JPS61290812A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JPS61290812A
JPS61290812A JP13174185A JP13174185A JPS61290812A JP S61290812 A JPS61290812 A JP S61290812A JP 13174185 A JP13174185 A JP 13174185A JP 13174185 A JP13174185 A JP 13174185A JP S61290812 A JPS61290812 A JP S61290812A
Authority
JP
Japan
Prior art keywords
input
output
electrodes
band
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13174185A
Other languages
Japanese (ja)
Other versions
JP2853094B2 (en
Inventor
Takashi Shiba
隆司 芝
Yuji Fujita
勇次 藤田
Akitsuna Yuhara
章綱 湯原
Jun Yamada
純 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60131741A priority Critical patent/JP2853094B2/en
Priority to CA000510494A priority patent/CA1276284C/en
Priority to US06/869,979 priority patent/US4689586A/en
Priority to DE19863618913 priority patent/DE3618913A1/en
Publication of JPS61290812A publication Critical patent/JPS61290812A/en
Application granted granted Critical
Publication of JP2853094B2 publication Critical patent/JP2853094B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To suppress multipath reflection between electrodes as far as possible, to reduce distortion of amplitude and phase characteristic and to obtain good characteristic by determining the relation between matching condition in a one-way electrode and parameter indicating directivity to optimize it over a whole band. CONSTITUTION:When (a) denotes the ratio of energy of radiation of input or output conductance Ga of combined group of reed screen electrodes and a phase-shifting circuit and conductance Gl of power source side or load side from a group of input or output electrodes to another group of output or input electrodes to energy radiated to opposite direction, center frequency of band is made Ga not equal to Gl or a not equal to 0 and at the same time, made to almost satisfy the relation of the expression for any frequency in the band. Groups 7, 8 of input reed screen electrodes and groups 9, 10 of output reed screen electrodes are arranged on a surface acoustic wave substrate 5 at intervals of geometrical phase difference phiM(=2pi.l/lambda, l: distance between reed screen electrodes, lambda: wavelength of surface acoustic wave).

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は所望帯域内で、低損失、かつ、振幅および位相
周波数特性上の歪が少ない良好な特性を有する弾性表面
波装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a surface acoustic wave device having good characteristics within a desired band, low loss, and little distortion in amplitude and phase frequency characteristics.

〔発明の背景〕[Background of the invention]

従来も、一方向性電極に関しては1例えば一方向性電極
を利用して低損失化と低リップル化の両立を図りた「グ
ループ屋一方向性すだれ状電極を用いた振幅平坦弾性表
面波フィルタ」に関する論文が日本音響学会講演論文集
l−5−14(目黒敏端等、昭和51年10月)K収録
されている。
Conventionally, regarding unidirectional electrodes, for example, there has been a ``flat amplitude surface acoustic wave filter using unidirectional interdigital electrodes'' that uses unidirectional electrodes to achieve both low loss and low ripple. A paper on this topic is included in the Proceedings of the Acoustical Society of Japan, Volume 1-5-14 (Toshibata Meguro et al., October 1976) K.

ここで、一方向性電極とは、入力あるいは出力の一組以
上の電極群の間に電気的位相差を与えて、幾何学的位相
差との相互作用によシ一方向性を得、低損失化を図る手
法の一つである。
Here, a unidirectional electrode is one in which an electrical phase difference is given between one or more input or output electrode groups, and unidirectionality is obtained through interaction with the geometric phase difference. This is one method of reducing losses.

一方向性電極では、電気端子から入力された電気的シネ
ルギーは、相対する出力または入力すだれ状電極群方向
(順方向)へ放射される弾性表面波エネルギーと、相対
する電極群とは反対方向(逆方向)へ放射される弾性表
面波エネルギーとに変換されるが、ここでは、「応用物
理学会特集号J (JJAP FOl、22−3 (1
98M) zuppl、)に収録されている山田等の[
一方向性SAWにおける挿入損失とTTEとの関係J 
(@Ralαtionof  tAg  1%5ert
ion  Lots  anti  the  Tri
pla  Transit  EcルOin St r
JnitLirmetional TransムeL1
1”l”)と題する論文と同様に、順方向エネルギーに
対する逆方向エネルギーの比率を方向性を表すパラメー
タαと定義する。すなわち、αが00場合は完全な一方
向性、αが1の場合は双方向性である。
With unidirectional electrodes, electrical synergy input from the electrical terminals has surface acoustic wave energy radiated in the direction of the opposing output or input interdigital electrode group (forward direction), and surface acoustic wave energy radiated in the direction of the opposing output or input interdigital electrode group (in the opposite direction). This is converted into surface acoustic wave energy radiated in the opposite direction (in the opposite direction).
98M) zuppl, ) by Yamada et al.
Relationship between insertion loss and TTE in unidirectional SAW J
(@Ralαtionof tAg 1%5ert
ion Lots anti the Tri
pla Transit Ecl Oin Str
JnitLirmational TransmueL1
Similar to the paper entitled ``1''), the ratio of backward energy to forward energy is defined as a parameter α representing directionality. That is, when α is 00, it is completely unidirectional, and when α is 1, it is bidirectional.

従来、この種の一方向性電極では、移相回路とすだれ状
電極を含む入力または出力コンダクタンスGaと外部コ
ンダクタンスatとを中心周波数で等しくとりて整合さ
せ、かつ上記パラメータαを出来る限シ広帯域で小さく
することが一般的設計手法であった。しかし、後述する
ように、この条件は、帯域全体の特性を考慮した場合、
必ずしも最良条件とはなっていなかった。
Conventionally, in this type of unidirectional electrode, the input or output conductance Ga including the phase shift circuit and the interdigital electrode and the external conductance at are equalized at the center frequency and matched, and the above parameter α is set as wide as possible. The general design approach was to make it smaller. However, as will be explained later, this condition holds true when considering the characteristics of the entire band.
The conditions were not necessarily the best.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述した一方向性電極における整合条
件と方向性を表すパラメータαとの関係を帯域内金体く
わたって最適となるように規定する事によ〕、後述する
電極間多重反射を極力抑圧し、振幅および位相特性上の
歪が少なく、良好な特性が得られる弾性表面波装置を提
供することにある。
The purpose of the present invention is to define the relationship between the matching condition in the unidirectional electrode described above and the parameter α representing the directionality so as to be optimal across the metal body in the band. It is an object of the present invention to provide a surface acoustic wave device that suppresses distortion as much as possible, has little distortion in amplitude and phase characteristics, and can obtain good characteristics.

〔発明の概要〕[Summary of the invention]

fa1図によって、本発明に係る一方向性電極を概略説
明する。弾性表面波基板5上に入力すだれ状4極群7.
8及び出力すだれ状電極群9゜10を幾何学的位相差φ
M(=2π・?、t:すだれ状電極間距離、λ:弾性表
面波の波長)だけ隔てて配置し、これらすだれ状電極間
で電気的位相差φE1電圧比Vtとなるように移相回路
のインダクタンス素子L1 s Lt sキャパシタン
ス素子’1 s ’!が定められる。その際、方向性を
表すパラメータαは、 で与えられる。なお基板端面には基板端面からの反射を
抑圧するため、弾性表面波吸収体6が塗布されている。
The unidirectional electrode according to the present invention will be schematically explained with reference to the fa1 diagram. Input interdigital four-pole group 7 on surface acoustic wave substrate 5.
8 and the output interdigital electrode group 9゜10 with a geometric phase difference φ
M (=2π・?, t: distance between the interdigital electrodes, λ: wavelength of the surface acoustic wave), and a phase shift circuit is arranged so that the electrical phase difference between the interdigital electrodes is φE1 and the voltage ratio Vt. Inductance element L1 s Lt s Capacitance element '1 s '! is determined. At that time, the parameter α representing the directionality is given by: Incidentally, a surface acoustic wave absorber 6 is coated on the end face of the substrate in order to suppress reflection from the end face of the substrate.

ここで、入力一方向性電極は、これらのすだれ状電極7
.8とLl s ’1 s Lt s’tからなる移相
回路を纒めて、第2図に示すように2対の機械側端子1
,2と1対の電気側端子3をもつ3端子対回路11より
なる等価3端子対回路で表示する事ができる。機械側端
子1.2には機械的特性インピーダンスZ11 s電気
側端子3には電源コンダクタンスGsを接続し、散乱行
列を求めることKよって、方向性と機械側端子での反射
の関係を求める事ができる。
Here, the input unidirectional electrodes are these interdigital electrodes 7.
.. 8 and Ll s '1 s Lt s't are put together, and as shown in Fig.
, 2 and a pair of electrical terminals 3 can be represented as an equivalent three-terminal pair circuit 11. The mechanical characteristic impedance Z11 is connected to the mechanical side terminal 1.2, and the power supply conductance Gs is connected to the electrical side terminal 3, and the scattering matrix is obtained.Thus, the relationship between the directionality and the reflection at the mechanical side terminal can be obtained. can.

散乱行列を無損失、実数と仮定すると 15+r l”+ ISI@ I” + 15181”
 = 1+5.、 +!+ 15tR1”+15.+1
 = 115.11意+ISn l”+ 15*sl”
 = 1なお、Sす°=Sji(可逆)で、また、無損
失条件からS11 SII+Sl!StB+51151
1 ” Oである。前記回路系での損失はミスマツチに
よるものであるから。
Assuming that the scattering matrix is lossless and real, 15+r l"+ISI@I"+15181"
= 1+5. , +! +15tR1”+15.+1
= 115.11+ISn l”+ 15*sl”
= 1. Furthermore, S°=Sji (reversible), and from the no-loss condition, S11 SII+Sl! StB+51151
1" O. This is because the loss in the circuit system is due to mismatch.

h = Gs/Gaとして A−1 533°士酉 sl、 −1−s緯J:I−舊げO 5u =”−仕立Z旦U a−)−1 但し、デ=h−f−1・・・・・・(41A = G5
/にα ・・・・・・(艶上記の如く、等価回路l]が
受動無損失、散乱行列の各要素が実数であるとして計算
を行ったが、実際の装置でも、移相回路の損失は放射エ
ネルギーに対して十分小さくとるのが通常であシ、また
、所望帯域内で電気側端子でのデバイスと負荷の合成サ
セプタンスはGaに対して十分小さくとるため、上記の
仮定は受画である。
h = Gs/Ga as A-1 533° Shigo sl, -1-s latitude J: I-芊GEO 5u = "-Seitate Ztan U a-)-1 However, de = h-f-1. ...(41A = G5
/ to α ...... (as mentioned above, the equivalent circuit l) was calculated assuming that there is no passive loss and each element of the scattering matrix is a real number, but in actual equipment, the loss of the phase shift circuit is usually set to be sufficiently small with respect to the radiated energy, and the combined susceptance of the device and load at the electrical side terminal is set sufficiently small with respect to Ga within the desired band, so the above assumption is sufficient for image reception. be.

ここでI5.11”で表される機械側端子での反射波は
、入出力すだれ状電極間を多重反射し、出力端に不要遅
延信号として現れ、帯域内の振幅、位相特性にリップル
を生ぜしめる。通常、この反射を電極間多重反射(TT
E)と呼ぶ。第3図は(3)式から4とrrx抑圧度の
関係を求めたものである。このよう&CTTEを最小に
する方向性α、は、hの関数として “=7=丁q   °−−−−−(e)で表される。G
、は所望帯域内でほぼ一定であるが、通常amは周波数
の関数となる。従って、所望帯域内全体で方向性を表す
パラメータαを0に近づけず(6)式に近い値とする事
によりて帯域内でのTTEを抑圧することが可能になる
。例えば、入力または出力の片側のすだれ状電極群にお
ける所望電極間TTE抑圧比を1/C2とすると、(3
1式よシ帯域全体の方向性Cをra−1rC+1 e−)−1≦a≦o−1・・・・・・(7)とすれば、
帯域内での反射波を所望の抑圧比以下に抑える事ができ
る。
Here, the reflected wave at the machine side terminal, represented by I5.11'', undergoes multiple reflections between the input and output interdigital electrodes, appears as an unnecessary delayed signal at the output end, and causes ripples in the amplitude and phase characteristics within the band. Normally, this reflection is called interelectrode multiple reflection (TT
It is called E). FIG. 3 shows the relationship between 4 and the degree of rrx suppression obtained from equation (3). In this way, the direction α that minimizes &CTTE is expressed as a function of h as “=7=dq°−−−−−(e).G
, are approximately constant within the desired band, whereas am is usually a function of frequency. Therefore, it is possible to suppress TTE within the band by setting the parameter α representing the directionality to a value close to equation (6) without approaching 0 throughout the desired band. For example, if the desired interelectrode TTE suppression ratio in the interdigital electrode group on one side of the input or output is 1/C2, then (3
According to equation 1, if the directionality C of the entire band is ra-1rC+1 e-)-1≦a≦o-1 (7),
Reflected waves within the band can be suppressed to a desired suppression ratio or less.

このように、従来、帯域内での方向性を表すパラメータ
αを出来るだけ小さくシ、中心周波数でGα=aSとす
れば、TTEの抑圧も可能と考えられていたが、実際に
は帯域内での方向性を(7)式を満足する適当な値とす
る事によシ、帯域内全域でのTTE抑圧が可能となる事
が判った。
In this way, it was conventionally thought that TTE could be suppressed by setting the parameter α, which represents the directionality within the band, as small as possible and setting Gα = aS at the center frequency. It has been found that by setting the directionality to an appropriate value that satisfies equation (7), it is possible to suppress TTE throughout the band.

ここでG、を出力端子4に付加された負荷コンダクタン
スGLと置き換えれば、出力すだれ状電極群9.10に
おける損失、多重反射の関係は、上記同様に考えること
が出来る。
Here, if G is replaced with the load conductance GL added to the output terminal 4, the relationship between loss and multiple reflection in the output interdigital electrode group 9 and 10 can be considered in the same way as above.

〔発明の実施例〕[Embodiments of the invention]

以下、第4〜7図を用いて本発明の詳細な説明する。第
4図は本発明実施例の一方向性電極を模式的に示し、す
だれ状電極は2対10グループのグループ型一方向性正
規型電極を入出力同電極構造として用い、各グループの
すだれ状電極群7.8の幾何学的位相差をπ/2とした
Hereinafter, the present invention will be explained in detail using FIGS. 4 to 7. FIG. 4 schematically shows a unidirectional electrode according to an embodiment of the present invention. The interdigital electrodes use group type unidirectional normal type electrodes of 2 pairs and 10 groups as the same input and output electrode structure, and each group has an interdigital shape. The geometric phase difference of the electrode group 7.8 was set to π/2.

基板は128度回転Y軸カッ)X軸伝搬のニオブ酸リチ
ウム単結晶を用い、中心・周波数は10dEとし、アル
ミニウム電極膜厚は5oooAとした。
The substrate was a lithium niobate single crystal with 128 degree rotation on the Y axis and propagation on the X axis, the center frequency was 10 dE, and the aluminum electrode film thickness was 500A.

また、移相器定数としてC,=11F 、 LA =2
20%Bを選んだ。回路系の電源、負荷抵抗atはとも
に約29m5でありた。
In addition, the phase shifter constants are C,=11F, LA=2
I chose 20%B. The power supply and load resistance at of the circuit system were both about 29 m5.

第5図に参考のため従来の手法による一方向性電極の周
波数特性を示す。方向性は帯域内で出来る限シ広く設計
し、中心周波数でGa = にSとなるように、R8=
50 とした。図中、12は順方向損失、13は逆方向
損失、14はrrx抑圧度、15は(6)式による最大
rrx抑圧度を与える方向性を表すパラメータa1.1
6は方向性を表すパラメータaの実測値である。逆方向
特性は電源および負荷端子をすだれ状電極8の側に接続
する事によりて容易に測定する事が出来る。また方向性
を表すパラメータαは順方向と逆方向損失の差から求め
る事が可能である。中心周波数でのTTE抑圧度は大き
いがαの曲線が98MHzと1ozMHz  付近でh
から大きくはずれ、その周波数近傍でTTE抑圧度も3
6dE 程度に劣化している事が判る。この時、損失は
4 ttE、振幅リップルrJ、5 dB  %群遅延
時間リップル26ns、−,でP−P あった。
For reference, FIG. 5 shows the frequency characteristics of a unidirectional electrode according to a conventional method. The directionality is designed to be as wide as possible within the band, and R8 = so that S becomes Ga = at the center frequency.
It was set at 50. In the figure, 12 is a forward loss, 13 is a reverse loss, 14 is a degree of rrx suppression, and 15 is a parameter a1.1 representing the directionality that gives the maximum degree of rrx suppression according to equation (6).
6 is an actual measured value of the parameter a representing directionality. The reverse characteristic can be easily measured by connecting the power supply and load terminals to the interdigital electrode 8 side. Further, the parameter α representing directionality can be determined from the difference between forward and reverse losses. The degree of TTE suppression at the center frequency is large, but the α curve becomes h around 98MHz and 1ozMHz.
The degree of TTE suppression is also 3 near that frequency.
It can be seen that it has deteriorated to about 6dE. At this time, the loss was 4 ttE, amplitude ripple rJ, 5 dB% group delay time ripple 26 ns, -, and P-P.

第6図は帯域内全域でcL、2oとα21を近接させ。In Fig. 6, cL, 2o and α21 are made close to each other throughout the band.

帯域内でのTTE抑圧度を改善した本発明実施例の周波
数特性を示す。帯域内全域でαとeL−を近接させるた
め、R8==150とした。その時、損失1.tLB、
振幅リップルQ、2dE、−、2群遅延時間り、プル2
1 s z p −pであった。17は順方向損失、1
8は逆方向損失、 19はTTE抑圧度である。帯域内
全域で5f3dB以上のTTE抑圧度が得られた。
3 shows frequency characteristics of an embodiment of the present invention that improves the degree of TTE suppression within the band. In order to make α and eL− close to each other throughout the band, R8 was set to 150. At that time, loss 1. tLB,
Amplitude ripple Q, 2dE, -, 2nd group delay time, pull 2
1 s z p -p. 17 is forward loss, 1
8 is the reverse direction loss, and 19 is the TTE suppression degree. A TTE suppression degree of 5f3dB or more was obtained throughout the entire band.

第7図は、第1図に示した移相器を用いた本発明実施例
の周波数特性を示す。すだれ状電極は上記実施例と同様
な構造であるが、移相器として、Li=’L3μ’eL
t=230nlξC,=2.2pF、C,=。
FIG. 7 shows the frequency characteristics of the embodiment of the present invention using the phase shifter shown in FIG. The interdigital electrode has the same structure as the above embodiment, but as a phase shifter, Li='L3μ'eL
t=230nlξC,=2.2pF,C,=.

’lpFの値を選んだ。この構造とする事によシ、可変
抵抗R1を用いず、帯域内のa、25とeL 26を近
づける事が可能となる。ここで、22は1置方向損失、
nは逆方向損失、スはTTE抑圧度である。
'lpF value was selected. With this structure, it is possible to make a, 25 and eL 26 close to each other within the band without using the variable resistor R1. Here, 22 is the unidirectional loss,
n is the reverse direction loss, and s is the TTE suppression degree.

本実施例では、可変抵抗R8を用いず、従りて損失を5
rLB以下に改善でき、しかも帯域内全域で44cLB
以上のTTE抑圧度を得、振幅リプグルα1tLBP−
,1群遅延時間リップル11r′りり0値を得た。
In this example, the variable resistor R8 is not used, so the loss is reduced to 5.
It can be improved to below rLB, and it is 44cLB throughout the entire band.
The degree of TTE suppression above is obtained, and the amplitude repggle α1tLBP−
, 0 value of the first group delay time ripple 11r' was obtained.

以上グループ型の一方向性電極に関して説明を行りたが
、三相励振型等信の一方向性電極でも(71式を満足す
るように設計を行えば、同様な効果が得られることは言
うまでもない。
The explanation above has been about group type unidirectional electrodes, but it goes without saying that similar effects can be obtained with three-phase excitation type unidirectional electrodes (if they are designed to satisfy Equation 71). stomach.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、所望帯域内全域に
わたシ、電極間多重反射、挿入損失、振幅リップル、群
遅延時間リップルを低く抑える事が可能になシ、低損失
弾性表面波装置の帯域内周波数特性平坦化向上に効果が
得られる。
As explained above, according to the present invention, it is possible to suppress crosstalk, inter-electrode multiple reflection, insertion loss, amplitude ripple, and group delay time ripple throughout the entire desired band, and a low-loss surface acoustic wave device. This is effective in flattening the frequency characteristics within the band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一方向性電極の概略説明図、第2
図は一方向性電極の等価3端子対回路表示図、第3図は
方向性とTTE抑圧度の関係を示す図、第4図は本発明
実施例の一方向性電極の模式図、第5図は従来の手法に
よシ設計した一方向性電極の周波数特性図、第6図、第
7図は本発明実施例の周波数特性図である。 12.17.22・・・順方向損失特性13.18.2
3・・・逆方向損失特性14.19,24・・・TTE
抑圧度 15.20,25・・・最大TTE抑圧度を与える方向
性を表すパラメータ 16.21.26・・・方向性を表すパラメータR5・
・・可変抵抗 L1a’1 m”* mC*・・・移相回路を構成する
インダクタンス素子とキャパシタンス素子 第  I  図 第  3  図 (一方向性)山(三15zi P/jst31リ   
 (”方′i]性)草 4 図 第 に 図 期波数 (r’lHz ) 策 6 図 i’l  iK 数 (MH:r ) 第  ’7WJ 周戒数 (Jjfh)
FIG. 1 is a schematic explanatory diagram of a unidirectional electrode according to the present invention, and FIG.
The figure is an equivalent three-terminal pair circuit diagram of a unidirectional electrode, FIG. 3 is a diagram showing the relationship between directionality and TTE suppression degree, FIG. 4 is a schematic diagram of a unidirectional electrode according to an embodiment of the present invention, and FIG. The figure is a frequency characteristic diagram of a unidirectional electrode designed using a conventional method, and FIGS. 6 and 7 are frequency characteristic diagrams of an embodiment of the present invention. 12.17.22...Forward loss characteristics 13.18.2
3... Reverse loss characteristics 14.19, 24... TTE
Suppression degree 15.20, 25... Parameter representing the directionality that gives the maximum TTE suppression degree 16.21.26... Parameter R5 representing the directionality
...Variable resistance L1a'1 m"* mC*...Inductance element and capacitance element that constitute the phase shift circuit.
("way'i") Grass 4 Fig. ni Period wave number (r'lHz) Measure 6 Fig. i'l iK number (MH:r) '7th WJ Shu precept number (Jjfh)

Claims (1)

【特許請求の範囲】 1)圧電性基板または圧電体を含む弾性表面波基板上に
、少なくとも1組の入出力すだれ状電極群が配設され、
かつ、これら入力または出力すだれ状電極群を形成する
各すだれ状電極の間に電気的位相差を生じさせる回路を
設けて一方向性電極にした弾性表面波装置において、一
方のすだれ状電極群と移相回路を合わせた入力または出
力コンダクタンスGaと電源側または負荷側のコンダク
タンスGlが、上記一方の入力または出力電極群から他
方の出力または入力電極群へ向けて放射されるエネルギ
ーに対する其の逆方向に放射されるエネルギーの比率を
a、としたとき、帯域中心周波数でGa≠Gl又はa≠
0であって、かつ、帯域内のどの周波数でも a=(Gl−Ga)/(Gl+Ga) なる関係がほぼ満足されていることを特徴とする弾性表
面波装置。 2)入出力すだれ状電極間の多重反射波の片側すだれ状
電極群での所望抑圧比を1/c^2、かつ所望帯域内全
周波数で常に正確にr=(Gl−Ga)/(Gl+Ga
)としたとき、前記Ga、Gl、aが所望帯域内で(r
c−1)/(c+1)≦a≦(rc+1)/(c−1)
なる関係を満足する特許請求の範囲第1項記載の弾性表
面波装置。 3)移相回路として、すだれ状電極群の各すだれ状電極
と電気的に並列にインダクタンス素子、キャパシタンス
素子を接続し、かつ、各すだれ状電極の接地してない側
の電極の間に、インダクタンス素子、キャパシタンス素
子を直列に挿入した特許請求の範囲第1項記載の弾性表
面波装置。
[Claims] 1) At least one input/output interdigital electrode group is disposed on a piezoelectric substrate or a surface acoustic wave substrate including a piezoelectric body,
In addition, in a surface acoustic wave device in which a circuit is provided to create an electrical phase difference between each interdigital electrode forming the input or output interdigital electrode group to make a unidirectional electrode, one interdigital electrode group and The combined input or output conductance Ga of the phase shift circuit and the conductance Gl on the power supply side or load side are in the opposite direction to the energy radiated from one input or output electrode group to the other output or input electrode group. When the ratio of energy radiated to is a, Ga≠Gl or a≠ at the band center frequency.
0, and the relationship a=(Gl-Ga)/(Gl+Ga) is substantially satisfied at any frequency within the band. 2) Set the desired suppression ratio of multiple reflected waves between the input and output interdigital electrodes to 1/c^2 at one side of the interdigital electrode group, and always accurately set r=(Gl-Ga)/(Gl+Ga) at all frequencies within the desired band.
), the Ga, Gl, a are within the desired band (r
c-1)/(c+1)≦a≦(rc+1)/(c-1)
A surface acoustic wave device according to claim 1, which satisfies the following relationship. 3) As a phase shift circuit, an inductance element and a capacitance element are electrically connected in parallel with each interdigital electrode of the interdigital electrode group, and an inductance element is connected between the non-grounded electrodes of each interdigital electrode group. The surface acoustic wave device according to claim 1, wherein the element and the capacitance element are inserted in series.
JP60131741A 1985-04-05 1985-06-19 Surface acoustic wave device Expired - Fee Related JP2853094B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60131741A JP2853094B2 (en) 1985-06-19 1985-06-19 Surface acoustic wave device
CA000510494A CA1276284C (en) 1985-04-05 1986-05-30 Surface elastic wave device
US06/869,979 US4689586A (en) 1985-06-07 1986-06-02 Surface elastic wave device
DE19863618913 DE3618913A1 (en) 1985-06-07 1986-06-05 DEVICE FOR ELASTIC SURFACE WAVES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131741A JP2853094B2 (en) 1985-06-19 1985-06-19 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPS61290812A true JPS61290812A (en) 1986-12-20
JP2853094B2 JP2853094B2 (en) 1999-02-03

Family

ID=15065105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131741A Expired - Fee Related JP2853094B2 (en) 1985-04-05 1985-06-19 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP2853094B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE ON MICROWAVE THEORY AND TECHNIQUES DESIGN OF SURFACE WAVE DELAY LINES WITH INTFRDIGITAL TRANSDUCERS=1969 *

Also Published As

Publication number Publication date
JP2853094B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
Kodama et al. Design of low–loss saw filters employing distributed acoustic reflection transducers
US4162465A (en) Surface acoustic wave device with reflection suppression
US4196407A (en) Piezoelectric ceramic filter
JP2731805B2 (en) Surface acoustic wave device and method of manufacturing the same
US4602228A (en) Surface acoustic wave filter
US3686518A (en) Unidirectional surface wave transducers
US3955160A (en) Surface acoustic wave device
US3882433A (en) Swif with transducers having varied duty factor fingers for trap enhancement
JP2847438B2 (en) Surface acoustic wave device
US4143340A (en) Acoustic surface wave device with improved transducer
US4422000A (en) Unidirectional surface acoustic wave device with meandering electrode
US4575696A (en) Method for using interdigital surface wave transducer to generate unidirectionally propagating surface wave
US3582834A (en) Microwave ultrasonic delay line
US4689586A (en) Surface elastic wave device
JPS61290812A (en) Surface acoustic wave device
JPS598417A (en) Surface acoustic wave device
JPH0157845B2 (en)
JP2685537B2 (en) Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
US3825860A (en) Surface wave delay line with quarter-wave taps
JP3035085B2 (en) Unidirectional surface acoustic wave converter
Emtage Description of interdigital transducers
JPS63131710A (en) Surface acoustic wave device
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
JPS6142447B2 (en)
JPS60140918A (en) Surface acoustic wave resonator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees