JPS61290673A - Airtight insulated terminal and manufacture thereof - Google Patents

Airtight insulated terminal and manufacture thereof

Info

Publication number
JPS61290673A
JPS61290673A JP13243985A JP13243985A JPS61290673A JP S61290673 A JPS61290673 A JP S61290673A JP 13243985 A JP13243985 A JP 13243985A JP 13243985 A JP13243985 A JP 13243985A JP S61290673 A JPS61290673 A JP S61290673A
Authority
JP
Japan
Prior art keywords
base
temperature
hole
glass
insulated terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13243985A
Other languages
Japanese (ja)
Inventor
白沢 宗
石井 勇雄
井上 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13243985A priority Critical patent/JPS61290673A/en
Publication of JPS61290673A publication Critical patent/JPS61290673A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、たとえば金属製気密容器内に収納された電気
機器と外部との電気的接続を行なうばあいなどに用いら
れる気密絶縁端子、とくに気密容器内に70ンなどの液
体化合物を冷却媒体として充填し、その内部に発熱を伴
うたとえば大電流用の半導体整流素子を浸漬した強制冷
却方式の整流装置などに用いられる気密絶tik端子お
よびその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to an airtight insulated terminal used for electrically connecting an electrical device housed in a metal airtight container to the outside. Airtight Tik terminals used in forced cooling type rectifiers, etc., in which a liquid compound such as 70 liters is filled as a cooling medium in an airtight container, and a semiconductor rectifier for large currents is immersed inside the container. This relates to a manufacturing method.

[従来の技術] この種の気密絶縁端子に要求される一般的特性は、耐熱
特性に富み経年変化がなく、極めて高度の気密(水密)
特性を保持すること、冷却媒体に・対する耐食特性に富
むこと、冷熱および機械的衝撃度が高いこと、ならびに
容器などに接続される基体と通電用の端子導体(以下、
単に「通電極」という)との絶縁特性が高いことなどで
ある。このほか気密容器に気密性を保持しつつ容易に接
続ですることおよび価格が低廉であることなどは当然の
こととして要求される。
[Prior art] The general characteristics required for this type of airtight insulated terminal are high heat resistance, no deterioration over time, and an extremely high degree of airtightness (watertightness).
properties, high corrosion resistance against cooling media, high thermal and mechanical shock resistance, and a terminal conductor (hereinafter referred to as
It has high insulation properties with respect to the conductive electrode (simply referred to as a "carrying electrode"). In addition, it is naturally required that the device be easily connected to the airtight container while maintaining airtightness, and be inexpensive.

また最近、前記整流装置は電源装置として車輌に搭載し
で使用されるばあいが急増しつつあるが、このばあい整
流装置自体の軽量化が必須条件であり、これに伴い通電
電流当たりの重量が軽い気密絶縁端子に対する要求が急
激に高まっている。
Recently, the number of cases in which the rectifier is mounted on a vehicle as a power supply device is rapidly increasing, but in this case, it is essential to reduce the weight of the rectifier itself. Demand for airtight insulated terminals with light weight is rapidly increasing.

従来上り、この種気密絶縁端子の電気絶縁物および気密
封着材としで、合成樹脂、ゴム、ガラス質または磁器質
材料を用いたものが公知であるが、合成街譜やゴムを使
用したものは耐熱特性が乏しく経年変化があり、気密保
持特性に信頼性がえられず、かつ冷却媒体に対する耐食
性の面にも多くの問題がある。一方ガラス質または磁器
質材料を用いたものは、気密特性、耐食性に関しては優
れた性能を有するが、熱および機械的衝撃性に乏しく、
そのため車輛などに搭載される整流装置などに使用した
ばあい、振動により破損するという致命的欠陥がありこ
れらを使用することは不可能である。
Conventionally, it has been known to use synthetic resin, rubber, glass, or porcelain materials as electrical insulators and airtight sealing materials for this type of hermetically insulated terminal, but there are also ones that use synthetic resin or rubber. has poor heat resistance properties and deteriorates over time, has unreliable air-tightness properties, and has many problems in terms of corrosion resistance against cooling media. On the other hand, those using glass or porcelain materials have excellent performance in terms of airtightness and corrosion resistance, but have poor thermal and mechanical impact resistance.
Therefore, when used in rectifiers mounted on vehicles, etc., they have a fatal defect of being damaged by vibration, making it impossible to use them.

その点、本発明者らが先に提案しでいる電気絶縁物およ
び気密封着材としてガラス、マイカ塑造体を使用した気
密絶縁端子は、前記の要求される一般的特性については
優れた特性を有するが、重量的に重いという致命的な欠
陥がある。
In this regard, the airtight insulated terminal that uses glass and mica plastic as the electrical insulator and airtight sealing material that the present inventors have previously proposed has excellent characteristics with respect to the above-mentioned required general characteristics. However, it has the fatal flaw of being heavy.

以下、第3図にもとづ軽、従来の気密絶縁端子の構造と
機構を説明する。図においで(1)は気密容器に気密的
に接続される基体、(lc)は容器との接合部、(2)
は通電極、(3)は絶縁物である。
Hereinafter, the structure and mechanism of a light, conventional airtight insulated terminal will be explained based on FIG. In the figure, (1) is the base that is airtightly connected to the airtight container, (lc) is the joint with the container, and (2)
is a conducting electrode, and (3) is an insulator.

絶縁物(3)は、ガラス質粉末とマイカ粉末の混合粉末
を原料とし、前記原料をガラス質が軟化し加圧により流
動する温度に加熱し、加熱状態で加圧成形してえられる
ガラス、マイカ塑造体であり、専用の成形用金型を使用
して基体(1)の貫通孔と通電極(2)の間隙部(4)
に絶縁物(3c)、基体(1)の上面(1a)および下
面(1b)においで貫通孔から突出。
The insulator (3) is a glass obtained by using a mixed powder of vitreous powder and mica powder as a raw material, heating the raw material to a temperature at which the vitreous material softens and flows under pressure, and then press-molding it in the heated state. It is a mica plastic body, and the gap (4) between the through hole of the base (1) and the conducting electrode (2) is formed using a special molding die.
The insulator (3c) protrudes from the through hole on the upper surface (1a) and lower surface (1b) of the base (1).

している通電極(2)の周面を包囲するように絶縁物(
3m)、(3b)がそれぞれ形成されでいる。絶縁物(
3C)は基体(1)と通電極(2)の絶縁性および気密
性を保持する封着材の効果を、また絶縁物(3a)、(
3b)は両者の沿面絶縁抵抗を保持する役割をそれぞれ
果たしている一基体(1)は気密容器内の充填物たとえ
ばフロンおよび大気に対する耐食性を保持する必要があ
る。また熱膨脹率はガラス、マイカ塑造体の転位温度以
下の熱膨脹率より大きいものを使用する。このガラス、
マイカ塑造体の転位温度は、原料ガラスの転位温度と同
等であると考えて差し支えない。また、その熱膨脹率は
原料ガラスに大きく支配されるものでその値は9〜12
47℃程度のものかえられる0通電極(2)は耐食特性
に関しては基体(1)と同様であり、熱膨脹率はガラス
、マイカ塑造体の熱膨脹率より小さいものな使用する。
An insulator (
3m) and (3b) are respectively formed. Insulator(
3C) is the effect of the sealing material that maintains the insulation and airtightness of the base (1) and the conducting electrode (2), and
3b) is a substrate (1) which plays the role of maintaining the creeping insulation resistance of both substrates.It is necessary that the substrate (1) maintains corrosion resistance against the filling in the airtight container, such as fluorocarbons, and the atmosphere. Also, the thermal expansion coefficient used is greater than that of glass or mica plastic bodies at a temperature below the transposition temperature. This glass
It can be considered that the transition temperature of the mica plastic body is equivalent to that of the raw material glass. In addition, the coefficient of thermal expansion is largely controlled by the raw material glass, and its value is 9 to 12.
The 0-conducting electrode (2), which can be changed to a temperature of about 47° C., has the same corrosion resistance as the substrate (1), and the thermal expansion coefficient is smaller than that of glass or mica plastic.

前述したように、基体(1)、通電極(2)および絶縁
物(3)の材料選択に際し熱膨脹率−を重視するのは、
この種の気密絶縁端子にとって最重要特性である気密特
性を確保するためである。熱膨脹率が気密特性と密接な
関係するので、以下、この理由について説明するが、理
由は製造方法と密接に関連するため第4図にもとづき9
1遣方法を先に説明する。
As mentioned above, the coefficient of thermal expansion is important when selecting materials for the base (1), the conductive electrode (2), and the insulator (3).
This is to ensure airtightness, which is the most important characteristic for this type of airtight insulated terminal. Since the coefficient of thermal expansion is closely related to the airtightness, the reason for this will be explained below.The reason is closely related to the manufacturing method, so based on Figure 4,
First, I will explain the 1-cent method.

成形用金型は分割構造の壁部(5)、枠(6)、通電極
(2)を保持する保持孔(7&)と絶縁物(3b)を構
成しうる間Fj (4a)を有する分割構造の受金(7
)および中心に通電極(2)と嵌合する貫通孔(8a)
を有する加圧金(8)、の4つの部品よりなるものを使
用する。原料粉末は水分を加えて湿潤状態にし、壁部(
5)内に挿填できるように沿間加年により円筒状に成形
したのちに乾燥して、水分を除去した予備成形体(9)
に加工して使用する。成形用金型は第4図(a)に示さ
れるように、まず壁部(5)、枠(6)および受金(7
)を組立て、加圧金(8)は組立てずに原料ガラスの転
位温度より高い温度に加熱しておく、前記温度が転位温
度より低いばあいには、加熱状態の予備成形体(9)と
接した際に、原料ガラスが冷却固化して流動性が悪くな
り、高密度の絶縁物(3)を成形することが困難とな条
、また逆に高過ぎると成形された絶縁物(3)と接着し
、成形完了後の型離脱が悪くなる1次に基体(1)およ
び通電極(2)を成形用金型より高い温度に加熱する。
The molding die has a divided structure having a wall (5), a frame (6), a holding hole (7&) for holding the conducting electrode (2), and an insulator (3b) having a gap Fj (4a). Structure receiver (7
) and a through hole (8a) in the center that fits with the conducting electrode (2).
A pressurized metal (8) with four parts is used. Add water to the raw material powder to make it wet, and apply it to the wall (
5) Preformed body (9) formed into a cylindrical shape by crisscrossing so that it can be inserted into the interior, and then dried to remove moisture.
Process and use. As shown in FIG. 4(a), the molding die first consists of a wall (5), a frame (6) and a receiver (7).
), and the pressurized metal (8) is heated to a temperature higher than the transition temperature of the raw glass without being assembled. If the temperature is lower than the transition temperature, the heated preform (9) and When in contact, the raw material glass cools and solidifies, resulting in poor fluidity, making it difficult to form a high-density insulator (3), and conversely, if it is too high, the formed insulator (3) The primary substrate (1) and the conductive electrode (2) are heated to a higher temperature than the molding die.

また予備成形体(9)は加圧により流動可能な温度に加
熱する。それぞれの加熱が完了すると、まず基体(1)
と通電極(2)を成形型内に挿填し、次に予備成形体(
9)を基体(1)の上に載置する。この状態が第4図(
a)に示されている0次に加圧金(8)を予備成形体(
9)上に載置し、加圧成形機(図示せず)により加圧金
(8)を加圧する。予備成形体(9)は加圧されること
により流動し、一部は基体(1)上に残り、他は間隙部
(4)、(4a)を充填し、絶縁物(3a)、(3b)
、(3c)を構成する。この状態が第4図(b)に示さ
れている。成形された絶縁物(3)は、原料ガラスの転
位温度より高い温度領域では、加圧により流動または変
形が可能であるが転位温度以下の温度領域では固化し、
固体としての挙動を示す、基体(1)と通電極(2)の
間隙部(4)に存在する絶縁物(3c)は、絶縁物(3
)が固化した温度から常温に至るあいだ、外周部にある
熱膨脹率の大きい基体(1)の収縮により、中心部に向
かって大きな締めつけ圧力を受ける。同時に絶縁物(3
)は中心部に位置する熱膨脹率の小さい通電極(2)を
強力に圧縮し締めっける。この現象は焼嵌現象と極似し
ている。このため絶縁物(3)の内外周面すなわち基体
(1)と通電極(2)の接触面に発生する圧縮力により
、気密絶縁端子は優れた気密保持特性が確保される。
The preform (9) is heated under pressure to a temperature at which it can flow. When each heating is completed, first the base (1)
and the conducting electrode (2) are inserted into the mold, and then the preform (
9) is placed on the base (1). This state is shown in Figure 4 (
The zero-order pressurized metal (8) shown in a) is molded into a preformed body (
9) and pressurize the pressurized metal (8) using a pressurized molding machine (not shown). The preform (9) flows by being pressurized, and part of it remains on the base (1), the other part fills the gaps (4) and (4a), and forms the insulators (3a) and (3b). )
, (3c) are constructed. This state is shown in FIG. 4(b). The formed insulator (3) can flow or deform under pressure in a temperature range higher than the transition temperature of the raw glass, but solidifies in a temperature range below the transition temperature.
The insulator (3c) existing in the gap (4) between the base (1) and the conducting electrode (2), which behaves as a solid,
) from the temperature at which it solidifies to room temperature, a large tightening pressure is applied toward the center due to the contraction of the base (1), which has a large coefficient of thermal expansion at the outer periphery. At the same time, insulators (3
) strongly compresses and tightens the conducting electrode (2), which is located in the center and has a small coefficient of thermal expansion. This phenomenon is very similar to the shrinkage phenomenon. Therefore, the compressive force generated on the inner and outer circumferential surfaces of the insulator (3), that is, the contact surface between the base (1) and the conducting electrode (2), ensures that the airtight insulated terminal maintains excellent airtightness.

前述した状態を実現するためには基体(1)に締めつけ
力が発生することが必須条件であり、もし基体け)の耐
力が乏しいばあいいは基体(1)が伸びるような状態に
なるため締めっけ力が発生しなくなる。伸びた状態を発
生させないため、基体(1)にはたとえばステンレスな
ど耐力の大きい材料が使用されるが絶対耐力を確保する
ために、基体(1)の肉厚を厚くせざるをえなかった。
In order to achieve the above-mentioned state, it is an essential condition that a tightening force is generated in the base (1), and if the yield strength of the base (1) is insufficient, the base (1) will become stretched. Tightening force is no longer generated. In order to prevent the elongated state from occurring, a material with a high yield strength, such as stainless steel, is used for the base body (1), but in order to ensure absolute yield strength, the thickness of the base body (1) has to be increased.

従来製品では基体(1)に肉厚の厚いステンレス材が、
通電極(2)にチタンまたはコパールなどが使用されて
いる。そのばあい熱膨脹率は、ステンレスが18X 1
0−@/”C1〃ラス、マイカ塑造体が9〜12X 1
0−’/’C、チタンは8 X 10−’/’C、コバ
ールは5 Xl0−’/℃であり、優れた気密保持特性
をうろことができると同時に耐食特性、機械特性なども
完全に満足していた。
In conventional products, the base (1) is made of thick stainless steel.
Titanium, copal, or the like is used for the conducting electrode (2). In that case, the coefficient of thermal expansion of stainless steel is 18X 1
0-@/”C1 lath, mica plastic body is 9~12X 1
0-'/'C, titanium is 8 x 10-'/'C, and Kovar is 5 I was satisfied.

[発明が解決しよ′うとする問題点] しかしながら前述したように、従来製品のばあいは基体
(1)に比重の大きいステンレス材を、しかも肉厚の厚
い部品を使用しているため、製品自体の重量が重くなる
という問題があった。このことは重量が軽い気密絶縁端
子を゛必要とする用途面においては致命的な欠陥となっ
ている。
[Problems to be solved by the invention] However, as mentioned above, in the case of conventional products, the base (1) is made of stainless steel material with a high specific gravity, and thick parts are used, so the product There was a problem that the weight itself was heavy. This is a fatal flaw in applications that require light hermetically insulated terminals.

本発明は、かかる問題点を解決するためになされたもの
で従来製品のもつ優れた特性を維持しつつ、しかも軽い
気密絶縁端子をうろことを目的とする。
The present invention was made to solve these problems, and aims to provide a light airtight insulated terminal while maintaining the excellent characteristics of conventional products.

[問題点を解決するための手段] 本発明は一1貫通孔を有する基体、前記貫通孔に周壁と
の間隙部を保持しつつ貫通し両端が前記基体の両端面か
ら突出して配設された通電極、前記間隙部に介在し前記
基体と前記通電極を密封固着し、かつ貫通孔から突出し
た通電極の周面を包囲する沿面絶縁部を形成したガラス
、マイカ塑遺体からなる絶縁物とを備えた気密絶縁端子
において、前記基体の貫通孔の内周面にガラス質皮膜が
形成されている気密絶縁端子およびその製造方法に関す
る。
[Means for Solving the Problems] The present invention provides a base body having eleven through holes, the base body passing through the through hole while maintaining a gap with the peripheral wall, and having both ends protruding from both end surfaces of the base body. a conducting electrode, an insulator made of glass or mica plastic material forming a creeping insulation portion interposed in the gap, sealingly fixing the base body and the conducting electrode, and surrounding the circumferential surface of the conducting electrode protruding from the through hole; The present invention relates to an airtight insulated terminal having a glass film formed on the inner circumferential surface of the through hole of the base body, and a method for manufacturing the same.

[実施例1 前述した目的を達成するため本発明者らは、まず従来の
気密絶縁端子を対象として、基体(1)の肉厚を薄くし
て締めっけ力を減少させた製品について漏洩部を精密に
調査した。その結果、通電極(2)と絶縁物(3c)を
構成するガラス、マイカ塑遺体の接触面、およびガラス
、マイカ塑遺体自体には漏洩現象はなく、ガラス、マイ
カ塑遺体と基体(1)の接触面にのみ漏洩現象があるこ
とを確認した。そしてこの部分の漏洩を防止することに
より前述した目的を達成した。
[Example 1] In order to achieve the above-mentioned object, the present inventors first focused on a conventional airtight insulated terminal, and developed a product in which the thickness of the base body (1) was reduced to reduce the tightening force. was investigated in detail. As a result, there was no leakage phenomenon at the contact surface between the glass and the mica plastic body that constitute the conducting electrode (2) and the insulator (3c), and the glass and the mica plastic body themselves. It was confirmed that there was a leakage phenomenon only at the contact surface. By preventing leakage in this part, the above-mentioned objective was achieved.

本発明を第1図、第2図にもとづき説明する。The present invention will be explained based on FIGS. 1 and 2.

w&1図は本発明の一実施例の構造を示す縦断面図であ
る。基体(1)は肉厚が薄く、下端に鍔状の金属容器と
の接合部(1d)を有しており、貫通孔の内周面にガラ
ス質皮膜(10)が設けられている。成形に際しては第
2図に示すように基体(1)の外周を包囲する分割構造
の補助壁(11)を使用し、これを基体(1)の鍔状の
接合部(1d)上に載置し、基体(1)を包囲する状態
に組み立てる。その後前記補助壁(11)を基体(1)
と共に加熱し、壁部(5)内へ同時に挿填する。なお通
電極(2)、予備成形体(9)は従来製品と同じものを
使用する。
Figure w&1 is a vertical sectional view showing the structure of an embodiment of the present invention. The base body (1) has a thin wall, has a flange-shaped joint part (1d) with the metal container at the lower end, and has a glassy coating (10) on the inner circumferential surface of the through hole. During molding, as shown in Figure 2, an auxiliary wall (11) with a split structure surrounding the outer periphery of the base (1) is used, and this is placed on the brim-shaped joint (1d) of the base (1). and assembled to surround the base (1). After that, the auxiliary wall (11) is attached to the base (1).
and simultaneously inserted into the wall (5). Note that the conducting electrode (2) and preform (9) are the same as those used in conventional products.

次に最も重要な要素であるがう人質皮膜を設けた基体(
1)についで説明する。基体(1)の材料としでは耐食
特性を有しかつ耐力の大きいステンレスを使用する。
Next, the most important element is the base with the hostage film (
1) will be explained next. The material used for the base body (1) is stainless steel, which has corrosion resistance and high yield strength.

まずがう人質皮膜を構成するがう人質は、基体(1)の
貫通孔の内周面に亀裂または爪飛びを生ずることなく皮
膜を設けることが必要であるので熱膨脹率が基体(1)
と同程度で、かつその転位温度が予備成形体(9)の加
熱温度よりも低いものを使用する。
First, it is necessary to form a film on the inner circumferential surface of the through hole of the base (1) without causing any cracks or nails to fly off, so the thermal expansion coefficient of the hostage film must be the same as that of the base (1).
and whose dislocation temperature is lower than the heating temperature of the preform (9).

またガラス質皮膜を設ける貫通孔の内周面の処理は、密
着状態を良好にするためにサンドブラストなどを施し粗
面状にするか、またはあらかじめ気中加熱もしくは薬品
処理により酸化膜を形成してお(ことが有効である。そ
のばあい皮膜はガラス質を微粉砕し水などを使用しで泥
漿状にしたのちに、吹付けまたは浸漬法により皮覆膜を
作り、乾燥後炉中で焼成して形成される。
In addition, to treat the inner peripheral surface of the through hole where the glassy film is to be provided, in order to improve the adhesion, sandblasting is performed to make the surface rough, or an oxide film is formed in advance by heating in the air or by chemical treatment. In that case, the coating is made by finely pulverizing the glass and making it into a slurry using water, etc., then making a coating by spraying or dipping, and then baking it in a furnace after drying. It is formed by

本発明の気密絶縁端子の成形条件のうち、金型および部
品の加熱温度についで説明する。成形用金型のうち、壁
部(5)、枠(6)、受金(7)および加圧金(8)は
原料プラスの転位温度より高い温度に、補助壁(11)
と一体に組立でられその貫通孔の内周面にガラス質皮膜
を形成した基体(1)は、原料ガラスおよび皮膜を形成
したガラス質の転位温度より高い温度に、通電極(2)
は成形用金型と同温度もしくはこれより高い温度に、ま
た予備成形体(9)は加圧により流動可能な温度であり
、かつ基体(1)に設けたガラス質皮膜用ガラスの転位
温度より高い温度にそれぞれ加熱され従来製品とおなし
工程により成形される。
Among the molding conditions for the airtight insulated terminal of the present invention, the heating temperature of the mold and parts will be explained next. In the molding die, the wall (5), frame (6), receiver (7) and pressurizing metal (8) are heated to a temperature higher than the transition temperature of the raw material plus the auxiliary wall (11).
The substrate (1), which is assembled integrally with the through hole and has a glassy film formed on the inner circumferential surface of the through hole, is heated to a temperature higher than the transition temperature of the raw glass and the glassy material on which the film is formed, using a conductive electrode (2).
is the same temperature as or higher than the temperature of the molding die, and the temperature of the preform (9) is such that it can flow under pressure, and the temperature is higher than the transition temperature of the glass for the vitreous coating provided on the substrate (1). They are heated to high temperatures and molded using conventional products and a flattening process.

予備成形体(9)は加圧により流動して一部は基体(1
)および補助壁(11)上に残存し、他は間隙部(4)
、(4a)を充填し、絶縁物(3a)、(3b)、(3
c)を構成する。第1図は冷却後成形用金型を分解し、
補助壁(11)を除去してえられた本発明の気密絶縁端
子の縦断面図である。
The preform (9) flows under pressure, and a portion of the preform (9) flows into the base (1).
) and the auxiliary wall (11), and the rest remain on the gap (4)
, (4a), and insulators (3a), (3b), (3
c). Figure 1 shows the disassembled mold after cooling.
FIG. 3 is a longitudinal sectional view of the airtight insulated terminal of the present invention obtained by removing the auxiliary wall (11).

本発明の気密絶縁端子は、基体(1)の肉厚が薄く、耐
力が乏しいため、内部の間隙部(4)に介在する絶縁物
(3c)に対する締めつけ力は、はとんど発生しない。
In the airtight insulated terminal of the present invention, since the base body (1) has a thin wall thickness and poor proof strength, a tightening force against the insulator (3c) interposed in the internal gap (4) is hardly generated.

したがって従来の端子のように締めつけ力に基因する気
密保持特性をうろことはできないが、予備成形体(9)
が流動充填された状態において基体(1)の〃う人質皮
lI! (10)の温度、および予11成形体(9)中
の原料ガラスの温度がいずれも転位温度より高い温度領
域にあるため両者は互いに融着現象を生じ、その結果一
体化することにより気密保持特性が確保されるにのよう
に従来製品とは全く異なる構成により気密保持特性が確
保される。次に逆電極(2)の外周面と絶縁物(3c)
の接触面は、絶縁物(3c)の熱膨脹率が逆電極(2)
のそれより大きいため、締めつけ力が発生し従来製品と
同様の気密保持特性をうろことができる。
Therefore, unlike conventional terminals, it is not possible to maintain airtightness due to the tightening force, but the preformed body (9)
In the state where the substance (1) is fluidly filled, the hostage skin I! (10) and the temperature of the raw glass in the pre-11 molded body (9) are both in the temperature range higher than the transition temperature, so they fuse together, and as a result, they are integrated to maintain airtightness. The airtightness is ensured by a completely different configuration from conventional products. Next, the outer peripheral surface of the reverse electrode (2) and the insulator (3c)
The contact surface of the electrode (2) has a coefficient of thermal expansion opposite to that of the insulator (3c).
Since it is larger than that of the conventional product, it generates a tightening force and can maintain the same airtight properties as conventional products.

以上、本発明の説明は基体(1)の貫通孔の内周面にガ
ラス質皮膜(10)を設けたものにもとづいているが、
逆電極(2)の外周面にもガラス質皮膜を形成したもの
を使用することも可能であり、形状によっては効果を発
揮する。
The above description of the present invention is based on the case where the glassy coating (10) is provided on the inner circumferential surface of the through hole of the base (1).
It is also possible to use a glass film formed on the outer peripheral surface of the counter electrode (2), and this can be effective depending on the shape.

さらに本発明の説明は液体を媒体とする整流装置用の気
密絶縁端子にもとづいているが、本発明の用途はこれに
限定されるものではなく、高圧がスを充満した金属容器
などにも使用可能である。
Furthermore, although the description of the present invention is based on an airtight insulated terminal for a rectifier that uses liquid as a medium, the application of the present invention is not limited to this, and can also be used for metal containers filled with high-pressure gas. It is possible.

また、宇宙用器機の部品に使用される気密絶縁端子など
にも利用することができその用途は極めて広範である。
Furthermore, it can be used for airtight insulated terminals used in parts of space equipment, and its uses are extremely wide.

[発明の効果] 本発明は以上説明したとおり基体(1)の肉厚が従来製
品と比較して薄いため、その重量が天外く軽減されると
いう効果がある。その際、沿面絶縁特性を含めた電気特
性、機械的および冷熱衝撃強度ならびに耐食性などこの
種の製品に要求される緒特性は、従来製品同様に有しで
おり、技術的および実用的価値は極めて大かいものであ
る。
[Effects of the Invention] As explained above, the thickness of the base (1) of the present invention is thinner than that of conventional products, so that the present invention has the effect of significantly reducing its weight. At this time, the electrical properties including creeping insulation properties, mechanical and thermal shock strength, and corrosion resistance required for this type of product are the same as conventional products, and the technical and practical value is extremely high. It's a big thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の気密絶縁端子の一実施例の構造を示す
縦断面図、第2図は本発明の気密絶[1子の成形方法の
一実施例で(&)は加圧成形直前の状態を、(b)は加
圧成形完了後の状態をそれぞれ示す縦断面図、第3図は
従来の気密絶縁端子の一実施例の構造を示す縦断面図、
第4図は従来の気密絶縁端子の成形方法の一実施例で(
、)は加圧成形直前の状態を、(b)は加圧成形完了後
の状態をそれぞれ示す縦断面図である。 図において、(1)は基体、(2)は逆電極、(3)は
絶縁物、(5)は壁部、(6)は枠、(7)は受金、(
8)は加圧金、(10)はガラス質皮膜、(11)は補
助壁である。 なお各図中同一符号は同一または相当部分を示す。
Fig. 1 is a vertical cross-sectional view showing the structure of an embodiment of the airtight insulated terminal of the present invention, and Fig. 2 is an embodiment of the airtight insulated terminal of the invention [one child molding method] (&) indicates immediately before pressure forming. (b) is a vertical cross-sectional view showing the state after pressure forming is completed, and FIG. 3 is a vertical cross-sectional view showing the structure of an example of a conventional airtight insulated terminal.
Figure 4 shows an example of the conventional molding method for airtight insulated terminals (
, ) is a vertical cross-sectional view showing the state immediately before pressure forming, and FIG. 7(b) is a longitudinal sectional view showing the state after pressure forming is completed. In the figure, (1) is the base, (2) is the reverse electrode, (3) is the insulator, (5) is the wall, (6) is the frame, (7) is the receiver, (
8) is pressurized gold, (10) is a glassy film, and (11) is an auxiliary wall. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)貫通孔を有する基体、前記貫通孔に周壁との間隙
部を保持しつつ貫通し両端が前記基体の両端面から突出
して配設された通電極、前記間隙部に介在し前記基体と
前記通電極を密封固着し、かつ貫通孔から突出した通電
配極の周面を包囲する沿面絶縁部を形成したガラス、マ
イカ塑造体からなる絶縁物を備えた気密絶縁端子におい
て、前記基体の貫通孔の内周面にガラス質皮膜が形成さ
れていることを特徴とする気密絶縁端子。
(1) A base body having a through hole, a conductive electrode that penetrates the through hole while maintaining a gap with the peripheral wall, and is disposed with both ends protruding from both end surfaces of the base body, and a conductive electrode that is interposed in the gap and connects to the base body. In the airtight insulated terminal, the terminal is provided with an insulator made of glass or mica plastic material, which seals and fixes the conductive electrode and forms a creeping insulation portion surrounding the circumferential surface of the conductive electrode protruding from the through hole. An airtight insulated terminal characterized by a glassy film formed on the inner peripheral surface of the hole.
(2)基体の一端面にガラス質皮膜を形成しない鍔状の
部分を有する特許請求の範囲第(1)項記載の気密絶縁
端子。
(2) The airtight insulated terminal according to claim (1), which has a flange-like portion on one end surface of the base that does not form a glassy film.
(3)ガラス、マイカ塑造体の転位温度以下における熱
膨脹率が通電極の熱膨脹率より大きい特許請求の範囲第
(1)項または第(2)項記載の気密絶縁端子。
(3) The airtight insulated terminal according to claim (1) or (2), wherein the coefficient of thermal expansion of the glass or mica plastic body at temperatures below the transposition temperature is greater than that of the conductive electrode.
(4)基体の最大径より大きい内径を有する外部成形型
と、外径が前記外部成形型の内径に嵌合し中心に通電極
を保持できる保持孔と沿面絶縁部を構成できる間隙部を
有する分割構造の受金および外径が前記外部成形型の内
径に嵌合し、かつ中心部に前記通電極に嵌合する貫通孔
を有する加圧金よりなる内部成形型とからなる成形用金
型、および基体を包囲し外径が前記外部成形型の内径に
嵌合する分割構造の補助壁を使用し、絶縁物を構成する
混合粉末を成形し、予備成形体を準備する工程、基体の
貫通孔の内周面にガラス質皮膜を形成する工程、外部成
形型内に受金を挿填し、加圧金とともに原料の転位温度
より高い温度に加熱する工程、基体の外周部に補助壁を
介在させる工程、前記補助壁を介在させた基体をガラス
質皮膜を形成したガラス質の転位温度より高い温度に加
熱する工程、通電極を成形型と同温度またはより高い温
度に加熱する工程、前記予備成形体を加圧により流動可
能な温度であり、かつ前記の基体に形成したガラス質皮
膜のガラスの転位温度より高い温度に加熱する工程、そ
れぞれ加熱状態を保ちつつ前記通電極を受金の保持孔に
挿填する工程、前記補助壁を介在させた基体を受金上に
載置する工程、前記予備成形体を基体上に載置する工程
、前記加圧金を予備成形体上に載置する工程、加圧金を
介して予備成形体を加圧し、間隙部に絶縁物を構成する
工程、冷却後成形用金型を分解し、成形品を取りだし、
補助壁を離脱させる工程よりなる気密絶縁端子の製造方
法。
(4) It has an outer mold having an inner diameter larger than the maximum diameter of the base body, and a holding hole whose outer diameter fits into the inner diameter of the outer mold and can hold a conducting electrode in the center, and a gap part which can constitute a creeping insulation part. A molding die comprising a split-structure receiver and an inner mold made of a pressurized metal whose outer diameter fits into the inner diameter of the outer mold and has a through hole in the center that fits into the conducting electrode. , and a step of forming a mixed powder constituting an insulator to prepare a preformed body by using an auxiliary wall of a split structure surrounding the base and having an outer diameter that fits into the inner diameter of the outer mold, and penetrating the base. The process of forming a glassy film on the inner peripheral surface of the hole, the process of inserting the holder into the external mold and heating it together with the pressurized metal to a temperature higher than the dislocation temperature of the raw material, and the process of forming an auxiliary wall on the outer periphery of the base. a step of heating the substrate with the auxiliary wall interposed therebetween to a temperature higher than the transition temperature of the glass on which the vitreous film is formed; a step of heating the conductive electrode to the same temperature or higher temperature than the mold; heating the preform to a temperature at which it can flow under pressure and which is higher than the transition temperature of the glass of the glassy film formed on the base; and heating the preform to a temperature that is higher than the transition temperature of the glass of the glassy film formed on the base. a step of inserting the base into the holding hole, a step of placing the base with the auxiliary wall interposed therebetween on the receiver, a step of placing the preform on the base, and a step of placing the pressurized metal on the preform. The process of pressurizing the preform through a pressurizing metal to form an insulator in the gap, disassembling the mold after cooling, and taking out the molded product.
A method of manufacturing an airtight insulated terminal comprising a step of removing an auxiliary wall.
JP13243985A 1985-06-18 1985-06-18 Airtight insulated terminal and manufacture thereof Pending JPS61290673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13243985A JPS61290673A (en) 1985-06-18 1985-06-18 Airtight insulated terminal and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13243985A JPS61290673A (en) 1985-06-18 1985-06-18 Airtight insulated terminal and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61290673A true JPS61290673A (en) 1986-12-20

Family

ID=15081391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13243985A Pending JPS61290673A (en) 1985-06-18 1985-06-18 Airtight insulated terminal and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61290673A (en)

Similar Documents

Publication Publication Date Title
US3404213A (en) Hermetic packages for electronic components
JP3331953B2 (en) High voltage condenser
US2552653A (en) Electrical condenser
US3536964A (en) Semiconductor device sealed gas-tight by thixotropic material
JPS61290673A (en) Airtight insulated terminal and manufacture thereof
US3198877A (en) Pothead closure sealed with bismuth-tin alloy
US3535099A (en) Method of forming a hermetic enclosure for electronic devices
US5450273A (en) Encapsulated spark gap and method of manufacturing
US3405441A (en) Method of enclosing an electrical device
US3009013A (en) Electrical insulator with compression ring seal
JPS6220267A (en) Airtight insulated terminal
JPS5914868B2 (en) Airtight insulated terminal and its manufacturing method
JP3012255B2 (en) Manufacturing method of hermetic terminals
JPH0124858Y2 (en)
JPS59877A (en) Multipolar insulated terminal
JPS6331903B2 (en)
US4161746A (en) Glass sealed diode
KR830000495B1 (en) Manufacturing method of multi-pole insulated terminal
JPS61290672A (en) Airtight insulated terminal
JPS64795B2 (en)
US3210459A (en) Hermetic seal for semiconductor devices
US3144501A (en) Seal for semiconductor rectifier
KR830000685Y1 (en) Multi-pole Insulated Terminal
JPS6240182A (en) Airtight insulation terminal
JPS5914867B2 (en) insulated terminal