurrent is limited by the overcurrent limiting circuit.

第3図は過電流制限回路の一例を示したもの
で、7aは電流検出回路でありこの電流検出回路
7aは、接点4aが閉じているときに電動電流が
流れる電流路l1に設けられた電流検出器たとえば
変成器CTと、この変成器CTの二次巻線Wに接続
された抵抗R10,R11とからなる。電流検出回路7
aの抵抗R10とR11の接続点にはダイオードD2
アノードが接続され、ダイオードD2には抵抗R11
を介してコンデンサC3が並列接続されている。
さらにダイオードD2は順方向に接続されたダイ
オードD3を介してトランジスタQのベースに接
続されている。13は発振回路であり、通常はダ
イオードD4を通してトランジスタのベースに供
給されるアクセル信号に応じてチヨツパ回路の導
通率を規定する信号を発している。
Figure 3 shows an example of an overcurrent limiting circuit, where 7a is a current detection circuit, and this current detection circuit 7a is provided in the current path l 1 through which the motor current flows when the contact 4a is closed. The current detector consists of a transformer CT, for example, and resistors R 10 , R 11 connected to the secondary winding W of the transformer CT. Current detection circuit 7
The anode of the diode D 2 is connected to the connection point of the resistors R 10 and R 11 of a, and the resistor R 11 is connected to the diode D 2 .
Capacitor C3 is connected in parallel through.
Further, diode D 2 is connected to the base of transistor Q via diode D 3 connected in the forward direction. Reference numeral 13 denotes an oscillation circuit, which normally emits a signal that defines the conductivity of the chopper circuit in response to an accelerator signal supplied to the base of the transistor through a diode D4 .

上記構成の過電流制限回路において、何等かの
理由によつて電流路l1を流れる電流が増加する
と、この電流増加分に応じて電流検出回路7aか
らダイオードD3を通して電流検出信号がトラン
ジスタQのベースに供給される。これによりトラ
ンジスタQはバイアスされその出力信号を発振器
13に供給する。発振器13はトランジスタQか
らの信号に応じてチヨツパ回路に過電流制限信号
を供給する。
In the overcurrent limiting circuit configured as described above, when the current flowing through the current path l1 increases for some reason, the current detection signal is transmitted from the current detection circuit 7a through the diode D3 to the transistor Q in accordance with this increased current. supplied to the base. This biases transistor Q and supplies its output signal to oscillator 13. Oscillator 13 supplies an overcurrent limit signal to the chopper circuit in response to a signal from transistor Q.

以上説明したように本発明においては、チヨツ
パ回路を短落して走行電動機に全電圧を印加する
ための接点が短絡されているとき、前記走行電動
機の電流を検出して該電流が大きくなつてモータ
シヤフトやギヤー強度に影響を与えるトルクが発
生したとき前記接点を離落させてチヨツパー動作
に移行させるようにしたものである。したがつて
本発明によれば、動力伝達機構を小形できて安価
にできると共に、破損事故などを防止でき信頼性
の向上を図れる等、優れた効果が得られる。
As explained above, in the present invention, when the contact point for applying full voltage to the traveling motor by short-circuiting the chopper circuit is short-circuited, the current of the traveling motor is detected and the current increases, causing the motor to When a torque that affects the strength of the shaft or gear is generated, the contact point is separated and a transition is made to a chopper operation. Therefore, according to the present invention, the power transmission mechanism can be made smaller and less expensive, and excellent effects such as prevention of damage and accidents and improved reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般の電気車制御回路、第2図は本発
明の実施例による電気車の保護回路の電気結線
図、第3図は本発明で用いる過電流制御回路の電
気結線図である。 1……直流電源、2……走行電動機、3……チ
ヨツパ回路、4……電磁石、4a……接点、6…
…アクセルスイツチ、7……電流検出回路、10
……接点投入回路、12……接点離落回路。
FIG. 1 is an electrical wiring diagram of a general electric vehicle control circuit, FIG. 2 is an electrical wiring diagram of an electric vehicle protection circuit according to an embodiment of the present invention, and FIG. 3 is an electrical wiring diagram of an overcurrent control circuit used in the present invention. DESCRIPTION OF SYMBOLS 1...DC power supply, 2...Travel motor, 3...Chopper circuit, 4...Electromagnet, 4a...Contact, 6...
...Accelerator switch, 7...Current detection circuit, 10
...Contact closing circuit, 12...Contact falling circuit.

Claims (1)

【特許請求の範囲】 1 直流電源からの電圧をチヨツパ回路により調
節して走行電動機に印加し、走行速度を制御する
と共に、前記チヨツパ回路を接点により短絡して
前記走行電動機に全電源電圧を印加するようにし
た電気車において、前記接点を投入させる接点投
入回路と、該接点が投入されているとき前記走行
電動機を通して流れる電流の増加を検出する電流
検出回路と、該電流検出回路の検出信号により前
記接点を離落させる接点離落回路とからなり、 前記接点投入回路が、アクセルの踏込みに応じ
て開閉されるアクセルスイツチと前記接点を開閉
させる電磁石と該電磁石に接続された第1のスイ
ツチ素子からなる直列回路と、該直列回路の第1
のスイツチ素子に抵抗を介して並列接続されたコ
ンデンサを有し、該コンデンサの充電電圧が所定
値になつたとき前記第1のスイツチ素子を導通さ
せる点弧回路とからなり、 前記電流検出回路が、前記接点を通して流れる
電流が所定値に達したときの入力電圧が設定値以
上になつたときに出力を発する比較器を含み、 前記離落回路が、転流コンデンサを介して前記
第1のスイツチ素子に並列接続され前記比較器の
出力により導通させられる第2のスイツチ素子
と、前記点弧回路の抵抗とコンデンサの接続点と
前記転流コンデンサと第2のスイツチ素子の接続
点間に接続され前記第2のスイツチ素子が導通し
ているとき前記転流コンデンサの充電を阻止する
ダイオードとによつて構成されていることを特徴
とする電気車の保護回路。
[Scope of Claims] 1 Voltage from a DC power source is adjusted by a chopper circuit and applied to the traveling motor to control the traveling speed, and the chopper circuit is short-circuited by a contact to apply the full power supply voltage to the traveling motor. In the electric vehicle, the electric vehicle includes a contact closing circuit that closes the contact, a current detection circuit that detects an increase in the current flowing through the traveling motor when the contact is closed, and a detection signal of the current detection circuit. a contact drop-off circuit that causes the contact to fall off; a series circuit consisting of a first circuit of the series circuit;
a capacitor connected in parallel to the first switch element via a resistor, and an ignition circuit that conducts the first switch element when the charging voltage of the capacitor reaches a predetermined value; , a comparator that outputs an output when the input voltage exceeds a set value when the current flowing through the contact reaches a predetermined value, and the dropout circuit connects the first switch to the first switch via a commutating capacitor. a second switch element connected in parallel to the element and made conductive by the output of the comparator; and a second switch element connected between the connection point of the resistor and capacitor of the ignition circuit and the connection point of the commutating capacitor and the second switch element. A protection circuit for an electric vehicle, comprising a diode that prevents charging of the commutating capacitor when the second switch element is conductive.
JP10705778A 1978-08-31 1978-08-31 Protection circuit of electric car Granted JPS5534832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10705778A JPS5534832A (en) 1978-08-31 1978-08-31 Protection circuit of electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10705778A JPS5534832A (en) 1978-08-31 1978-08-31 Protection circuit of electric car

Publications (2)

Publication Number Publication Date
JPS5534832A JPS5534832A (en) 1980-03-11
JPS6129201B2 true JPS6129201B2 (en) 1986-07-05

Family

ID=14449399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10705778A Granted JPS5534832A (en) 1978-08-31 1978-08-31 Protection circuit of electric car

Country Status (1)

Country Link
JP (1) JPS5534832A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114611A (en) * 1974-06-19 1976-02-05 Gen Electric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114611A (en) * 1974-06-19 1976-02-05 Gen Electric

Also Published As

Publication number Publication date
JPS5534832A (en) 1980-03-11

Similar Documents

Publication Publication Date Title
US4423363A (en) Electrical braking transitioning control
US4479080A (en) Electrical braking control for DC motors
US4056160A (en) Electrically powered vehicle with power steering
US4090114A (en) Safety features for electric vehicle control
US3989990A (en) Feedback field control for an electric vehicle
US4191914A (en) Control circuit for a DC electric motor particularly used in the propulsion of an electric vehicle
US4449080A (en) Electric vehicle protection scheme
US4427928A (en) Braking control apparatus for an electric motor operated vehicle
US4186333A (en) Circuit for the energy-conserving braking of a direct-current series-wound motor especially for vehicles
US3936707A (en) Operating apparatus for electrically driven vehicles
US3936709A (en) Control circuits for electrically driven vehicles
US4069445A (en) Bypass control for a solid state switching device
JPS6129201B2 (en)
US3872367A (en) Electric car controlling device
US4171506A (en) Control apparatus for an electric car
US4406979A (en) Fail-safe system for pulse-controlled three-terminal d.c. motor
JPS6227601B2 (en)
JPH09117173A (en) Dc motor drive
SU1276537A1 (en) Device for recuperative braking of vehicle
JP2730354B2 (en) Fault diagnosis device in DC motor drive control device
JPS6211123Y2 (en)
JPS642557Y2 (en)
JPS5831802B2 (en) Chiyotsupa - Safety circuit for electric vehicles
JP2523679Y2 (en) Braking control device in electric vehicle running speed control device
JPS5828475Y2 (en) DC motor control device