JPS61288705A - Controller for motor-driven vehicle - Google Patents

Controller for motor-driven vehicle

Info

Publication number
JPS61288705A
JPS61288705A JP60128307A JP12830785A JPS61288705A JP S61288705 A JPS61288705 A JP S61288705A JP 60128307 A JP60128307 A JP 60128307A JP 12830785 A JP12830785 A JP 12830785A JP S61288705 A JPS61288705 A JP S61288705A
Authority
JP
Japan
Prior art keywords
speed
regulator
electric vehicle
adder
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60128307A
Other languages
Japanese (ja)
Inventor
Kazuhito Nakahara
和仁 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60128307A priority Critical patent/JPS61288705A/en
Publication of JPS61288705A publication Critical patent/JPS61288705A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To obtain a controller for a motor-driven vehicle having excellent traveling performance curve by using a position regulator necessary to control the vehicle not to displace from an orbit as a proportional integrating regulator. CONSTITUTION:A speed regulator 9 compares the output of a position detector 10 with a set position value X*, regulates it, and applies the calculated result directly to an adder 7a and through an inverting amplifier 8 to an adder 7b. The adder 7 inputs the output of the regulator 9 and the set speed value N*0, and forms a target speed value N*(N*a,N*b). A proportional integrating regulator is used as the regulator 9. Thus, the speed difference between a right wheel and a left wheel can be increased, and a vehicle can travel along a curved orbit having smaller radius of curvature than the conventional one.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 との発明は、予め定められた軌道上を無人で走行する電
動車両のための制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The invention relates to a control device for an electric vehicle that runs unmanned on a predetermined trajectory.

〔従来の技術〕[Conventional technology]

最近における各種工場における自動化には目覚ましいも
のがあり、荷役の運搬にも人手をかけない、いわゆる無
人の電動車両を用いるケースが増えてきている。第3図
はこのような電気自動車の概要を示す断面図、第4図は
位置検出器の具体例を示すブ日ツク図である。
Automation in various factories has been remarkable in recent years, and so-called unmanned electric vehicles, which do not require human labor to handle and transport cargo, are increasingly being used. FIG. 3 is a sectional view showing an outline of such an electric vehicle, and FIG. 4 is a block diagram showing a specific example of a position detector.

すなわち、この種の電動車両20は例えば第3図の如(
、電動機1a、1bによって駆動される左右一対の車輪
21a s 2 lbを備え、予め定められた軌道22
上を走行する。軌道22上には図示されない誘導線が敷
かれ、と〜に交流電流が流される。位置検出器10は、
これにより車両20の軌道22からの変位Xを検出する
。したがって、各電動機1a+1bに対応して各々速度
制御系を設けると〜もに、変位Xを調整するための位置
調節器を設けることにより、車両を予め定められた軌道
に沿って走行させることができる。
That is, this type of electric vehicle 20 is, for example, as shown in FIG.
, a pair of left and right wheels 21a s 2 lb driven by electric motors 1a and 1b, and a predetermined trajectory 22.
run on top. A guide wire (not shown) is laid on the track 22, and an alternating current is passed between and. The position detector 10 is
Thereby, the displacement X of the vehicle 20 from the track 22 is detected. Therefore, by providing a speed control system for each electric motor 1a+1b and also providing a position adjuster for adjusting the displacement X, it is possible to make the vehicle run along a predetermined trajectory. .

なお、位置検出器10は第4図に示される如(左右一対
の誘導コイル101,102、整流器103.104、
減算器105およびフィルタ106尋から構成され、上
記誘導線から発生する交流磁界の大きさに比例する間流
電圧を誘導コイル101.102を介して取り出し、こ
れらの出力を整流器103,104によってそれぞれ整
流した。
The position detector 10 is configured as shown in FIG. 4 (a pair of left and right induction coils 101 and 102, a rectifier 103 and
Consisting of a subtracter 105 and a filter 106, the current voltage proportional to the magnitude of the alternating magnetic field generated from the induction wire is taken out via induction coils 101 and 102, and the outputs of these are rectified by rectifiers 103 and 104, respectively. did.

後、減算器105でそれらの差を演算し、フィルタ10
6で平滑することにより位置検出量を得るものである。
After that, the subtracter 105 calculates the difference between them, and the filter 10
6 to obtain the position detection amount.

なお、かかる位置検出器は公知である。Note that such a position detector is publicly known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、このような装置における位置調節器としては
、従来は専らP(比例)調節器が用いられていたため、
次のような問題点があった。すなわち、軌道が曲線の場
合には、電動車両がその曲線を曲るのに十分な速度偏差
指令ΔN を左右の速度制御系に与えなければならない
が、P調節器ではその入力偏差に比例した値しか出力し
ないので、小さな曲率半径の軌道を走行する場合には、
調節器の比例感度を大きな値にしなければならない。し
かし、比例感度をむやみに大きくすると制御系が不安定
になるおそれがあるため、選定し得る比例感度には自ず
と上限がある。従って、従来はこの制御安定性を考慮し
て比例感度が選定されており、それによって電動車両が
走行可能な軌道の曲率半径も決められていた。しかし、
最近の如くスペースを有効に利用すべく、従来よりも小
さな曲率半径のカーブを走行し得る電動車両が求められ
る場合には、このよりなP調節器では対応できないケー
スが生じることになる。
By the way, in the past, P (proportional) adjusters were exclusively used as position adjusters in such devices;
There were the following problems. In other words, if the trajectory is a curve, a speed deviation command ΔN sufficient for the electric vehicle to curve around the curve must be given to the left and right speed control systems, but the P adjuster must give a value proportional to the input deviation. When traveling on a trajectory with a small radius of curvature,
The proportional sensitivity of the regulator must be set to a large value. However, if the proportional sensitivity is increased unnecessarily, the control system may become unstable, so there is naturally an upper limit to the proportional sensitivity that can be selected. Therefore, in the past, the proportional sensitivity was selected with this control stability in mind, and the radius of curvature of the track on which the electric vehicle could travel was also determined accordingly. but,
In recent years, when electric vehicles that can travel on curves with a smaller radius of curvature than conventional ones are required in order to make effective use of space, there will be cases where this more rigid P adjuster cannot handle the situation.

したがって、この発明は曲線の走行性能の優れた、電動
車両用制御装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a control device for an electric vehicle that has excellent curved running performance.

〔問題点を解決するための手段〕[Means for solving problems]

左右2個の車輪速度を制御することにより、予め定めら
れた軌道を走行する電動車両の走行制御装置において、
電動車両を軌道からずれないよう制御するのに必要な位
置調節器をPI(比的積分)調節器とする。
In a travel control device for an electric vehicle that travels on a predetermined trajectory by controlling the speeds of two left and right wheels,
The position adjuster required to control the electric vehicle so that it does not deviate from the track is a PI (relative integral) adjuster.

〔作用〕[Effect]

上記の如くすることにより、従来と同じ比例感度でもP
I調節器による積分項の機能を利用して従来よりも大き
な調節器出力が得られるようにして、従来よりも小さな
半径の曲線軌道を走行し得るようにする。
By doing the above, even with the same proportional sensitivity as before, P
By utilizing the function of the integral term by the I regulator, a larger regulator output than before can be obtained, and it is possible to travel on a curved trajectory with a smaller radius than before.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示すブロック図である。な
お、同図において、各番号にサフィックスaまたはbを
付したものがあるが、これは左右の車輪の制御系を区別
するためのものであり、その機能は全く変わらないので
、以下の説明では特に必要のない限り、サフィックスは
省略することとする。
FIG. 1 is a block diagram showing an embodiment of the invention. In addition, in the same figure, each number has a suffix a or b attached to it, but this is to distinguish between the left and right wheel control systems, and their functions are completely the same, so the following explanation will not use them. Suffixes shall be omitted unless particularly necessary.

第1図において、2は電動機の速度を検出するための速
度検出器、3は電動機電流を検出するための電流検出器
である。電流検出器3により検出された電流は電流調節
器(ACR)5に導かれ、電流目標値工 と比較・調整
される。その演算結果は電力変換器4に導かれ、変換器
4では電流目標値工 に相当する電流を電動機に流すべ
く、変換器出力を変化させる。6は速度調節器(ASR
)であり、加算器7の出力として得られる速度目標値N
 と速度検出器2の出力として与えられる速度検出値を
比較・調整して、上記の電流目標値■”を作る。8は反
転アンプ、9は位置調節器、10は位置検出器である。
In FIG. 1, 2 is a speed detector for detecting the speed of the motor, and 3 is a current detector for detecting the motor current. The current detected by the current detector 3 is led to the current regulator (ACR) 5, where it is compared and adjusted with a current target value. The calculation result is led to the power converter 4, and the converter 4 changes the converter output so that a current corresponding to the current target value flows through the motor. 6 is the speed regulator (ASR
), and the speed target value N obtained as the output of the adder 7 is
By comparing and adjusting the detected speed value given as the output of the speed detector 2, the above-mentioned current target value ■'' is created. 8 is an inverting amplifier, 9 is a position adjuster, and 10 is a position detector.

位置検出器10の出力は、位置調節器9において位置設
定値x1と比較・調整され、この演算結果は加算器7a
には直接導かれ、加算器7bには反転アンプ8を介して
導かれる。加算器7では、こうして導かれる位置調節器
9の出力と速度設定値No を入力として、速度目標値
N  CNB * Nb )を形成する。
The output of the position detector 10 is compared and adjusted with the position setting value x1 in the position adjuster 9, and this calculation result is sent to the adder 7a.
The signal is directly guided to the adder 7b via the inverting amplifier 8. The adder 7 inputs the thus derived output of the position adjuster 9 and the speed setting value No. to form a speed target value N CNB *Nb ).

ととろで、と〜に用いられる位置調節器9としては、例
えば第2A図の如き演算増幅器(オペアンプ)91、抵
抗92.93、コンデンサ94およびスイッチ95から
なるPI調節器が用いられる。
As the position adjuster 9 used for the toro and to, for example, a PI adjuster consisting of an operational amplifier 91, resistors 92, 93, a capacitor 94, and a switch 95 as shown in FIG. 2A is used.

このスイッチ95は電動車両の運転時には開放されて、
比例積分器として機能する。したがって、この状態にお
いてa、PII14節器の入力X。が小さい時でもその
出力ΔN は、同じ比例感度のP調節器に同じ入力を加
えたときと比べて、積分項の分だけより大きな出力を出
すことが可能である。
This switch 95 is opened when the electric vehicle is operated,
Functions as a proportional integrator. Therefore, in this state, a, the input X of the PII 14 node. Even when is small, the output ΔN can be larger by the integral term than when the same input is applied to a P adjuster with the same proportional sensitivity.

このため、左右2つの車輪の速度差Na−Nb(=2Δ
イ)を従来よりも大きくすることができ、これによって
従来よりも小さな曲縁半径の曲線の走行が可能になる。
Therefore, the speed difference between the two left and right wheels is Na - Nb (=2Δ
b) can be made larger than before, which makes it possible to travel on curves with smaller edge radii than before.

一方、停止時にはスイッチ95は閉じられ、調節器の出
力はゼロにホールドされる。この状態では、コンデンサ
の両端間の電圧はゼロに向かうので、運転時にスイッチ
95が開放された瞬間の調節器の出力には、積分項の影
響はほとんど現われない。このため、電動車両には、始
動時に例えば意図しないスピンターンのような不安定な
状態が発生することもなく、したがって始動時から安定
な制御を行なうことができる。
On the other hand, when the engine is stopped, the switch 95 is closed and the output of the regulator is held at zero. In this state, the voltage across the capacitor tends to zero, so that the output of the regulator at the moment the switch 95 is opened during operation has almost no effect from the integral term. Therefore, an unstable state such as an unintended spin turn does not occur in the electric vehicle at the time of starting, and therefore stable control can be performed from the time of starting.

第2B図にこの発明に用られる、PI調節器の他の実施
例を示す。
FIG. 2B shows another embodiment of the PI regulator used in the present invention.

これは、スイッチ95の取付位置が第2A図の場合と若
干具なるだけで、その操作方法は第2A図の場合と同じ
く、停止時にはスイッチ95は短絡され、運転時には開
放される。機能的にも同じであるので、この場合も前述
の実施例と全く同様の走行性能が得られることになる。
This is because the mounting position of the switch 95 is only slightly different from that shown in FIG. 2A, and the operating method is the same as that shown in FIG. 2A, in which the switch 95 is short-circuited when the engine is stopped and opened during operation. Since they are functionally the same, the same driving performance as in the previous embodiment can be obtained in this case as well.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、位置調節器をPI詞節器としたため
、調節器の比例感度が従来と同じであっても調節器の積
分項の効果で大きな調節器出力を得ることができ、これ
によって左右の車輪の速度差を大きくすることが可能と
なるため、従来よりも小さな曲率半径の曲線軌道を走行
することができる利点がもたらされる。
According to this invention, since the position adjuster is a PI clause, even if the proportional sensitivity of the adjuster is the same as the conventional one, a large adjuster output can be obtained due to the effect of the integral term of the adjuster. Since it is possible to increase the speed difference between the left and right wheels, the advantage is that the vehicle can travel on a curved track with a smaller radius of curvature than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示すブロック図、第2A図
および第2B図はPI調節器の具体例を示す構成図、第
3図は一般的な電気自動車の概要を示す断面図、第4図
は位置検出器の具体例を示すブロック図である。 符号説明 1a、1b・・・・・・電動機、2a、2b・・・・・
・速度検出器、5a*3b・・・・・・電流検出器、4
a、4b・・四重力変換器、5ae 5b・・・・・・
電流調節器(ACR)、6a、6b・・・・・・速度調
節器(ASR)、7a、7b−・・・・・加算器、8・
・・・・・反転アンプ、9・曲・位置調節器(PI調節
器)、10・・・・・・位置検出器、2o・曲・車両、
21a、21b・・・・・・車輪、22・・・・・・軌
道、91・・・・・・演算増幅器(オペアンプ)、92
,93・・・・・・抵抗、94・曲・コンデンサ、95
・・曲スイッチ、ICN、102・・・・・・誘導コイ
ル、103,104・・・・・・整流器、101曲・減
算器、1o6・・曲フィルタ。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎    清 第2A図 第311!!1 210輪 第4図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIGS. 2A and 2B are configuration diagrams showing a specific example of a PI controller, FIG. 3 is a sectional view showing an outline of a general electric vehicle, and FIG. FIG. 4 is a block diagram showing a specific example of the position detector. Code explanation 1a, 1b...Electric motor, 2a, 2b...
・Speed detector, 5a*3b...Current detector, 4
a, 4b...Four gravity converter, 5ae 5b...
Current regulator (ACR), 6a, 6b... Speed regulator (ASR), 7a, 7b-... Adder, 8.
...Inverting amplifier, 9.Tune/position adjuster (PI controller), 10.....Position detector, 2o.Tune/vehicle.
21a, 21b... Wheel, 22... Track, 91... Operational amplifier (op-amp), 92
,93...Resistance, 94・Bending・Capacitor, 95
... Song switch, ICN, 102... Induction coil, 103, 104... Rectifier, 101 song/subtractor, 1o6... Song filter. Agent Patent Attorney Akio Namiki Agent Patent Attorney Kiyoshi Matsuzaki Figure 2A Figure 311! ! 1 210 wheel diagram 4

Claims (1)

【特許請求の範囲】[Claims] 予め定められた所定の軌道上を無人にて走行する電動車
両の左右に取り付けられた車輪の速度を個別に制御する
速度制御系と、該電動車両が前記軌道からそれないよう
にその位置調整を行なう位置調節器とを有し、前記各速
度制御系の速度目標値を共通の速度設定値に対して該位
置調節器出力を一方の系には加算し他方の系には減算し
てそれぞれ形成し該各速度目標値にもとづいて電動車両
の走行制御を行なう電動車両用制御装置であつて、前記
位置調節器を少なくとも比例要素およびコンデンサから
構成し制御時には比例積分要素として作用させるととを
特徴とする電動車両用制御装置。
A speed control system that individually controls the speed of wheels attached to the left and right sides of an electric vehicle that runs unmanned on a predetermined trajectory, and a speed control system that adjusts the position of the electric vehicle so that it does not deviate from the trajectory. and a position adjuster for controlling the speed, and the speed target value of each speed control system is formed by adding the output of the position adjuster to one system and subtracting it to the other system with respect to a common speed setting value. A control device for an electric vehicle that controls traveling of an electric vehicle based on each speed target value, characterized in that the position adjuster is composed of at least a proportional element and a capacitor, and acts as a proportional-integral element during control. A control device for electric vehicles.
JP60128307A 1985-06-14 1985-06-14 Controller for motor-driven vehicle Pending JPS61288705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128307A JPS61288705A (en) 1985-06-14 1985-06-14 Controller for motor-driven vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128307A JPS61288705A (en) 1985-06-14 1985-06-14 Controller for motor-driven vehicle

Publications (1)

Publication Number Publication Date
JPS61288705A true JPS61288705A (en) 1986-12-18

Family

ID=14981538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128307A Pending JPS61288705A (en) 1985-06-14 1985-06-14 Controller for motor-driven vehicle

Country Status (1)

Country Link
JP (1) JPS61288705A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033611A (en) * 1983-08-03 1985-02-21 Hitachi Kiden Kogyo Ltd Driving control method of unattended wagon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033611A (en) * 1983-08-03 1985-02-21 Hitachi Kiden Kogyo Ltd Driving control method of unattended wagon

Similar Documents

Publication Publication Date Title
US3828236A (en) Linear motor acceleration control system
JP2858529B2 (en) Train operation curve creation device
JPS61288705A (en) Controller for motor-driven vehicle
JP2923670B2 (en) Automatic steering device
JPS6292705A (en) Controller for motor car
JPS6233614B2 (en)
JPS61288704A (en) Controller for motor-driven vehicle
JPH02187806A (en) Controller for unmanned carrier truck
JP3184053B2 (en) Speed control device for electric diesel locomotive
JPS62162117A (en) Controller for advancing direction of mobile body
JP2002095111A (en) Controller for electric vehicle
JP3193270B2 (en) Control device for linear synchronous motor
JPH08208179A (en) Crane traveling controller
KR0160303B1 (en) Velocity control device of a.g.v.
JPS5928801A (en) Protecting method for electric motor coach
JP2731155B2 (en) Electric car control device
JPH03294910A (en) Steering device of electromagnetic induction type unmanned carrying car
JPS6231411A (en) Controller for unmanned carrier
JPS625415A (en) System for controlling travel of unmanned vehicle
SU1062048A1 (en) Apparatus for controlling vehicle motion
JPH01122301A (en) Controller for linear motor vehicle
JPS6249523A (en) Controller for unmanned carrier using steering shaft
JPS63184111A (en) Method for controlling steering of automatic traveling vehicle
JPH04285494A (en) Controller for linear motor driven electric vehicle
JPH06276606A (en) Electric railcar controller