JPS6129132B2 - - Google Patents

Info

Publication number
JPS6129132B2
JPS6129132B2 JP57053407A JP5340782A JPS6129132B2 JP S6129132 B2 JPS6129132 B2 JP S6129132B2 JP 57053407 A JP57053407 A JP 57053407A JP 5340782 A JP5340782 A JP 5340782A JP S6129132 B2 JPS6129132 B2 JP S6129132B2
Authority
JP
Japan
Prior art keywords
magnetic material
magnetic
magnetic recording
material deposition
deposition source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57053407A
Other languages
Japanese (ja)
Other versions
JPS58170009A (en
Inventor
Takeshi Yoshida
Tateaki Sahira
Akira Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57053407A priority Critical patent/JPS58170009A/en
Publication of JPS58170009A publication Critical patent/JPS58170009A/en
Publication of JPS6129132B2 publication Critical patent/JPS6129132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、移動する高分子成形物などの可撓
性テープ状基体の表面に磁気記録媒体を薄膜状に
蒸着して磁気記録テープを製造する際に用いられ
る磁気記録媒体蒸着用磁性材料蒸着源に関するも
のである。 従来、一般に磁気記録テープは、磁気記録媒体
としてのα−Fe2O3粉末、Coをドーブしたγ−
Fe2O3粉末、酸化クロム粉末、Co粉末、あるいは
Co−Ni合金粉末などの磁性材料を有機バインダ
ー中に分散させ、これを高分子成形体などの可撓
性テープ状基体の表面に塗布し、乾燥することに
よつて広く製造されている。 一方、近年高密度磁気記録の要求が高まりつつ
あり、これに対応して、磁気記録テープを真空蒸
着法、スパツタリング法、あるいはイオンプレー
テイング法などの方法により製造する試みがなさ
れ、中でも磁性材料蒸着源として磁気特性のすぐ
れた純CoやCo−Ni(Ni:約20重量%まで含有)
合金を用い、この磁性材料蒸着源に対して蒸着ビ
ームを表面に対し斜めに入射させて蒸着する斜方
入射真空蒸着法は工程および装置が比較的簡単で
あると共に、良好な磁気特性をもつた磁気記録テ
ープを製造できることから、実用上すぐれた方法
であるとして注目されている。 しかし、これらの方法を実施するに際して用い
られる純CoやCo−Ni合金の磁性材料蒸着源は、
冷間加工性の著しく悪いものであるため、これを
蒸着の連続操業を可能とする線材や加材に加工す
ることはきわめて困難であり、したがつてペレツ
ト状として使用しているのが現状である。 そこで、本発明者等は、上述のような観点か
ら、磁気記録媒体として使用することのできる磁
気特性を有し、かつ蒸着の連続化を可能とする線
材や板材に加工することのできる冷間加工性を具
備した磁性材料蒸着源を得べく研究を行なつた結
果、Fe:5〜10重量%を含有し、残りがCoと不
可避不純物からなる組成を有するCo−Fe合金
は、これを磁気記録媒体蒸着用蒸着源として使用
した場合にすぐれた磁気特性を示す磁気記録媒体
を形成することができると共に、連続供給可能な
板厚:0.05〜0.5mmの板材や、直径:0.3〜2.0mmの
線材に加工することのできるすぐれた冷間加工性
を有するという知見を得るに至つたのである。 なお、この発明の磁性材料蒸着源においてFe
含有量を5〜10重量%と限定したのは、その含有
量が5%未満では所望のすぐれた冷間加工性を確
保することができず、一方10%を越えて含有させ
ると磁気特性に劣化傾向が見られるようになると
いう理由にもとづくものである。 つぎに、この発明の磁性材料蒸着源を実施例に
より具体的に説明する。 実施例 通常の真空溶解炉を用い、それぞれ第1表に示
される成分組成をもつたCo合金を溶製し、鋳造
した後、熱間加工により直径:10mmの丸棒とし、
引続いてこの丸棒を温度:1000℃に30分間保持の
条件で焼鈍し、ついで酸洗−冷間引抜き(加工
率:50%)−焼鈍を1サイクルとする冷間加工を
繰り返し施すことによつて、直径:1mmを有する
線状の本発明磁性材料蒸着源1〜5および比較磁
性材料蒸着源1〜3をそれぞれ製造した。 なお、比較磁性材料蒸着源1〜3は、いずれも
Fe含有量がこの発明の範囲から外れた組成をも
つものであるが、比較磁性材料蒸着源1はFe含
有量が低いために最初の冷間引抜きで破断するも
のであつた。
This invention relates to a magnetic material deposition source for magnetic recording medium deposition used when manufacturing a magnetic recording tape by depositing a magnetic recording medium in the form of a thin film on the surface of a flexible tape-like substrate such as a moving polymer molded article. It is related to. Conventionally, magnetic recording tapes have generally used α-Fe 2 O 3 powder or Co-doped γ- as magnetic recording media.
Fe2O3 powder, chromium oxide powder, Co powder , or
It is widely manufactured by dispersing a magnetic material such as Co--Ni alloy powder in an organic binder, applying this to the surface of a flexible tape-shaped substrate such as a polymer molded body, and drying it. On the other hand, the demand for high-density magnetic recording has been increasing in recent years, and in response to this, attempts have been made to manufacture magnetic recording tapes by methods such as vacuum evaporation, sputtering, or ion plating. As a source, pure Co or Co-Ni (containing up to about 20% by weight of Ni) has excellent magnetic properties.
The oblique incidence vacuum evaporation method, in which an alloy is used and the evaporation beam is directed obliquely to the surface of the magnetic material evaporation source, is relatively simple in process and equipment, and has good magnetic properties. This method is attracting attention as a practical method that can produce magnetic recording tapes. However, the magnetic material deposition source of pure Co or Co-Ni alloy used when implementing these methods is
Because it has extremely poor cold workability, it is extremely difficult to process it into wire rods or fillers that enable continuous vapor deposition operations, so it is currently used in the form of pellets. be. Therefore, from the above-mentioned viewpoint, the present inventors developed a cold-forming material that has magnetic properties that can be used as a magnetic recording medium and that can be processed into a wire or plate material that enables continuous vapor deposition. As a result of research aimed at obtaining a magnetic material deposition source with processability, it was found that a Co-Fe alloy containing 5 to 10% by weight of Fe, with the remainder consisting of Co and unavoidable impurities, is a magnetic material. When used as a deposition source for recording media deposition, it is possible to form a magnetic recording medium that exhibits excellent magnetic properties, and it is also possible to continuously supply plate materials with a thickness of 0.05 to 0.5 mm and a plate material with a diameter of 0.3 to 2.0 mm. They discovered that it has excellent cold workability that allows it to be processed into wire rods. In addition, in the magnetic material deposition source of this invention, Fe
The reason why the content is limited to 5 to 10% by weight is that if the content is less than 5%, the desired excellent cold workability cannot be secured, whereas if the content exceeds 10%, the magnetic properties will deteriorate. This is based on the reason that a tendency towards deterioration can be seen. Next, the magnetic material vapor deposition source of the present invention will be specifically explained with reference to Examples. Example Using an ordinary vacuum melting furnace, Co alloys having the compositions shown in Table 1 were melted and cast, and then hot worked into round bars with a diameter of 10 mm.
Subsequently, this round bar was annealed at a temperature of 1000°C for 30 minutes, and then subjected to repeated cold working with one cycle of pickling, cold drawing (processing rate: 50%), and annealing. Therefore, linear magnetic material deposition sources 1 to 5 of the present invention and comparative magnetic material deposition sources 1 to 3 each having a diameter of 1 mm were manufactured. In addition, comparative magnetic material deposition sources 1 to 3 are all
Comparative magnetic material deposition source 1, which had a composition whose Fe content was outside the scope of the present invention, broke during the initial cold drawing due to its low Fe content.

【表】【table】

【表】 ついで、この結果得られた本発明磁性材料蒸着
源1〜5および比較磁性材料蒸着源2、3を、斜
方入射真空蒸着法を用い、厚さ:5μmのポリエ
チレン・テレフタレート製テープ基板の表面に厚
さ:2μmの磁気記録媒体としてそれぞれ蒸着さ
せた。この結果得られた磁気記録テープの保磁力
を測定し、第1表に示した。 第1表に示される結果から、本発明磁性材料蒸
着源1〜5を使用すれば、保磁力の大きな磁気記
録テープを製造することができるのに対して、比
較磁性材料蒸着源2,3に見られるように、Fe
含有量がこの発明の範囲を越えて高くなると所望
の保磁力が得られないことが明らかである。 上述のように、この発明の磁性材料蒸着源は、
磁気記録媒体として蒸着した場合にすぐれた磁気
特性を有し、かつ冷間加工性にもすぐれているの
で、磁性材料蒸着源として連続供給可能な直径:
0.3〜2.0mmの線材あるいは板厚:0.05〜0.5mmの板
材に加工することができるなど工業上有用な特性
を有するのである。
[Table] Next, the obtained magnetic material deposition sources 1 to 5 of the present invention and comparative magnetic material deposition sources 2 and 3 were deposited on a polyethylene terephthalate tape substrate having a thickness of 5 μm using an oblique incidence vacuum deposition method. A magnetic recording medium having a thickness of 2 μm was deposited on the surface of each film. The coercive force of the magnetic recording tape obtained as a result was measured and shown in Table 1. From the results shown in Table 1, it is possible to produce a magnetic recording tape with a large coercive force by using magnetic material deposition sources 1 to 5 of the present invention, whereas comparative magnetic material deposition sources 2 and 3 As can be seen, Fe
It is clear that if the content exceeds the range of this invention, the desired coercive force cannot be obtained. As mentioned above, the magnetic material deposition source of the present invention includes:
It has excellent magnetic properties when deposited as a magnetic recording medium and has excellent cold workability, so it can be continuously supplied as a magnetic material deposition source.Diameter:
It has industrially useful properties such as being able to be processed into wire rods with a thickness of 0.3 to 2.0 mm or plates with a thickness of 0.05 to 0.5 mm.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe:5〜10重量%を含有し、残りがCoと不
可避不純物からなる組成を有するCo−Fe合金で
構成され、かつ連続供給自在に線状あるいは板状
としたことを特徴とする磁気記録媒体蒸着用磁性
材料蒸着源。
1. Magnetic recording comprising a Co-Fe alloy containing 5 to 10% by weight of Fe, with the remainder consisting of Co and unavoidable impurities, and formed into a linear or plate shape that can be continuously supplied. Magnetic material deposition source for media deposition.
JP57053407A 1982-03-31 1982-03-31 Evaporation magnetic material for magnetic recording medium Granted JPS58170009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053407A JPS58170009A (en) 1982-03-31 1982-03-31 Evaporation magnetic material for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053407A JPS58170009A (en) 1982-03-31 1982-03-31 Evaporation magnetic material for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58170009A JPS58170009A (en) 1983-10-06
JPS6129132B2 true JPS6129132B2 (en) 1986-07-04

Family

ID=12941965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053407A Granted JPS58170009A (en) 1982-03-31 1982-03-31 Evaporation magnetic material for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58170009A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930322A (en) * 1972-07-15 1974-03-18
JPS5626888A (en) * 1979-08-09 1981-03-16 American Cyanamid Co Improved manufacture of sulfur ylide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930322A (en) * 1972-07-15 1974-03-18
JPS5626888A (en) * 1979-08-09 1981-03-16 American Cyanamid Co Improved manufacture of sulfur ylide

Also Published As

Publication number Publication date
JPS58170009A (en) 1983-10-06

Similar Documents

Publication Publication Date Title
US8158276B2 (en) FePtP-alloy magnetic thin film
JPS60220914A (en) Magnetic thin film
US4217151A (en) Cermet type magnetic material
US5244627A (en) Ferromagnetic thin film and method for its manufacture
JPS6129132B2 (en)
JPS5943837A (en) Amorphous alloy with high saturation magnetic flux density
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS5964734A (en) Co-ni magnetic alloy
US5534080A (en) Method for producing Mn-Al thin films
US4386113A (en) Method of making a magnetic recording medium
JPS6047894B2 (en) CO-based alloy for magnetic recording media
JPS61246914A (en) Magnetic recording medium and its production
JPH076351A (en) Magnetic recording medium
JPH0744107B2 (en) Soft magnetic thin film
JPH0685371B2 (en) Method for producing hexagonal ferrite powder
JPS60151842A (en) Manufacture of oxide magnetic thin film
JPS6242981B2 (en)
JP2842683B2 (en) Soft magnetic thin film material
JPS63146417A (en) Soft magnetic thin film
JPS6194303A (en) Manufacture of hexagonal system ferrite particle powder
JPS61189610A (en) Magnetic material for magnetic recording medium
JPS5816048A (en) High permeability amorphous alloy with superior corrosion resistance and its manufacture
JPS59119530A (en) Magnetic recording medium for vertical magnetization recording
JPS59113162A (en) Magnetic alloy
JPH0828298B2 (en) Soft magnetic thin film