JPS61291407A - Recovery of sulfuric acid - Google Patents

Recovery of sulfuric acid

Info

Publication number
JPS61291407A
JPS61291407A JP13302785A JP13302785A JPS61291407A JP S61291407 A JPS61291407 A JP S61291407A JP 13302785 A JP13302785 A JP 13302785A JP 13302785 A JP13302785 A JP 13302785A JP S61291407 A JPS61291407 A JP S61291407A
Authority
JP
Japan
Prior art keywords
sulfuric acid
waste
dialysis
membrane
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13302785A
Other languages
Japanese (ja)
Other versions
JPH0424283B2 (en
Inventor
Masahiko Toikawa
樋川 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP13302785A priority Critical patent/JPS61291407A/en
Publication of JPS61291407A publication Critical patent/JPS61291407A/en
Publication of JPH0424283B2 publication Critical patent/JPH0424283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To recover high-purity sulfuric acid suitable for use in electronic industry, by adding SO2 gas to waste sulfuric acid having high concentration and generated from an integrated circuit production step, diluting the mixture with pure water, cooling the diluted solution and diffusing and dialyzing sulfuric acid ion to the pure-water side by a diffusion and dialysis membrane. CONSTITUTION:Concentrated water sulfuric acid containing impurities and discharged from the resist-peeling step in an integrated circuit producing factory is added with more than equivalent amount of SO2 gas based on H2O2 existing in the waste sulfuric acid. The residual H2O2 is reduced and removed by this procedure to prevent the deterioration of the dialysis membrane used in the following process. The treated sulfuric acid is diluted with pure water to a sulfuric acid concentration of <=40wt% and cooled to suppress the generation of heat of dilution in dialysis and prevent the deformation and degradation of the membrane with heat. The diluted waste sulfuric acid is treated with a diffusion and dialysis membrane to diffuse and dialyze sulfuric acid ion to the pure water side. The regenerated sulfuric acid recovered by the above process has extremely high purity corresponding to that of the guaranteed reagent or usable in electronic industry.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は集積回路を製造する工程から排出される高濃度
の廃硫酸より高純度の硫酸を回収する方法に関し、詳し
くはイオン交換膜を用いて廃硫酸より試薬特級または電
子工業用に使用できる品質の硫酸を回収する方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for recovering high-purity sulfuric acid from high-concentration waste sulfuric acid discharged from the process of manufacturing integrated circuits. The present invention relates to a method for recovering sulfuric acid of special reagent grade or quality that can be used in the electronic industry from waste sulfuric acid.

[従来の技術] 廃硫酸からの硫酸回収方法としては、従来各種の方法が
行なわれている。即ち、 (1)真空濃縮法 廃硫酸を減圧、下で加熱濃縮して、溶存する塩類を晶出
分離し、硫酸を回収する方法。
[Prior Art] Various methods have been used to recover sulfuric acid from waste sulfuric acid. That is, (1) Vacuum concentration method A method of heating and concentrating waste sulfuric acid under reduced pressure, crystallizing and separating dissolved salts, and recovering sulfuric acid.

(2)冷却濃縮法 廃硫酸を冷却し、溶解度の差により塩類を析出させ硫酸
を回収する方法。
(2) Cooling concentration method A method of cooling waste sulfuric acid and recovering sulfuric acid by precipitating salts due to the difference in solubility.

(3)真空濃縮冷却法 上記(1)と(2)の併用。(3) Vacuum concentration cooling method Combination of (1) and (2) above.

(4)液中燃焼濃縮法 濃縮の熱効率を上げるため液中燃焼バーナーを使用する
方法。
(4) Submerged Combustion Concentration Method A method that uses a submerged combustion burner to increase the thermal efficiency of concentration.

(5)熱分解法 廃硫酸を炉でso2. so、に分解後添加・吸収して
硫酸を回収する方法。
(5) Pyrolysis waste sulfuric acid is heated to SO2 in a furnace. A method of recovering sulfuric acid by adding and absorbing it after decomposition.

(6)拡散透析法 陰イオン交換膜を利用、膜を介して廃硫酸と水を向流さ
せ硫酸の濃度差をイオン交換膜の選択透過性により水側
に硫酸を移動させ回収、精製する方法。
(6) Diffusion dialysis method A method in which waste sulfuric acid and water are flowed countercurrently through the membrane using an anion exchange membrane, and the sulfuric acid is recovered and purified by transferring the sulfuric acid to the water side using the selective permeability of the ion exchange membrane to compensate for the concentration difference in sulfuric acid. .

(7)溶媒抽出 溶解度の差を利用、廃硫酸中の塩類、有機物を抽出除去
する回収方法。
(7) A recovery method that utilizes the difference in solvent extraction solubility to extract and remove salts and organic substances from waste sulfuric acid.

[発明が解決しようとする問題点] これらの方法について回収硫酸の品質1回収コストなど
について検討すると高純度硫酸とし使用する場合法の問
題が生ずる。
[Problems to be Solved by the Invention] When considering the quality and recovery cost of recovered sulfuric acid with respect to these methods, problems arise when using high-purity sulfuric acid.

方法(1)〜(4)はビックリング廃酸、石油精製廃酸
、セロファン・レーヨン廃酸、合繊廃酸などの工業規模
で多量に排出される廃酸に適用される回収方法であり、
この回収硫酸は廃酸の発生した工程への還元が殆どで、
また、純度はあまり重要でない。即ち、塩類の除去が完
全でないため、新硫酸と同一の利用は困難である。
Methods (1) to (4) are recovery methods that are applied to waste acids that are discharged in large quantities on an industrial scale, such as Bickling waste acid, petroleum refinery waste acid, cellophane/rayon waste acid, and synthetic fiber waste acid.
This recovered sulfuric acid is mostly reduced to the process where the waste acid was generated.
Also, purity is not very important. That is, since the removal of salts is not complete, it is difficult to use it in the same way as new sulfuric acid.

方法(5)は純度の高い硫酸が得られるが、 360℃
以上の高温で分解するため装置の腐食、ハロゲン、NO
,などの前処理などの問題で現在では新硫醜よりコスト
が高い。
Method (5) yields highly pure sulfuric acid, but at 360℃
Corrosion of equipment, halogens, and NO due to decomposition at higher temperatures
Currently, the cost is higher than that of new sulphur due to problems such as pretreatment.

(6)についてはアルマイト電解浴の硫酸回収、金属酸
洗浴の安定化、各種メッキ浴の酸儂度の調節、工業用硫
酸の精製などに用いられ、電気的エネルギーの必要なく
高純度の硫酸を高収率で回収する方法である。
Regarding (6), it is used for recovering sulfuric acid from alumite electrolytic baths, stabilizing metal pickling baths, adjusting the acidity of various plating baths, refining industrial sulfuric acid, etc., and produces high-purity sulfuric acid without the need for electrical energy. This is a method for recovering with high yield.

しかしながら、この拡散透析法は硫酸濃度が40Wt$
以上の場合、透析膜を通って水中へ拡散する硫酸の希釈
熱の発生量が多く、そのため膜の構造1機能の劣化をも
たらすことが判った。また、Fe、重金属、アルカリ金
属などの塩類のリークにより電子産業用の高純度硫酸(
ELi酸)の品質を得ることは困難である。
However, this diffusion dialysis method requires a sulfuric acid concentration of 40 Wt$.
It has been found that in the above case, a large amount of heat of dilution of the sulfuric acid is generated which diffuses into the water through the dialysis membrane, resulting in deterioration of the structure and function of the membrane. In addition, due to leakage of salts such as Fe, heavy metals, and alkali metals, high-purity sulfuric acid for electronic industry (
It is difficult to obtain the quality of ELi acid).

特開昭58−58112号明細書には高純度の硫酸を拡
散透析法で得る方法として透析操作を多段で行ない、順
次塩濃度を低下させ、所要の品質とする酸の回収方法が
開示されているが、経済的には必ずしも有利とはいえな
い。
Japanese Patent Application Laid-open No. 58-58112 discloses a method for recovering high-purity sulfuric acid by diffusion dialysis, in which dialysis is performed in multiple stages, and the salt concentration is successively lowered to achieve the desired quality. However, it is not necessarily economically advantageous.

本発明の応用面での最大の目標である集積回路(Int
egrated C1rcuit 、 ICと略称する
)の製造におけるレジスト剥離工程より発生する大量の
廃硫酸の再生には、これらの従来の拡散透析法を適用す
ることは次の点で困難である。
Integrated circuits (Int.
It is difficult to apply these conventional diffusion dialysis methods to the regeneration of a large amount of waste sulfuric acid generated from the resist stripping process in the production of erated C1rcuts (abbreviated as IC) due to the following points.

イ、H2SO4濃度が80〜85wH:希釈熱により膜
が軟化、劣化する。
B. H2SO4 concentration is 80 to 85 wH: The film softens and deteriorates due to the heat of dilution.

口、廃硫酸中にH2O,が存在; 原料中に調合されるH2O2が残留しており、膜を酸化
により劣化させる。
Existence of H2O in the waste sulfuric acid; H2O2 blended into the raw material remains and deteriorates the membrane by oxidation.

ハ、廃酸中の塩類のリークニ レジスト剥離工程硫酸中に溶解するFe、旧、Ha、 
 K、 Mn等のイオンは、拡散透析に際して原液中の
濃度に比例して水側にり一りする。そのため回収硫酸中
の金属イオン含有量が電子工業用レベルを超過する場合
がある。
C. Leakage of salts in waste acid, resist stripping process Fe, old, Ha, dissolved in sulfuric acid,
Ions such as K and Mn migrate to the water side in proportion to their concentration in the stock solution during diffusion dialysis. Therefore, the metal ion content in the recovered sulfuric acid may exceed the level for the electronic industry.

電子工業で用いられる硫酸(EL硫酸)はICの集積度
の向上と共に益々その純度に対する要求が厳しくなって
きているが、一応の目安としては例えばSEMI(Se
miconducter Equipments an
d Mater−ials In5titute 5t
andard)では95〜97wt%硫酸に含有される
すべての金属につき夫々lppm以下またはそれを下回
る規格が要求されているが、実際に市場に供給されてい
るEL硫酸は、殆どそのl/10以下の規格のものが大
部分である。
The requirements for purity of sulfuric acid (EL sulfuric acid) used in the electronics industry are becoming stricter as the degree of integration of ICs increases, but as a rough guide, for example, SEMI (Se
miconductor equipments an
d Mater-ials In5titudinal 5t
EL sulfuric acid (andard) requires a standard of 1 ppm or less for all metals contained in 95 to 97 wt% sulfuric acid, but most of the EL sulfuric acid actually supplied to the market has a level of 1/10 or less of that level. Most of them are standard.

[問題点を解決するための手段] 本発明は、極めて高純度を要求される電子工業用レベル
の硫酸を回収するために、上記の諸問題を解決したもの
であって、集積回路製造工程から発生する夾雑物を含む
高濃度の廃硫酸を処理して回収する方法において、次記
の(イ)〜(ハ)の各工程を含むことを特徴とする硫酸
の回収方法である。
[Means for Solving the Problems] The present invention solves the above-mentioned problems in order to recover sulfuric acid of the electronic industry level that requires extremely high purity. The present invention is a method for treating and recovering highly concentrated waste sulfuric acid containing impurities, which is characterized by including the following steps (a) to (c).

(イ)廃硫酸中に含まれる過酸化水素に対し当量以上の
亜硫酸ガスを廃硫酸に添加する工程、 (ロ)廃硫酸を純水により40wt1以下に希釈し冷却
する工程および (ハ)希釈廃硫酸を拡散透析膜により、硫酸イオンを純
水側に拡散透析して再生硫酸を得る工程。
(b) A step of adding sulfur dioxide gas to the waste sulfuric acid in an amount equivalent to or more than the hydrogen peroxide contained in the waste sulfuric acid, (b) A step of diluting the waste sulfuric acid to 40wt1 or less with pure water and cooling it, and (c) a step of diluting the waste sulfuric acid. A process to obtain regenerated sulfuric acid by diffusion dialysis of sulfuric acid ions into pure water using a diffusion dialysis membrane.

本発明によって得られた回収硫酸は、真空蒸発等の方法
により必要な濃度にm縮し、再度レジスト剥離工程に使
用することができる。
The recovered sulfuric acid obtained by the present invention can be reduced to a required concentration by a method such as vacuum evaporation and used again in the resist stripping process.

以下本発明の回収方法を第1図のブロックダイヤグラム
に基いて工程毎に詳細に説明する。
Hereinafter, the recovery method of the present invention will be explained in detail for each step based on the block diagram of FIG.

(+)原料廃硫酸 本発明で対象とする廃硫酸は電子工業におけるIC製造
においてレジスト剥離工程で用いられた硫酸の廃液であ
る。この廃硫酸は硫酸濃度的80wt駕で、含まれてい
る不純物は処理したICにより変化するが、一般に剥離
レジスト等の粒子の外、pb、Fe、 Ni、 Ha、
 K等が数ppm含まれており、更にレジスト剥離を促
進するために添加された過酸化水素が数駕残留している
(+) Raw material waste sulfuric acid The waste sulfuric acid that is the object of the present invention is a sulfuric acid waste liquid used in the resist stripping process in IC manufacturing in the electronics industry. This waste sulfuric acid has a sulfuric acid concentration of 80wt or more, and the impurities it contains vary depending on the IC processed, but in general, in addition to particles such as peeling resist, PB, Fe, Ni, Ha,
It contains several ppm of K, etc., and several quantities of hydrogen peroxide, which was added to promote resist peeling, remains.

(2) SO2添加工程 原料廃硫酸中に残存する過酸化水素は後の工程の拡散透
析において、透析膜を酸化により劣化させるので、予め
十分に除去する必要がある。そのため原料廃硫酸は亜硫
酸ガスにより処理される。
(2) SO2 addition step Hydrogen peroxide remaining in the raw material waste sulfuric acid deteriorates the dialysis membrane by oxidation in the subsequent diffusion dialysis process, so it must be sufficiently removed in advance. Therefore, raw material waste sulfuric acid is treated with sulfur dioxide gas.

処理は単に原料廃硫酸に亜硫酸ガスを吹込むことにより
行なわれる。亜硫酸ガスの添加量は原料廃硫酸中に残存
する過酸化水素量に対し当量以上であればよい、用いる
亜Tit酸ガスの純度は市販のものでよいが、なるべく
高純度のものが好ましい。
The treatment is carried out simply by blowing sulfur dioxide gas into the raw material waste sulfuric acid. The amount of sulfur dioxide gas to be added may be at least equivalent to the amount of hydrogen peroxide remaining in the raw material waste sulfuric acid. The purity of the titanite gas used may be commercially available, but it is preferably as pure as possible.

(3)希釈冷却工程 SO2処理された硫酸液は純水で40wt$以下に希釈
される。希釈度は次の工程で拡散透析にさいして透析膜
を通って拡散する硫酸の希釈熱の発生量が膜の軟化、膨
張による変形や透析機能の劣化を生じさせない程度であ
って、膜の耐熱性により異なるが、一般には40wt$
以下であり、膜の耐熱性の向上した場合には40wt$
を越える希釈度も採用しうる。
(3) Dilution and cooling step The SO2-treated sulfuric acid solution is diluted with pure water to less than 40 wt$. The degree of dilution is such that the amount of dilution heat generated by the sulfuric acid that diffuses through the dialysis membrane during diffusion dialysis in the next step does not cause softening of the membrane, deformation due to expansion, or deterioration of the dialysis function, and the heat resistance of the membrane. Varies depending on gender, but generally 40wt$
or less, and if the heat resistance of the film is improved, it will be 40wt$
Dilutions in excess of 20% may also be employed.

硫酸液の希釈に際しては、大量の希釈熱が発生するので
希釈基は十分冷却される。冷却は冷却水による間接冷却
が採用されるが、冷却水としては、次の拡散透析工程で
得られる低濃度の再生硫酸を用いて熱交換するのが有利
である。即ち、本発明によって得られた高純度の再生硫
酸はEL硫酸として再度レジスト剥離に使用するために
は、真空濃縮等の手段により硫酸濃度を上げる必要があ
り、そのための予熱として熱効率の向上を図ることがで
きるからである。
When diluting the sulfuric acid solution, a large amount of heat of dilution is generated, so the diluting group is sufficiently cooled. Indirect cooling using cooling water is employed, and it is advantageous to use low-concentration regenerated sulfuric acid obtained in the subsequent diffusion dialysis step as the cooling water for heat exchange. That is, in order to use the high-purity regenerated sulfuric acid obtained by the present invention for resist stripping again as EL sulfuric acid, it is necessary to increase the sulfuric acid concentration by means such as vacuum concentration, and for this purpose, the thermal efficiency is improved as preheating. This is because it is possible.

希釈に用いる純水はなるべく高純度のものが好ましく、
通常、イオン交換処理により精製された純粋もしくは蒸
留水が用いられる。
It is preferable that the pure water used for dilution be as pure as possible.
Usually, pure or distilled water purified by ion exchange treatment is used.

(4)拡散透析工程 希釈熱による温度上昇のおそれのない濃度に希釈された
硫酸液は拡散透析膜を介して超純水と接することにより
硫酸液中の硫酸イオンは選択的に超純水側に拡散透析し
、実質上金属イオンの存在しない精製された再生硫酸が
得られる。
(4) Diffusion dialysis process The sulfuric acid solution diluted to a concentration that does not cause temperature rise due to dilution heat is brought into contact with ultrapure water through the diffusion dialysis membrane, and sulfate ions in the sulfuric acid solution are selectively transferred to the ultrapure water side. The purified regenerated sulfuric acid, which is substantially free of metal ions, is obtained by diffusion dialysis.

原料廃硫酸中に存在する懸濁粒子は透析膜を通過しない
のでそのままでもよいが、透析膜に付着して、膜の拡散
透過効率に影響を与え、また多量の沈着は膜の交換時期
を早めるので、予め除去しておくことが好ましい、この
懸濁粒子の除去は任意の方法が採用し得るが、通常は微
細孔セラミクス等による限外濾過が用いられる。なお通
常市販されている透析装置には原液中のスラッジや油分
の除去のためのフィルターが付随している。
Suspended particles present in the raw material waste sulfuric acid do not pass through the dialysis membrane, so they can be left as is, but they adhere to the dialysis membrane and affect the membrane's diffusion permeation efficiency, and large amounts of sedimentation may shorten the time for membrane replacement. Therefore, it is preferable to remove the suspended particles in advance. Any method can be used to remove these suspended particles, but ultrafiltration using microporous ceramics or the like is usually used. It should be noted that commercially available dialysis machines usually come with a filter for removing sludge and oil from the stock solution.

使用される超純水は電子工業で使用される高純度のもの
である。その規格はICの高度化と共に年々厳しくなっ
ており、本発明で用いる超純水もそれに合わせること好
ましい、現在用いられている超純水は電気比抵抗値が1
7.5〜18 MΩ−cmまたはそれ以上、 0.27
1111以上の微粒子数が20個11以下、生菌数1〜
2/loomlのものである。
The ultrapure water used is of high purity used in the electronics industry. The standards are becoming stricter year by year as ICs become more sophisticated, and it is preferable that the ultrapure water used in the present invention conforms to them.The ultrapure water currently used has an electrical resistivity value of 1.
7.5-18 MΩ-cm or more, 0.27
The number of particles of 1111 or higher is 20, the number of viable bacteria is 1 or less.
2/rooml.

透析操作条件によって酸の回収率を変化させることがで
き、回収率を、ヒげると塩類の金属イオンの漏洩も増加
するので、酸の回収率は原液の金属イオン含有量によっ
て制御することが望ましい。
The acid recovery rate can be changed depending on the dialysis operating conditions, and the acid recovery rate can be controlled by the metal ion content of the stock solution, as the leakage of metal ions from salts also increases when the recovery rate is whisked. desirable.

一般に陰イオン交換膜での酸と塩類の透過速度を比較す
ると、塩類は酸の1/100〜1/1000であるが、
酸の回収率を上げて膜の両側の酸濃度が平衡に近づくに
つれて酸の透過速度が低下し相対的に陽イオンの移行量
が増加し、その結果各種イオンの除去率が低下する。
Generally, when comparing the permeation rate of acids and salts through an anion exchange membrane, the permeation rate of salts is 1/100 to 1/1000 of that of acids;
As the acid recovery rate is increased and the acid concentration on both sides of the membrane approaches equilibrium, the acid permeation rate decreases and the amount of cations transferred increases, resulting in a decrease in the removal rate of various ions.

本発明では拡散透析において硫酸の回収率を制限するこ
とにより回収硫酸中への各種イオンのリークを防止して
、高純度の回収硫酸を取得することができる。拡散透析
における好ましい回収率は約80%以下で、この回収率
は原液中の各種イオンの含有率によって上下し得る。超
純水の流量を原液の流量より小さくすることは、回収硫
酸の濃度を高めると共に、硫酸の回収率を抑制する効果
を有する。
In the present invention, by limiting the recovery rate of sulfuric acid in diffusion dialysis, leakage of various ions into the recovered sulfuric acid can be prevented, and highly purified recovered sulfuric acid can be obtained. The preferred recovery rate in diffusion dialysis is about 80% or less, and this recovery rate can vary depending on the content of various ions in the stock solution. Making the flow rate of ultrapure water smaller than the flow rate of the stock solution has the effect of increasing the concentration of recovered sulfuric acid and suppressing the recovery rate of sulfuric acid.

なお本発明で得られた回収硫酸の濃度は通常的30〜4
0wtXであり、ELi酸として再利用するためには8
0wt1以上に濃縮される。濃縮には任意の方法が採用
し得るが、一般には真空多段蒸発法が用いられる。この
場合、回収硫酸の予熱は前記(3)の硫酸液の希釈冷却
工程で発生する多量の希釈熱が熱交換によって有効利用
される。
Note that the concentration of recovered sulfuric acid obtained in the present invention is usually 30 to 4.
0wtX, and 8 to reuse as ELi acid.
It is concentrated to 0wt1 or more. Although any method can be used for concentration, a vacuum multi-stage evaporation method is generally used. In this case, for preheating the recovered sulfuric acid, a large amount of dilution heat generated in the sulfuric acid solution dilution and cooling step (3) is effectively utilized by heat exchange.

[作用] 本発明の方法は電子工業におけるIC製造工程から発生
する高濃度の廃硫酸を、先ずSO2で処理することによ
り残留する過酸化水素を還元して除去し、透析膜の劣化
を防止する。また拡散透析に先立゛って硫酸濃度を40
wt%以下に希釈し、冷却して、透析時の希釈熱の発生
を抑え、熱による膜の変形、劣化を防止する。更に、拡
散透析における硫酸の回収率を制御することにより、各
種イオンの回収硫酸へのリークを最小限に留め、高純度
の硫酸を回収することができる。
[Operation] The method of the present invention first treats high-concentration waste sulfuric acid generated from the IC manufacturing process in the electronics industry with SO2 to reduce and remove residual hydrogen peroxide, thereby preventing deterioration of the dialysis membrane. . In addition, the sulfuric acid concentration was adjusted to 40% prior to diffusion dialysis.
Dilute to below wt% and cool to suppress generation of dilution heat during dialysis and prevent membrane deformation and deterioration due to heat. Furthermore, by controlling the recovery rate of sulfuric acid in diffusion dialysis, leakage of various ions to the recovered sulfuric acid can be minimized, and highly purified sulfuric acid can be recovered.

[効果] 本発明によれば、電子工業において超高純度を要求され
る高価なEL硫酸を用いるレジスト剥離工程等から排出
された廃硫酸より再度EL硫酸を有効に回収することが
できる。
[Effects] According to the present invention, EL sulfuric acid can be effectively recovered again from waste sulfuric acid discharged from a resist stripping process using expensive EL sulfuric acid that requires ultra-high purity in the electronics industry.

本発明における還元、希釈等の前処理を施さない上記廃
硫酸に対し、陰イオン交換膜を用いた拡散透析による硫
酸回収を行った場合、膜の劣化により 5時間で回収不
能となった。一方、本発明による実施例では、 100
時間の連続運転でも膜の機能には何ら変化は認められな
かった。
When sulfuric acid was recovered by diffusion dialysis using an anion exchange membrane for the waste sulfuric acid that was not subjected to any pretreatment such as reduction or dilution according to the present invention, it became impossible to recover the sulfuric acid after 5 hours due to deterioration of the membrane. On the other hand, in an embodiment according to the present invention, 100
No change was observed in the membrane function even after continuous operation for hours.

このことから、一般的な陰イオン交換膜のライフなどか
ら推定して、膜の定期的洗浄を実施することにより、 
3〜5年の連続使用が可能である。
From this, it is estimated from the life of general anion exchange membranes that by regularly cleaning the membrane,
Can be used continuously for 3 to 5 years.

原時点でのEL硫酸の価格は工業用硫酸の10倍以上で
あり、本発明による硫酸回収は、濃縮設備まで含めて新
設したとしても、80%回酸回収って短期で償却可能で
ある。
The price of EL sulfuric acid at the time of origin was more than 10 times that of industrial sulfuric acid, and even if new sulfuric acid recovery including concentration equipment is installed, 80% acid recovery can be achieved in a short period of time.

[実施例] 以下本発明による実施例を示すが、本発明はこれにより
限定されるものではない。
[Example] Examples according to the present invention will be shown below, but the present invention is not limited thereto.

実施例等において採用された各種の分析、測定は次の試
験法による。
Various analyzes and measurements adopted in Examples etc. are based on the following test methods.

硫酸含量:  JIS−K 1322  硫酸試験方法
KMnO4還元性物質(S02として):JIS−K 
8951  硫酸(試薬)゛重金属(pbとして)二 
同上 Fe、 Ni :   ICP発光分光分析方法に、N
a:   炎光分光分析方法 粒子数:0.5 ルm以上の個数/+00+wl、HI
AC/ROYOC4100−3413CL  レーザセ
ンサ 実施例I IC製造工場のレジスト剥離工程より排出された廃硫酸
を原料廃硫酸として用いた。その組成は第1表に示す。
Sulfuric acid content: JIS-K 1322 Sulfuric acid test method KMnO4 reducing substance (as S02): JIS-K
8951 Sulfuric acid (reagent) ゛Heavy metals (as PB) 2
Same as above Fe, Ni: In the ICP emission spectrometry method, N
a: Flame spectroscopic analysis method Number of particles: Number of particles larger than 0.5 lum/+00+wl, HI
AC/ROYOC4100-3413CL Laser Sensor Example I Waste sulfuric acid discharged from the resist stripping process of an IC manufacturing factory was used as raw material waste sulfuric acid. Its composition is shown in Table 1.

この原料廃硫酸に802を4z添加した後、等重量のイ
オン交換水と混合して希釈、冷却してから、旭硝子社の
T−Ob型拡散透析層槽(旭硝子社製陰イオン交換膜、
厚さ約0.15mm、面積2.09dmzのもの8枚組
込)を用いて超純水(比抵抗18MΩ・am)で透析し
た。希釈硫酸の供給量は150m1/hr、超純水の供
給量は125+1/hrで連続処理した。
After adding 4z of 802 to this raw material waste sulfuric acid, it was mixed with an equal weight of ion-exchanged water, diluted, and cooled.
Dialysis was performed using ultrapure water (specific resistance: 18 MΩ·am) using 8 pieces (approximately 0.15 mm thick and 2.09 dmz area). Continuous treatment was carried out at a supply rate of diluted sulfuric acid at 150 ml/hr and a supply rate of ultrapure water at 125+1/hr.

3B、5wtXの回収硫酸が得られ、透析残液の硫酸濃
度よりより求めた回収率は78%であった0回収硫酸の
成分分析値は第1表に示す。
3B, 5wtX recovered sulfuric acid was obtained, and the recovery rate determined from the sulfuric acid concentration of the dialysis residual solution was 78%. The component analysis values of the 0 recovered sulfuric acid are shown in Table 1.

この回収硫酸をBOTorr、  180”0で減圧蒸
留して濃縮し88.3wt$の濃磁酸を得た。その成分
分析値は第1表に併せて示すとおり、EL硫酸として十
分使用し得るものであった。
This recovered sulfuric acid was concentrated by distillation under reduced pressure at 180"0 on a BOTorr to obtain 88.3 wt$ of concentrated magnetic acid. As shown in Table 1, the component analysis values were sufficient to be used as EL sulfuric acid. Met.

参考のため対応するSEMI規格の数値を第1表に示し
た。
For reference, the corresponding SEMI standard values are shown in Table 1.

比較例1 実施例1の透析処理における透析条件を、希釈硫酸の供
給量105m1/hr、超純水の供給量120m1/h
rに変更し、硫酸の回収率92%で連続処理したところ
、第1表に示すように各金属成分のリーク量が増加した
。この回収硫酸はかなり精製されてはいるが、濃縮した
場合、EL硫酸としてはPb、 Na、およびKの含有
量が若干多いおそれがある。
Comparative Example 1 The dialysis conditions in the dialysis treatment of Example 1 were as follows: diluted sulfuric acid supply rate: 105 m1/hr, ultrapure water supply rate: 120 m1/hr.
When continuous treatment was carried out at a sulfuric acid recovery rate of 92%, the amount of leakage of each metal component increased as shown in Table 1. Although this recovered sulfuric acid has been considerably purified, when concentrated, there is a risk that the content of Pb, Na, and K may be slightly higher than that of EL sulfuric acid.

比較例2 実施例1の原料廃硫酸をそのまま拡散透析処理したとこ
ろ、熱の発生のためイオン交換膜が軟化変形し透析不能
となった。
Comparative Example 2 When the raw material waste sulfuric acid of Example 1 was directly subjected to diffusion dialysis treatment, the ion exchange membrane was softened and deformed due to the generation of heat, making dialysis impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す装置のブロックダイヤ
グラムである。
FIG. 1 is a block diagram of an apparatus illustrating an embodiment of the invention.

Claims (3)

【特許請求の範囲】[Claims] (1)集積回路製造工程から発生する夾雑物を含む高濃
度の廃硫酸を処理して回収する方法において、次記の(
イ)〜(ハ)の各工程を含むことを特徴とする硫酸の回
収方法。 (イ)廃硫酸中に含まれる過酸化水素に対し当量以上の
亜硫酸ガスを廃硫酸に添加する工 程、 (ロ)廃硫酸を純水により40wt%以下に希釈し冷却
する工程および (ハ)希釈廃硫酸を拡散透析膜により、硫酸イオンを純
水側に拡散透析して再生硫酸を得る 工程。
(1) In a method for treating and recovering highly concentrated waste sulfuric acid containing impurities generated from the integrated circuit manufacturing process, the following (
A method for recovering sulfuric acid, comprising the steps of (a) to (c). (b) A step of adding sulfur dioxide gas to the waste sulfuric acid in an amount equivalent to or more than the hydrogen peroxide contained in the waste sulfuric acid, (b) A step of diluting the waste sulfuric acid to 40 wt% or less with pure water and cooling it, and (c) dilution. A process to obtain regenerated sulfuric acid by diffusing sulfuric acid ions into pure water using a diffusion dialysis membrane.
(2)工程(ロ)における冷却が、工程 (ハ)からの再生硫酸との熱交換によるものである、特
許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the cooling in step (b) is by heat exchange with the regenerated sulfuric acid from step (c).
(3)工程(ハ)における再生硫酸への硫酸イオンの回
収率を80%以下に制御する、特許請求の範囲第1項ま
たは第2項に記載の方法。
(3) The method according to claim 1 or 2, wherein the recovery rate of sulfate ions into regenerated sulfuric acid in step (c) is controlled to 80% or less.
JP13302785A 1985-06-20 1985-06-20 Recovery of sulfuric acid Granted JPS61291407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13302785A JPS61291407A (en) 1985-06-20 1985-06-20 Recovery of sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13302785A JPS61291407A (en) 1985-06-20 1985-06-20 Recovery of sulfuric acid

Publications (2)

Publication Number Publication Date
JPS61291407A true JPS61291407A (en) 1986-12-22
JPH0424283B2 JPH0424283B2 (en) 1992-04-24

Family

ID=15095085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13302785A Granted JPS61291407A (en) 1985-06-20 1985-06-20 Recovery of sulfuric acid

Country Status (1)

Country Link
JP (1) JPS61291407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238639B1 (en) * 1995-05-04 2001-05-29 Metallgesellschaft Aktiengesellschaft Process for removing NOx from nitrosylsulphuric acid
US6508915B1 (en) 1996-12-20 2003-01-21 Fujitsu Limited Apparatus and method for distilling waste liquids
CN108339447A (en) * 2018-02-11 2018-07-31 周军美 A kind of printed circuit board (PCB) processing chemicals equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935966B (en) * 2014-04-09 2016-04-20 南通职业大学 A kind of recovery processing technique of electrode foil corrosion Waste Sulfuric Acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6238639B1 (en) * 1995-05-04 2001-05-29 Metallgesellschaft Aktiengesellschaft Process for removing NOx from nitrosylsulphuric acid
US6508915B1 (en) 1996-12-20 2003-01-21 Fujitsu Limited Apparatus and method for distilling waste liquids
US7232504B2 (en) 1996-12-20 2007-06-19 Fujitsu Limited Apparatus and method for distilling waste liquids
CN108339447A (en) * 2018-02-11 2018-07-31 周军美 A kind of printed circuit board (PCB) processing chemicals equipment

Also Published As

Publication number Publication date
JPH0424283B2 (en) 1992-04-24

Similar Documents

Publication Publication Date Title
JP3383334B2 (en) How to recycle sulfuric acid
KR950006502B1 (en) Recovery of acids from materials comprising acid and sait
JP4810436B2 (en) Processing method for waste developer
US5091070A (en) Method of continuously removing and obtaining ethylene diamine tetracetic acid (edta) from the process water of electroless copper plating
JP2021513457A (en) Process for post-treatment and reuse of salt-containing process water
WO2018161682A1 (en) Method for selectively removing monovalent anion impurities from sulfuric acid system electrolyte solution
Hoffmann The purification of copper refinery electrolyte
CN112789241B (en) Method for purifying hydrogen peroxide
Chiao et al. Bipolar membranes for purification of acids and bases
JPS61291407A (en) Recovery of sulfuric acid
JPH11286797A (en) Method for purifying copper electrolyte
US3406108A (en) Regeneration of spent ammonium persulfate etching solutions
US4519881A (en) Regeneration of alkaline treating agents
US1989004A (en) Purification of gases
KR100582525B1 (en) A method of recycling used etchant containing phosphoric acid
CN107930420B (en) Hydrophobic acid-resistant high-conductivity anion exchange membrane and preparation method thereof
JP3858359B2 (en) How to remove organic matter
DE3102229C2 (en) Process for treating used copper electrolysis solution
KR100582524B1 (en) A method of recycling used etchant containing phosphoric acid
JP2010074109A (en) Cleaning system
JPH05139707A (en) Sulfuric acid recovery
US2003051A (en) Purification of strong phosphoric acid
JPH08276187A (en) Method for electrochemical processing of sulfite-containing solution
KR102175129B1 (en) A Washing System for Electron Material
KR20040095151A (en) A method of refining phosphoric acid