JPH02187806A - Controller for unmanned carrier truck - Google Patents

Controller for unmanned carrier truck

Info

Publication number
JPH02187806A
JPH02187806A JP1007316A JP731689A JPH02187806A JP H02187806 A JPH02187806 A JP H02187806A JP 1007316 A JP1007316 A JP 1007316A JP 731689 A JP731689 A JP 731689A JP H02187806 A JPH02187806 A JP H02187806A
Authority
JP
Japan
Prior art keywords
speed
position detector
driving wheels
control system
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1007316A
Other languages
Japanese (ja)
Other versions
JP2676869B2 (en
Inventor
Kazuhito Nakahara
和仁 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1007316A priority Critical patent/JP2676869B2/en
Publication of JPH02187806A publication Critical patent/JPH02187806A/en
Application granted granted Critical
Publication of JP2676869B2 publication Critical patent/JP2676869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To stably respond to travel performance even when the travel speed of a carrier truck is accelerated and the radius of curvature of curvilinear track is compressed by deciding the appropriate mounting position of a position detector for the carrier truck quantitatively from travel speed of a carrier and the condition of first-order lag of a control system. CONSTITUTION:The mounting position of the position detector 4 for the carrier truck 1 is selected quantitatively based on equation (l)=k.N(Tp+Ts)=4N(Tp+ Ts) by calculating distance (l) between a line segment connecting the center of right and left driving wheels 3a and 3b and the detector 4. Thereby, the appropriate mounting position of the detector 4 can easily be decided from the travel speed of the truck and the condition of first-order lag of the control system without depending on an experiment, etc. Where, the travel speed of the carrier truck is assumed as N, an equivalent time constant approximating the transfer function of the position detector to the first-order lag as Tp, the equivalent time constant approximating the transfer function of a speed control system to the first-order lag as Ts, and a constant as (k) (desirably, around four) in equation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、予め定められた走行経路に沿って走行する無
人搬送台車の制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for an automatic guided vehicle that travels along a predetermined travel route.

〔従来の技術〕[Conventional technology]

昨今では生産工程の自動化に合わせて、ファクトリ−オ
ートメジョンの分野では無軌条式の無人搬送台車が広く
採用されている。
Recently, in line with the automation of production processes, trackless unmanned guided vehicles have been widely adopted in the field of factory automation.

次に従来より実施されている無人搬送台車の構成概要、
並びに搬送台車の制御回路を第3圀ないし第5図に示す
。まず、第3図において、搬送台車1は電動機2a、 
2bにより個別に駆動される左右一対の動輪3a、 3
b、および台車の先端中央に装備した位置検出器4を備
え、あらかじめ指定の走行経路に沿って床面側に敷設さ
れた誘導線5からの誘導を受けて走行する。
Next, an overview of the configuration of conventional automated guided vehicles,
Also, the control circuit of the transport vehicle is shown in FIGS. 3 to 5. First, in FIG. 3, the transport vehicle 1 has an electric motor 2a,
A pair of left and right driving wheels 3a, 3 that are individually driven by 2b.
b, and a position detector 4 installed at the center of the tip of the truck, and the truck travels along a predetermined travel route by receiving guidance from a guide wire 5 laid on the floor side.

ここで、位置検出器4は第4図のごとくであり、左右一
対のピックアンプコイル6a、 6b、整流17a。
Here, the position detector 4 is as shown in FIG. 4, and includes a pair of left and right pick amplifier coils 6a, 6b, and a rectifier 17a.

7b、減算r18、およびフィルタ9などを備えてなり
、前記した誘導線5から発生する磁界の大きさに比例す
る電圧信号をピックアンプコイル6a、 6bより取出
し、その差を演算して搬送台車1の中心と誘導線5との
変位X(第3図)を検出して検出信号Xoを出力する。
7b, a subtraction r18, and a filter 9, etc., a voltage signal proportional to the magnitude of the magnetic field generated from the above-mentioned guide wire 5 is extracted from the pick amplifier coils 6a and 6b, and the difference between the two is calculated and the transport vehicle 1 is The displacement X (FIG. 3) between the center of the guide wire 5 and the guide wire 5 is detected and a detection signal Xo is output.

また、搬送台車の制御回路は第5図のごとく構成されて
いる。ここで、先記した位置検出器4の出力Xoは、位
置調節器10において位置設定値Xと比較、11整され
、その出力ΔNが加算器11a、 llbに導かれる。
Further, the control circuit of the transport vehicle is constructed as shown in FIG. Here, the output Xo of the position detector 4 mentioned above is compared with the position setting value X in the position adjuster 10 and adjusted by 11, and the output ΔN is led to the adders 11a and 11b.

なお、I2は反転アンプである。そして加算器11a、
llbは位置調節器10の出力ΔNと速度設定4fLN
 oを入力として電動機2a、 2bに対する速度目標
値Na、 Nb (Na=No+ΔN、Nb−No−Δ
N)を作る。また速度目標値Na+ Nbは速度調節器
(AS R) 13a、 13bに導かれ、ここで電動
機2a、 2bの速度検出器14a、 14bで得た速
度検出値と比較して電流目標値1a+ Ibを作る。さ
らに電流目標値1a。
Note that I2 is an inverting amplifier. and adder 11a,
llb is the output ΔN of the position adjuster 10 and the speed setting 4fLN
o as input, speed target values Na and Nb for electric motors 2a and 2b (Na=No+ΔN, Nb-No-Δ
Make N). Further, the speed target value Na+Nb is guided to speed regulators (ASR) 13a, 13b, where it is compared with the speed detection value obtained by the speed detectors 14a, 14b of the electric motors 2a, 2b, and the current target value 1a+Ib is determined. make. Furthermore, the current target value 1a.

Ibは電流調節器15a、 15bに導かれて電動機2
a、 2bの電流検出器16a、 16bで得た電流検
出値と比較され、その偏差を基に電力変換器17a、 
17bは電流目標値1a、 Ibに相応した電流を電動
機2a、 2bに給電するように変換出力を調節する。
Ib is guided to the electric motor 2 by the current regulators 15a and 15b.
It is compared with the current detection value obtained by the current detectors 16a, 16b of the power converters 17a, 16b, and based on the deviation.
17b adjusts the conversion output so that current corresponding to the current target values 1a and Ib is supplied to the electric motors 2a and 2b.

つまり、台車10走行途上で誘導線5との間に変位Xが
生じると、この変位を零に戻すように、速度目標値No
に対して電動機2aを増速、電動機2bを減速して走行
方向の軌道修正を行う。
In other words, if a displacement X occurs between the bogie 10 and the guide line 5 while it is running, the target speed value
In response to this, the electric motor 2a is accelerated and the electric motor 2b is decelerated to correct the trajectory in the traveling direction.

ところで、上記した無人搬送システムでは台車走行速度
の高速化、および走行経路の省スペースからの曲線軌道
の曲率半径短縮化に対する要求がますます高まるt頃向
にあり、そのためには曲線軌道の走行に対する前記制御
装置の制御性安定の向上を図ることが極めて重要な課題
となっている。
By the way, in the above-mentioned unmanned transportation system, there is an increasing demand for faster running speeds of the trolleys and for shortening the radius of curvature of curved tracks in order to save space on the running route. It is an extremely important issue to improve the controllability and stability of the control device.

そこで、従来では先記した位置調節器の調節要素を、P
(比例)動作からPI(比例積分)動作のものに変える
(特開昭6l−288705)、ないしは位置検出器の
台車への取付は位置を先端から台車中央の動輪に近づけ
るなどの方法で対処するようにしている。
Therefore, in the past, the adjustment element of the position adjuster described above was
Change from (proportional) operation to PI (proportional integral) operation (Japanese Patent Application Laid-open No. 61-288705), or install the position detector on the trolley by moving the position from the tip closer to the driving wheel in the center of the trolley. That's what I do.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかして、前記のように位1!調節器をP動作からP■
動作に変えただけではその伝達特性の関係から走行性能
の向上、安定化には限度があり、先記した走行速度の高
速化2曲線軌道の曲率半径短縮化の要求に対応できない
場合がある。また位置検出器を位置を動輪に近づけ過ぎ
ると台車の左右への振動が大きくなると言った問題があ
り、かかる点従来では実験によって適正位置を決めるよ
うにしているが、その取付は位置の決定には多くの手間
1時間を要する。
However, as mentioned above, the number 1! Change the regulator from P operation to P ■
If only the operation is changed, there is a limit to the improvement and stability of running performance due to the transmission characteristics, and it may not be possible to meet the above-mentioned demands for increasing running speed and shortening the radius of curvature of the two-curve track. Additionally, if the position detector is placed too close to the driving wheels, there is a problem in that the horizontal vibrations of the truck will become large. requires a lot of effort and an hour.

本発明は上記の点にかんがみなされたものであり、位置
検出器の最適な取付は位置を台車の走行速度と制御系の
遅れから定量的に定め、さらに位置調節器の伝達関数お
ける時定数を台車走行速度。
The present invention has been made in consideration of the above points, and the optimal installation of the position detector is based on quantitatively determining the position from the running speed of the bogie and the delay of the control system, and further determining the time constant in the transfer function of the position adjuster. Trolley running speed.

位置検出器の取付は位置条件に対応して適正に選定する
ことにより、走行台車の曲線軌道上での走行性能向上を
図るようにした無人走行台車の制御装置を捉供すること
を目的とする。
The purpose of installing a position detector is to provide a control device for an unmanned vehicle that improves the running performance of the vehicle on a curved track by appropriately selecting the position detector in accordance with the positional conditions.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の制御装置において
は、位置検出器と左右の動輪を結ぶ線分との間の距離l
を、 1−k・N (Tp+Ts) 但し、N:搬送台車の走行速度、 Tp:位置検出器の伝達関数を一次遅れに近似した等優
待定数、 TS:速度制御系の伝達関数を一次遅れに近似した等優
待定数、 k:定数(好ましくは4程度) に定めるものとする。
In order to solve the above problems, in the control device of the present invention, the distance l between the position detector and the line segment connecting the left and right driving wheels is
, 1-k・N (Tp+Ts) where, N: Traveling speed of the transport vehicle, Tp: Equivalent constant that approximates the transfer function of the position detector to a first-order lag, TS: The transfer function of the speed control system to a first-order lag. An approximate equal preferential treatment constant, k: constant (preferably around 4) shall be determined.

さらに、位置調節器の調節要素を、比例要素と微分要素
との和に一次遅れ要素を掛けた特性を有するものとなし
、かつ台車走行速度をN2位置検出器と左右動輪を結ぶ
線分との間の距離をiとして、一次遅れ要素の時定数T
を、T−1t/Nとなるよう選定するようにしたもので
ある。
Furthermore, the adjustment element of the position adjuster is made to have a characteristic that is the sum of the proportional element and the differential element multiplied by the first-order lag element, and the bogie traveling speed is set to the line segment connecting the N2 position detector and the left and right driving wheels. The time constant T of the first-order lag element, where the distance between
is selected so that T-1t/N.

〔作用〕[Effect]

上記において、搬送台車が直線軌道上を走行している状
態では、左右動輪の速度差から軌道(誘導線)に対する
搬送台車のずれ変位Xを検出する位置検出器の伝達関数
G (!lは近似的に、を大きくしていくと制御系の応
答が遅くなるので、定数には4程度、つまり、 ! −k N (Tp+Ts) ’q 4 N (Tp
+Ts) −(3)となるように位置検出器の取付は位
置を選定すれば、安定した台車の走行性能が保証される
In the above, when the carrier is running on a straight track, the transfer function G of the position detector that detects the displacement X of the carrier with respect to the track (guide line) from the speed difference between the left and right driving wheels (!l is an approximation Generally speaking, as the response of the control system becomes slower as .
+Ts) - (3) If the mounting position of the position detector is selected, stable running performance of the trolley is guaranteed.

また、前記した(11式を、 s(J/N) 但し、Sニラプラスの演算子、 k:機械系の構成により決まる定数、 l:左右動輪を結ぶ線分と位置検出器 との間の距離、 N:搬送台車の走行速度、 として表される。ところで、位置検出器、および速度制
御系の伝達関数をそれぞれ等価な一次遅れに近位してそ
の等優待定数をTp、 Tsとおけば、(11式で表さ
れる時定数T=17Nを、 T = k (Tp+ Ts)・−・・・・・・・・・
・−・−・−・・・・・・・・−・・・−・・・12+
のように選ぶことにより、制御系が安定することは制御
理論から推測できる。なお、(2)式で定数ksT1 
   sT2 と書き改めて、位置検出器の後段に接続した位置調節器
の伝達関数G o (slが、 1 +sT2    sT3     T3  1+s
T2となるようにして位置検出系の時定数を補正するこ
とより、 sTl    sT3 となり、ここで時定数T3を先記した一次遅れの等、優
待定数(Tp+Ts)の4倍程度の値に選定すればあと
は比例ゲインの調整だけで制御系を安定させることがで
きる。
In addition, the above formula (11) is expressed as s (J/N), where S nira plus operator, k: constant determined by the configuration of the mechanical system, l: distance between the line segment connecting the left and right driving wheels and the position detector. , N: Traveling speed of the transport vehicle.By the way, if the transfer functions of the position detector and the speed control system are approximated to equivalent first-order lags, and their equal preferential constants are set as Tp and Ts, then (The time constant T = 17N expressed by formula 11, T = k (Tp + Ts)・−・・・・・・・・・・
・−・−・−・・・・・・・・・・−・・・−・・・12+
It can be inferred from control theory that the control system will be stabilized by selecting as follows. In addition, in equation (2), the constant ksT1
Rewritten as sT2, the transfer function G o of the position adjuster connected after the position detector (sl is 1 +sT2 sT3 T3 1+s
By correcting the time constant of the position detection system so that T2 becomes sTl sT3, the time constant T3 should be selected to be about four times the preferential constant (Tp + Ts), such as the first-order lag mentioned above. After that, the control system can be stabilized simply by adjusting the proportional gain.

〔実施例〕〔Example〕

第1図は本発明実施例による搬送台車に対する位置検出
器の取付は位置を示したものであり、左右の動輪3aと
3bとの中心を結ぶ線分と位置検出器4との間の距離l
を、先記した(3)式、#=kN  (Tp+Ts) 
 ’q4N  (丁p+Ts)に基づいて定量的に選定
されている。これにより実験などに鯨ることなく、位置
検出器4の適正な取付は位置を台車の走行速度、制御系
の一次遅れの条件から簡単に決めることができる。
FIG. 1 shows the mounting position of the position detector on the transport vehicle according to the embodiment of the present invention, and the distance l between the position detector 4 and a line connecting the centers of the left and right driving wheels 3a and 3b.
is the equation (3) described above, #=kN (Tp+Ts)
'q4N (dp+Ts) is quantitatively selected. As a result, the proper mounting position of the position detector 4 can be easily determined from the running speed of the truck and the first-order delay conditions of the control system, without having to conduct experiments or the like.

また、第5図に示した制御回路で、位置検出器4の後段
に設けた位置調節器10を、第2図のようにオペアンプ
OP、固定抵抗R1,R2、コンデンサClC2、可変
抵抗VRとで構成することにより、その伝達関数Go(
slは、 Xoa     1  + 5C2R2但し、a:可変
抵抗Vl?のタップ位置、および固定抵抗R1,R2に
より決まる定数、 となる。ここで、上記の式におけるC2XR2の値は先
記のより定量的に定めた距i!1Itfを基にした特定
、数T−17Nと一致するような定数に選ばれている。
In addition, in the control circuit shown in FIG. 5, the position adjuster 10 provided after the position detector 4 is configured with an operational amplifier OP, fixed resistors R1, R2, capacitor ClC2, and variable resistor VR as shown in FIG. By constructing, its transfer function Go(
sl is Xoa 1 + 5C2R2 However, a: variable resistance Vl? A constant determined by the tap position of , and the fixed resistors R1 and R2 is as follows. Here, the value of C2XR2 in the above equation is the distance i! determined more quantitatively above. 1Itf is selected as a constant that matches the number T-17N.

〔発明の効果〕〔Effect of the invention〕

本発明による無人搬送台車の制御装置は、以上説明した
ように構成されているで、次記の効果を奏する。
The control device for an automatic guided vehicle according to the present invention is configured as described above, and provides the following effects.

(1)請求項1により、搬送台車に対する位11ffi
J食出器の適正な取付は位置を、従来のように実験に頼
ることな(、搬送台車の走行速度と、制御系の一次遅れ
の条件から定量的に決めることができる。
(1) According to claim 1, the position 11ffi for the transport vehicle
For proper installation of the J food dispenser, the position can be determined quantitatively from the traveling speed of the transport vehicle and the first-order delay conditions of the control system, without relying on experiments as in the past.

また、このように取付は位置を決定して位置検出器を台
車の先端から動輪に近づけよう移し変えることにより、
台車走行速度の高速化1曲線軌道の曲率半径縮小化にも
安定した走行性能で対応できる。
In addition, the installation can be done by determining the position and moving the position detector from the tip of the truck to bring it closer to the driving wheels.
It can respond to increases in bogie running speed and reduction in the radius of curvature of single-curve tracks with stable running performance.

(2)また、請求項2により、位置検出器を搬送台車の
動輪に近づけても、制御系の安定性が維持でき、これに
より曲線軌道の走行性能を一段と向上できる。
(2) Furthermore, according to claim 2, the stability of the control system can be maintained even if the position detector is brought close to the driving wheels of the transport vehicle, thereby further improving the running performance on curved tracks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明実施例を示し、第1図は搬送台
車への位置検出器の取付は状態図、第2図は位置調節器
の具体的な回路図、第3図は無人搬送台車の概要構成図
、第4図は第3図における位置検出器の一般的なブロッ
ク図、第5図は制御回路全体のブロック図である。図に
おいて、l:搬送台車、2a、2b:駆動電動機、3a
、3b:動輪、4:位置検出器、5:誘導線、10:位
置調節器、l;位置検出器の動輪に対する取付は位置間
隔。 ノ、(、、: 代理人弁理士 山 口  Jl  j;<j↓し第1 第2凹
Figures 1 and 2 show an embodiment of the present invention, Figure 1 is a state diagram showing how the position detector is installed on the transport vehicle, Figure 2 is a specific circuit diagram of the position adjuster, and Figure 3 is FIG. 4 is a general block diagram of the position detector in FIG. 3, and FIG. 5 is a block diagram of the entire control circuit. In the figure, l: transport vehicle, 2a, 2b: drive motor, 3a
, 3b: Driving wheel, 4: Position detector, 5: Guide wire, 10: Position adjuster, l: The position detector is attached to the driving wheel at a position interval.ノ、(、、:Representative Patent Attorney Yamaguchi Jl j;<j↓ 1st 2nd concave

Claims (1)

【特許請求の範囲】 1)所定の走行経路に沿って走行させる無人搬送台車の
制御装置であり、搬送台車に取付けて軌道からのずれを
検出する位置検出器、位置調節器、および搬送台車の左
右に取付けた動輪の速度を個別に制御する速度制御系を
有し、前記位置調節器の出力を基に各動輪を一方を増速
、他方を減速して搬送台車を走行制御するものにおいて
、位置検出器と左右の動輪を結ぶ線分との間の距離lを
、l=k・N(Tp+Ts) 但し、N:搬送台車の走行速度、 Tp:位置検出器の伝達関数を一次遅れに 近似した等価時定数、 Ts:速度制御系の伝達関数を一次遅れに 近似した等価時定数、 k:定数(好ましくは4程度) に定めたことを特徴とする無人搬送台車の制御装置。 2)請求項1に記載の制御装置において、位置調節器の
調節要素を、比例要素と微分要素との和に一次遅れ要素
を掛けた特性を有するものとなし、かつ台車の走行速度
をN、位置検出器と左右動輪を結ぶ線分との間の距離を
lとして、一次遅れ要素の時定数Tを、T=l/Nとな
るよう選定したことを特徴とする無人搬送台車の制御装
置。
[Scope of Claims] 1) A control device for an automated guided vehicle that travels along a predetermined travel route, which includes a position detector and a position adjuster that are attached to the guided vehicle to detect deviation from the track, and a position adjuster for the guided vehicle. It has a speed control system that individually controls the speed of the driving wheels attached to the left and right sides, and controls the traveling of the transport vehicle by increasing the speed of one of the driving wheels and decelerating the other based on the output of the position adjuster, The distance l between the position detector and the line segment connecting the left and right driving wheels is l = k・N (Tp + Ts), where N: traveling speed of the transport vehicle, Tp: approximating the transfer function of the position detector to a first-order lag. A control device for an automatic guided vehicle, characterized in that: Ts: an equivalent time constant that approximates the transfer function of a speed control system to a first-order delay; k: a constant (preferably about 4). 2) In the control device according to claim 1, the adjustment element of the position adjuster has a characteristic obtained by multiplying the sum of a proportional element and a differential element by a first-order lag element, and the traveling speed of the truck is N, A control device for an automatic guided vehicle, characterized in that the time constant T of the first-order delay element is selected so that T=l/N, where l is the distance between the position detector and the line segment connecting the left and right driving wheels.
JP1007316A 1989-01-13 1989-01-13 Control device for unmanned carrier Expired - Fee Related JP2676869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007316A JP2676869B2 (en) 1989-01-13 1989-01-13 Control device for unmanned carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007316A JP2676869B2 (en) 1989-01-13 1989-01-13 Control device for unmanned carrier

Publications (2)

Publication Number Publication Date
JPH02187806A true JPH02187806A (en) 1990-07-24
JP2676869B2 JP2676869B2 (en) 1997-11-17

Family

ID=11662587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007316A Expired - Fee Related JP2676869B2 (en) 1989-01-13 1989-01-13 Control device for unmanned carrier

Country Status (1)

Country Link
JP (1) JP2676869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419784B2 (en) 2019-03-18 2024-01-23 株式会社リコー Autonomous mobile device, program, autonomous mobile device steering method, and autonomous mobile device adjustment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296075U (en) * 1976-01-14 1977-07-18
JPS52153555A (en) * 1976-06-14 1977-12-20 Hitachi Zosen Corp Method of controlling stoppage of movable member at designated position
JPS5367087A (en) * 1976-10-14 1978-06-15 Mitsubishi Electric Corp Positional control system of movable body
JPS5960515A (en) * 1982-09-30 1984-04-06 Toshiba Corp Controlling method of positioning of carrying object
JPS6156153A (en) * 1984-08-28 1986-03-20 Sumitomo Chem Co Ltd Preparation of cyclopentenone ester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296075U (en) * 1976-01-14 1977-07-18
JPS52153555A (en) * 1976-06-14 1977-12-20 Hitachi Zosen Corp Method of controlling stoppage of movable member at designated position
JPS5367087A (en) * 1976-10-14 1978-06-15 Mitsubishi Electric Corp Positional control system of movable body
JPS5960515A (en) * 1982-09-30 1984-04-06 Toshiba Corp Controlling method of positioning of carrying object
JPS6156153A (en) * 1984-08-28 1986-03-20 Sumitomo Chem Co Ltd Preparation of cyclopentenone ester

Also Published As

Publication number Publication date
JP2676869B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
JPH02187806A (en) Controller for unmanned carrier truck
JPH03127206A (en) Automatic drive controller for vehicle
KR100198023B1 (en) Steering angle control apparatus of a manless car
JPS6247711A (en) Drive controller for unmanned carrier
JPH0399304A (en) Automatic operating/traveling controller for vehicle
JPS6292705A (en) Controller for motor car
KR0160303B1 (en) Velocity control device of a.g.v.
US5915491A (en) Automatic travel control method for an unmanned vehicle
KR200151328Y1 (en) Steering device of unmanned vehicle
JPS59180611A (en) Automatic maneuvering control device of unmanned car
JPS60194701A (en) Travel controller of operatorless carriage vehicle
JPS61288705A (en) Controller for motor-driven vehicle
JPS61156409A (en) Controller of trackless truck
JPH08208179A (en) Crane traveling controller
JPH0313768Y2 (en)
JPH0358104A (en) Automatic control running device for vehicle
KR100198024B1 (en) Speed control apparatus of a manless car
JPH0348307A (en) Device for steering magnetic guidance unmanned carrier vehicle
JPS63184111A (en) Method for controlling steering of automatic traveling vehicle
JPS635412A (en) Traveling control device for unmanned carrying car
JPS6231411A (en) Controller for unmanned carrier
JPH0991040A (en) Program steering method for automated guided vehicle
JPH10320050A (en) Unmanned vehicle controller
JPS61288704A (en) Controller for motor-driven vehicle
JPH07302119A (en) Method and device for controlling unmanned vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees