JPS6129147B2 - - Google Patents

Info

Publication number
JPS6129147B2
JPS6129147B2 JP53164163A JP16416378A JPS6129147B2 JP S6129147 B2 JPS6129147 B2 JP S6129147B2 JP 53164163 A JP53164163 A JP 53164163A JP 16416378 A JP16416378 A JP 16416378A JP S6129147 B2 JPS6129147 B2 JP S6129147B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
wave propagation
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53164163A
Other languages
Japanese (ja)
Other versions
JPS5591852A (en
Inventor
Kimio Shibayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP16416378A priority Critical patent/JPS5591852A/en
Publication of JPS5591852A publication Critical patent/JPS5591852A/en
Publication of JPS6129147B2 publication Critical patent/JPS6129147B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N39/00Integrated devices, or assemblies of multiple devices, comprising at least one piezoelectric, electrostrictive or magnetostrictive element covered by groups H10N30/00 – H10N35/00

Description

【発明の詳細な説明】 本発明は、弾性表面波素子を含む混成半導体装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid semiconductor device including a surface acoustic wave element.

弾性表面波を用いた機能素子は現在、遅延線、
フイルタ等の信号処理素子としてさかんに電気通
信用機器に取り入れられており、テレビジヨンの
技術分野では一部実用に供されている。そしてそ
られの素子の中心周波数は年々高められ、GHz
帯におよぶものも研究され始めており、一方で
は、1dB以下の挿入損失特性も実現されるように
なつてきている。しかしながら、これら素子は圧
電体材料又は電歪材料を基板として、その上に電
極を配置する構造をとつているため、これら素子
とともに用いられるICやLSIの中に組み込むこと
ができず、これらの外部に独立して用いられるこ
とが多い。そのため、電磁波の10万分の1の速度
を有する弾性表面波の特徴を生かしてこれら素子
を超小型に形成出来ても、ICやLSIと組み合せた
場合、パツケージが複数個に分かれるため、結果
的に装置全体が大型化してしまう。
Functional devices using surface acoustic waves are currently used in delay lines,
They are frequently incorporated into telecommunications equipment as signal processing elements such as filters, and are even put into practical use in some areas of television technology. And the center frequency of those elements has been raised year by year, reaching GHz
Research has begun on devices that span the entire band, and on the other hand, insertion loss characteristics of 1 dB or less are also becoming possible. However, since these elements have a structure in which electrodes are placed on a piezoelectric material or electrostrictive material as a substrate, they cannot be incorporated into ICs or LSIs used with these elements, and their external It is often used independently. Therefore, even if these elements can be made ultra-small by taking advantage of the characteristics of surface acoustic waves, which have a speed of 1/100,000 times that of electromagnetic waves, when combined with ICs and LSIs, the package will be divided into multiple pieces, resulting in The entire device becomes larger.

本発明の目的は、弾性表面波素子を含む混成半
導体装置を1枚の基板上に構成することができる
ような装置を得て、従来の欠点を改善することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device that allows a hybrid semiconductor device including a surface acoustic wave element to be constructed on one substrate, and to improve the drawbacks of the conventional device.

その目的を達成するため、本発明は、トランジ
スタ等の能動素子やコンデンサなどの受動素子を
形成した半導体基板上に、高抵抗層又は誘電体薄
膜等の絶縁物層を設け該絶縁物層の上に金属薄膜
からなる電極を配し、この電極の上に圧電物質又
は電歪物質からなる弾性表面波伝搬板を小さな間
隔を保つて配設した弾性表面波伝搬素子を組み込
み、一枚の半導体基板上にこれらを一体化して設
けた混成回路装置を提供し、さらにこれに加えて
上記弾性表面波伝搬板の弾性表面波伝搬路に対応
する部分に間隙を設けて金属薄膜を配設しかつ該
間隙の大きさを可変せしめる構成を有する混成回
路装置を提供するものである。
In order to achieve the object, the present invention provides an insulator layer such as a high resistance layer or a dielectric thin film on a semiconductor substrate on which active elements such as transistors and passive elements such as capacitors are formed. A surface acoustic wave propagation element is installed in which an electrode made of a metal thin film is disposed on the electrode, and a surface acoustic wave propagation plate made of a piezoelectric material or an electrostrictive material is arranged at a small interval on top of the electrode, and a surface acoustic wave propagation element is assembled into a single semiconductor substrate. In addition to this, a metal thin film is provided with a gap in a portion of the surface acoustic wave propagation plate corresponding to the surface acoustic wave propagation path, and The present invention provides a hybrid circuit device having a configuration that allows the size of the gap to be varied.

次に、本発明の一実施例を、図面を参照しつつ
詳細に説明する。
Next, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は、本発明に係る混成装置の分解斜視図
であり。同図中、1はシリコン半導体基板であ
り、その表面の点線で囲まれたエリア2及び3に
は、バイポーラトランジスタからなる半導体集積
回路が組み込まれている。これら半導体集積回路
は、従来から行なわれている製法により組立てら
れる。エリア2及び3の中間に位置するシリコン
半導体基板1の表面には、二酸化シリコン溶液を
コーテイングした後、固化せしめた二酸化シリコ
ン膜からなる絶縁物層4を設ける。この絶縁物層
4は、誘電体物質をスパツタ法により被着して形
成してもよく、また集積回路製造の最終工程でシ
リコン半導体基板全面に被着する二酸化シリコン
膜を利用してもよい。さらに、絶縁物層の下面に
配線層が形成されておらず、さらにその深部のシ
リコン半導体基板1に半導体装置が形成されてい
ないような場合には、Oイオン等の打込みによつ
てあるいは陽極酸化法を用いて絶縁物層を形成し
てもよい。
FIG. 1 is an exploded perspective view of a hybrid device according to the present invention. In the figure, 1 is a silicon semiconductor substrate, and in areas 2 and 3 on the surface thereof surrounded by dotted lines, a semiconductor integrated circuit made of bipolar transistors is incorporated. These semiconductor integrated circuits are assembled using conventional manufacturing methods. The surface of the silicon semiconductor substrate 1 located between areas 2 and 3 is provided with an insulating layer 4 made of a silicon dioxide film coated with a silicon dioxide solution and then solidified. This insulating layer 4 may be formed by depositing a dielectric material by sputtering, or may be a silicon dioxide film deposited over the entire surface of a silicon semiconductor substrate in the final step of integrated circuit manufacturing. Furthermore, if a wiring layer is not formed on the lower surface of the insulating layer and no semiconductor device is formed in the silicon semiconductor substrate 1 deep therein, the method may be performed by implanting O ions or the like or by anodic oxidation. The insulator layer may be formed using a method.

上述の如き種々の方法にて形成した絶縁物層4
の表面には、すだれ状電極5及び6を形成する。
このすだれ状電極の形成は、まずシリコン半導体
基板1の表面全体にAl、Au等の金属を蒸着した
後、フオト・エツチング法を用いて微細パターン
を形成するが、このエツチングの際、エリア2及
び3に形成した半導体集積回路とこれらすだれ状
電極5及び6を結ぶ配線層も形成する。次いで、
絶縁物層4の外側に、金属、誘電体など厚膜によ
り形成されたスペーサ7を設ける。8は
LiNbO3、LiTaO3等の圧電材料あるいは電歪材料
からなる弾性表面波伝搬板である。該弾性表面波
伝搬板8は、すだれ状電極5及び6と間隔を保つ
て絶縁物層4上に設けたスペーサ7上に固定され
る。第2図は、スペーサ7上に弾性表面波伝搬板
8を固定した状態を示す断面図である。なお、ス
ペーサ7を設ける位置は、弾性表面波伝搬板8の
裏面を伝搬する弾性表面波の励振及び伝搬に支障
がない部分であることはいうまでもないことであ
る。
Insulator layer 4 formed by various methods as described above
Interdigital interdigital electrodes 5 and 6 are formed on the surface.
The interdigital electrodes are formed by first depositing a metal such as Al or Au on the entire surface of the silicon semiconductor substrate 1, and then forming a fine pattern using a photo-etching method. A wiring layer connecting the semiconductor integrated circuit formed in step 3 and these interdigital electrodes 5 and 6 is also formed. Then,
A spacer 7 made of a thick film such as metal or dielectric is provided on the outside of the insulating layer 4. 8 is
This is a surface acoustic wave propagation plate made of piezoelectric or electrostrictive material such as LiNbO 3 or LiTaO 3 . The surface acoustic wave propagation plate 8 is fixed on a spacer 7 provided on the insulating layer 4 while keeping a distance from the interdigital electrodes 5 and 6. FIG. 2 is a sectional view showing a state in which the surface acoustic wave propagation plate 8 is fixed on the spacer 7. As shown in FIG. It is needless to say that the spacer 7 is provided at a position where the excitation and propagation of the surface acoustic wave propagating on the back surface of the surface acoustic wave propagation plate 8 are not hindered.

このような構成を有する装置において、エリア
2内の半導体集積回路を動作させて絶縁物層4上
に設けたすだれ状電極5に信号電圧を印加する。
すだれ状電極5に信号電圧を印加すると、すだれ
状電極5の上に、はみ出し電界が生じ、弾性表面
波伝搬板8の裏面に弾性表面波が誘起する。この
弾性表面波は、弾性表面波伝搬板8の裏面にそつ
て伝搬し、はみ出し電界を介してすだれ状電極6
で受波され、エリア3内に形成された半導体集積
回路に送られて信号の処理が行なわれる。必要に
よつては不要な弾性表面波は、弾性表面波伝搬板
8の表面又は裏面において適当な位置に設けられ
た吸収材によつて吸収される。
In the device having such a configuration, the semiconductor integrated circuit in area 2 is operated to apply a signal voltage to interdigital electrode 5 provided on insulator layer 4 .
When a signal voltage is applied to the interdigital electrode 5, a protruding electric field is generated above the interdigital electrode 5, and a surface acoustic wave is induced on the back surface of the surface acoustic wave propagation plate 8. This surface acoustic wave propagates along the back surface of the surface acoustic wave propagation plate 8 and passes through the interdigital electrode 6 through the protruding electric field.
The signal is received by the area 3 and sent to the semiconductor integrated circuit formed in the area 3, where the signal is processed. If necessary, unnecessary surface acoustic waves are absorbed by absorbers provided at appropriate positions on the front or back surface of the surface acoustic wave propagation plate 8.

上述の如き装置において、弾性表面波伝搬板8
とすだれ状電極5又は6との間の間隔と、はみ出
し電界の間には、第3図に示すような関係があ
り、0.1波長以下に間隔を保てば十分弾性表面波
の送受信ができることはすでに知られているとこ
ろである。
In the device as described above, the surface acoustic wave propagation plate 8
There is a relationship between the spacing between the interdigital electrode 5 or 6 and the protruding electric field as shown in Figure 3, and it is possible to sufficiently transmit and receive surface acoustic waves by keeping the spacing below 0.1 wavelength. It is already known.

第4図は、本発明の他の実施例を示す断面図で
ある。この実施例においては、スペーサ71を圧
電材料又は電歪材料で形成し、その側部の対向す
る部分に電極71a及び71bを設け、さらに絶
縁物層4の上の弾性表面波伝搬路に対応する部分
に金属薄膜9を設ける。なお、前記第1番目の実
施例と同一部分には同一符号を付し、その説明は
省略する。この実施例は、電極71a及び71b
に所定の電圧を印加する。この電圧の印加の度合
により、スペーサ71の縦方向寸法を変化させる
ことができ、弾性表面波伝搬板8と金属薄膜9と
の間に設けた間隙の寸法を調節する。このように
該間隙の寸法を変えることによつて、弾性表面波
の伝搬速度を可変することができるため、この実
施例に係る装置は、連続可変時間遅延線や位相変
調素子を実現することができる。なお、この実施
例においてはスペーサ71の縦方向の寸法を可変
する電極をスペーサの側部に設けたが、縦効果に
よりスペーサの縦方向の寸法を可変にする場合
は、スペーサの上面及び下面に電極を設けるもの
である。また、これら電極に加える電圧の制御
は、エリア2及び3内に設けた制御回路により行
なうことができる。
FIG. 4 is a sectional view showing another embodiment of the present invention. In this example, spacer 71 is formed with a piezoelectric material or an electric distortion material, and an electrode 71a and 71b are provided on the opposite part of the side, and further supports the elastic surface wave propagation route above the insulating layer 4. A metal thin film 9 is provided on the portion. Note that the same parts as those in the first embodiment are given the same reference numerals, and the explanation thereof will be omitted. In this embodiment, electrodes 71a and 71b
Apply a predetermined voltage to. Depending on the degree of application of this voltage, the vertical dimension of the spacer 71 can be changed, and the dimension of the gap provided between the surface acoustic wave propagation plate 8 and the metal thin film 9 can be adjusted. By changing the dimensions of the gap in this way, the propagation speed of the surface acoustic wave can be varied, so the device according to this embodiment can realize a continuously variable time delay line or a phase modulation element. can. In this embodiment, electrodes for varying the vertical dimension of the spacer 71 are provided on the sides of the spacer, but if the vertical dimension of the spacer is to be varied by the vertical effect, electrodes are provided on the top and bottom surfaces of the spacer. It is provided with electrodes. Further, the voltage applied to these electrodes can be controlled by control circuits provided in areas 2 and 3.

第5図は、本発明のもう1つ他の実施例を示す
断面図である。この実施例においては、絶縁薄膜
4の表面に2つの電極10及び11を配設すると
ともに、弾性表面波伝搬板81の両端に使用波長
の四分の一の寸法間隔を保つ多数の反射溝12及
び13を設けたものである。なお、前記2つの実
施例と同一部分には同一符号を付し、その説明は
省略する。この実施例は、電極10及び11間に
所定周波数を有する高周波電圧を印加すると、こ
の電極上に、はみ出し電界を生じ、弾性表面波伝
搬板81の裏面に弾性表面波が誘起し、両端方向
に伝搬して行く。弾性表面波伝搬板81の両端に
は、反射溝12及び13が形成されているため、
弾性表面波の一部は反射して中央部方向に戻る。
そして、弾性表面波伝搬板81の裏面においてこ
れら反射波と進行波とが重なり合つて、定在波を
作り出し、結局2端子素子としての表面共振器が
形成できる。そして、この表面共振器は、エリア
2及び3内の半導体集積回路と組合せて、発振器
Xあるいは増幅器などの機能素子を作ることがで
きる。
FIG. 5 is a sectional view showing another embodiment of the present invention. In this embodiment, two electrodes 10 and 11 are arranged on the surface of the insulating thin film 4, and a large number of reflective grooves 12 are provided at both ends of the surface acoustic wave propagation plate 81 with a dimension interval of one quarter of the wavelength used. and 13. Note that the same parts as those in the two embodiments described above are given the same reference numerals, and the explanation thereof will be omitted. In this embodiment, when a high frequency voltage having a predetermined frequency is applied between the electrodes 10 and 11, a protruding electric field is generated on this electrode, and a surface acoustic wave is induced on the back surface of the surface acoustic wave propagation plate 81, and the surface acoustic wave is directed toward both ends. It will spread. Since reflection grooves 12 and 13 are formed at both ends of the surface acoustic wave propagation plate 81,
A portion of the surface acoustic waves is reflected and returns toward the center.
Then, on the back surface of the surface acoustic wave propagation plate 81, these reflected waves and traveling waves overlap to create a standing wave, eventually forming a surface resonator as a two-terminal element. This surface resonator can be combined with semiconductor integrated circuits in areas 2 and 3 to create a functional element such as an oscillator X or an amplifier.

なお、この実施例において、スペーサを前記第
2番目の実施例に示すように圧電材料2は電歪材
料で形成してこれに電極を設けるとともに、絶縁
物層4上の弾性表面波伝搬路に対応する部分に金
属薄膜を設け、弾性表面波伝搬板81と電極10
及び11との間隙を調節して、表面共振器の出力
を調整することもできる。
In this embodiment, as shown in the second embodiment, the piezoelectric material 2 is made of an electrostrictive material, and an electrode is provided thereon, and a surface acoustic wave propagation path on the insulating layer 4 is provided with the spacer. Metal thin films are provided in corresponding parts, and the surface acoustic wave propagation plate 81 and the electrode 10
It is also possible to adjust the output of the surface resonator by adjusting the gap between the surfaces and 11.

上記実施例は、いずれも基板にシリコン半導体
を用いているが、これをGaAsなどの化合物半導
体基板やGe基板を用いることもできる。また、
これら半導体基板表面に不純物をドープするなど
して高抵抗層を形成し、絶縁物層の代りに用いる
こともできる。そのほか半導体基板上に設ける弾
性表面波素子も上記実施例のように1つに限るこ
となく、複数個設けることもできることもでき、
半導体集積回路を構成する素子もバイポーラ型に
限らず、ユニポーラ型など他の形式の素子をも使
用できることはいうまでもないことである。
Although the above embodiments all use a silicon semiconductor for the substrate, a compound semiconductor substrate such as GaAs or a Ge substrate may also be used. Also,
It is also possible to form a high resistance layer by doping impurities on the surface of these semiconductor substrates and use it instead of the insulating layer. In addition, the number of surface acoustic wave elements provided on the semiconductor substrate is not limited to one as in the above embodiments, and a plurality of surface acoustic wave elements may be provided.
It goes without saying that the elements constituting the semiconductor integrated circuit are not limited to bipolar types, and other types of elements such as unipolar types can also be used.

以上詳細に説明したように、本発明によれば、
半導体装置を形成した半導体基板上に弾性表面波
素子を形成できるため、半導体装置と弾性表面波
素子とを組合せた回路装置を組立てる場合、従来
のようにパツケージが複数個になり、これらを回
路板上で組立てるという手間もなくなり、装置全
体も1枚の基板上にまとめ、これを1個のパツケ
ージの中に収納できる。そのほか、弾性表面波伝
搬板への配線はいつさいなく、電極を含む配線構
造は全て半導体基板側に設けられているため、組
立ても簡単になるばかりか、GHz帯におよぶ超
高周波帯弾性表面波素子で問題になつている弾性
表面波伝搬板上に付着している電極の質量、形状
のみだれ等による波の散乱、バルク波へのモード
変換等を防ぐことができ、その結果伝搬損失を最
小に抑えることが可能になるばかりか、電極の導
体膜厚を厚くしても弾性表面波の伝搬に対する反
射や伝搬損失を考慮する必要がないので、導体膜
厚を十分厚くとることができ、電極の電気抵抗を
著しく減少せしめることが可能である。これは弾
性表面波素子の挿入損失を減少せしめることに大
きく役立つものである。また、弾性表面波伝搬板
と電極との間の間隔を所定値に調整することによ
つて、実効的な電気機械結合係数を変化させるこ
とができ、インピーダンスの整合や、電気的な反
作用による多重反射の問題などを解決することが
できる。さらに、弾性表面波伝搬板とこれの弾性
表面波伝搬路に対応する部分に設けた金属薄膜と
の間の間隙寸法を可変できるものは、上記効果の
ほか、弾性表面波の伝搬速度を変化せしめること
ができ、これにもとづく多彩な調整が可能であ
る。
As explained in detail above, according to the present invention,
Since a surface acoustic wave element can be formed on a semiconductor substrate on which a semiconductor device is formed, when assembling a circuit device that combines a semiconductor device and a surface acoustic wave element, multiple packages are required as in the past, and these are assembled on a circuit board. There is no need to assemble the entire device on one board, and it can be housed in one package. In addition, there is no wiring to the surface acoustic wave propagation board, and the entire wiring structure including electrodes is provided on the semiconductor substrate side, which not only simplifies assembly, but also allows surface acoustic wave propagation in ultra-high frequency bands up to GHz. It is possible to prevent wave scattering and mode conversion to bulk waves due to the mass and shape of the electrodes attached to the surface acoustic wave propagation plate, which are problems with devices, and as a result, propagation loss can be minimized. Not only can the conductor film thickness of the electrode be made thicker, but there is no need to consider reflection and propagation loss for the propagation of surface acoustic waves, so the conductor film thickness can be made sufficiently thick, and the electrode It is possible to significantly reduce the electrical resistance of. This greatly helps in reducing the insertion loss of the surface acoustic wave element. In addition, by adjusting the distance between the surface acoustic wave propagation plate and the electrode to a predetermined value, the effective electromechanical coupling coefficient can be changed, allowing for impedance matching and multiplexing due to electrical reaction. This can solve problems such as reflection. Furthermore, a device that can vary the gap size between the surface acoustic wave propagation plate and the metal thin film provided in the part corresponding to the surface acoustic wave propagation path has the effect of changing the propagation speed of the surface acoustic wave in addition to the above effects. Based on this, various adjustments can be made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す分解斜視
図、第2図は、その断面図、第3図は、弾性表面
波伝搬板とすだれ状電極との間隔と弾性表面波伝
搬板上の電界強度との関係を示す特性図、第4図
は、他の実施例を示す断面図、第5図はもう1つ
他の実施例を示す断面図である。 図中、1はシリコン半導体基板、2及び3はエ
リア、4は絶縁物層、5及び6はすだれ状電極、
7及び71はスペーサ、71a及び71bは電
極、8及び81は弾性表面波伝搬板、9は金属薄
膜、10及び11は電極、12及び13は反射溝
である。
FIG. 1 is an exploded perspective view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view thereof, and FIG. 3 is a diagram showing the distance between the surface acoustic wave propagation plate and the interdigital electrode and the top surface of the surface acoustic wave propagation plate. FIG. 4 is a cross-sectional view showing another embodiment, and FIG. 5 is a cross-sectional view showing another embodiment. In the figure, 1 is a silicon semiconductor substrate, 2 and 3 are areas, 4 is an insulating layer, 5 and 6 are interdigital electrodes,
7 and 71 are spacers, 71a and 71b are electrodes, 8 and 81 are surface acoustic wave propagation plates, 9 is a metal thin film, 10 and 11 are electrodes, and 12 and 13 are reflective grooves.

Claims (1)

【特許請求の範囲】 1 半導体装置を形成した半導体基板上の絶縁物
層の表面に弾性表面波素子用の電極を配設すると
ともに、該電極と間隔を保つて弾性表面波伝搬板
を配設せしめたことを特徴とする弾性表面波素子
を含む混成半導体装置。 2 半導体装置を形成した半導体基板上の絶縁物
層の表面に弾性表面波素子用の電極を配設し、該
電極と間隔を保つて弾性表面波伝搬板を配設し、
弾性表面波伝搬板の弾性表面波伝搬路に対応する
部分に間隙を設けて金属薄膜を配設しかつ該間隙
の大きさを可変せしめることを特徴とする弾性表
面波素子を含む混成半導体装置。
[Claims] 1. An electrode for a surface acoustic wave element is disposed on the surface of an insulating layer on a semiconductor substrate on which a semiconductor device is formed, and a surface acoustic wave propagation plate is disposed at a distance from the electrode. A hybrid semiconductor device including a surface acoustic wave element characterized by: 2. Arranging an electrode for a surface acoustic wave element on the surface of an insulator layer on a semiconductor substrate on which a semiconductor device is formed, and disposing a surface acoustic wave propagation plate at a distance from the electrode,
1. A hybrid semiconductor device including a surface acoustic wave element, characterized in that a metal thin film is disposed with a gap provided in a portion of a surface acoustic wave propagation plate corresponding to a surface acoustic wave propagation path, and the size of the gap is made variable.
JP16416378A 1978-12-30 1978-12-30 Hybrid semiconductor device containing elastic surface wave element Granted JPS5591852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16416378A JPS5591852A (en) 1978-12-30 1978-12-30 Hybrid semiconductor device containing elastic surface wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16416378A JPS5591852A (en) 1978-12-30 1978-12-30 Hybrid semiconductor device containing elastic surface wave element

Publications (2)

Publication Number Publication Date
JPS5591852A JPS5591852A (en) 1980-07-11
JPS6129147B2 true JPS6129147B2 (en) 1986-07-04

Family

ID=15787919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16416378A Granted JPS5591852A (en) 1978-12-30 1978-12-30 Hybrid semiconductor device containing elastic surface wave element

Country Status (1)

Country Link
JP (1) JPS5591852A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110375A (en) * 1991-10-17 1993-04-30 Mitsubishi Electric Corp Surface acoustic wave circuit device

Also Published As

Publication number Publication date
JPS5591852A (en) 1980-07-11

Similar Documents

Publication Publication Date Title
US7262676B2 (en) Electroacoustic component and method for the production thereof
US4910839A (en) Method of making a single phase unidirectional surface acoustic wave transducer
US4933588A (en) Higher order transverse mode suppression in surface acoustic wave resonators
US3961293A (en) Multi-resonant surface wave resonator
US3970970A (en) Multiple acoustically coupled surface acoustic wave resonators
US4023124A (en) Acoustic surface wave devices
US3688223A (en) Electromechanical filters comprising input-output interdigital electrodes having differing amplitude and frequency characteristics
US4464597A (en) Surface acoustic wave device comprising an interdigital transducer having omitted fingers
JPH03165058A (en) Semiconductor device
JPS6093817A (en) Variable delay line unit
JPH0559609B1 (en)
CA1177126A (en) Piezoelectric elastic-wave convolver device
JPH0213488B2 (en)
EP0026114B1 (en) Surface acoustic wave device
US6462633B1 (en) Surface acoustic wave device including parallel connected main and sub-filters
US3972011A (en) Surface elastic wave electromechanical device
EP0031685B2 (en) Surface acoustic wave device
US4575696A (en) Method for using interdigital surface wave transducer to generate unidirectionally propagating surface wave
EP0637872B1 (en) Surface acoustic wave device
US4748364A (en) Surface acoustic wave device
JPS6129147B2 (en)
JPH0410764B2 (en)
KR100329369B1 (en) Magnetostatic wave devices for high frequency signal processing
US4602183A (en) Surface acoustic wave device with a 3-phase unidirectional transducer
JPS59213A (en) Surface acoustic wave device