JPS61288004A - Utilizing method for converter waste gas - Google Patents

Utilizing method for converter waste gas

Info

Publication number
JPS61288004A
JPS61288004A JP12880585A JP12880585A JPS61288004A JP S61288004 A JPS61288004 A JP S61288004A JP 12880585 A JP12880585 A JP 12880585A JP 12880585 A JP12880585 A JP 12880585A JP S61288004 A JPS61288004 A JP S61288004A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
converter
iron ore
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12880585A
Other languages
Japanese (ja)
Other versions
JPH0214412B2 (en
Inventor
Eiji Katayama
英司 片山
Hisao Hamada
浜田 尚夫
Shiko Takada
高田 至康
Shinobu Takeuchi
忍 竹内
Takashi Ushijima
牛島 崇
Katsutoshi Igawa
井川 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12880585A priority Critical patent/JPS61288004A/en
Publication of JPS61288004A publication Critical patent/JPS61288004A/en
Publication of JPH0214412B2 publication Critical patent/JPH0214412B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust

Abstract

PURPOSE:To effectively utilize converter waste gas by introducing the converter waste gas into a carbonaceous material fluidized bed and converting the gas then storing such gas, further increasing the temp. of the stored gas and introducing the gas into a powdery iron ore fluidized bed thereby reducing the iron ore. CONSTITUTION:The carbonaceous material is charged through a charging port 6 into the fluidized bed 5 and the converter waste gas under blowing is introduced into the fluidized bed 5 as the 1st stage. The CO2 and H2 in the gas are converted to CO, H2 by the above-mentioned carbonaceous material and the gas is once stored in a gas holder 19. The above-mentioned carbonaceous material is discharged from a discharge port 8 of the fluidized bed 5 and thereafter the preheated iron ore is charged through the port 6 into the fluidized bed as the 2nd stage. The stored gas is then introduced by an intensifying blower 10 into the fluidized bed 5 and part of the gas is partially burned to increase the temp. of the gas to a prescribed temp. The iron ore is thereby reduced. The iron ore after the reduction is discharged from a discharge port 7. The converter gas is thus effectively utilized for the gas conversion and the ore reduction without receiving the restriction for the blowing time of the converter 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、転炉排ガスの利用方法に関じ、流動層子@還
元炉を備えた粉状鉱石還元プロセスにおける転炉排ガス
の有効利用方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of utilizing converter exhaust gas, and a method for effectively utilizing converter exhaust gas in a powder ore reduction process equipped with a fluidized bed @ reduction furnace. Regarding.

〔従来の技術〕[Conventional technology]

良質のコークスや焼結鉱などを原料として用いる高炉に
よる銑鉄製造法や電力をエネルギーとして用いる電気炉
による合金鉄の製造法などの旧来の技術に代って、溶融
還元法による溶融金属製造プロセスの開発が進められて
いる。このようなプロセスでは、溶融還元炉から多量の
排ガスが発生しこれを有効利用することによってエネル
ギー消費量の減少を図りコストを低減するためには溶融
還元炉の排ガスを鉱石の予@還元に有効に利用すること
が必要である。
The molten metal production process using the smelting-reduction method has replaced traditional technologies such as the production of pig iron using a blast furnace using high-quality coke and sintered ore as raw materials, and the production method of ferroalloy using an electric furnace using electricity as energy. Development is underway. In such a process, a large amount of exhaust gas is generated from the smelting reduction furnace, and in order to reduce energy consumption and costs by using this effectively, it is necessary to use the exhaust gas from the smelting reduction furnace to pre-reduce ore. It is necessary to use it for

このような溶融金属製造プロセスの溶融還元炉としては
転炉型のバッチ操業する炉と高炉型の連続操業する炉と
がある。一方予@還元炉としてはロータリーキルン、シ
ャフト炉、流動層炉などがある。
Smelting reduction furnaces used in such molten metal production processes include converter-type furnaces that operate in batches and blast furnace-type furnaces that operate continuously. On the other hand, examples of pre-reduction furnaces include rotary kilns, shaft furnaces, and fluidized bed furnaces.

これらの組み合わせによって、数種類のプロセスを構成
することができ、転炉とロータローキルンとの組み合わ
せプロセスについては特開昭59−113158、特開
昭59−145758 、特開昭60−2613、特開
昭60−2614などの技術が開示されている。
By combining these, several types of processes can be configured, and the combination process of a converter and a rotary kiln is described in JP-A-59-113158, JP-A-59-145758, JP-A-60-2613, and JP-A-60-2613. Techniques such as Sho 60-2614 have been disclosed.

また、高炉型の溶融還元炉とシャフト炉型の予備還元炉
との組み合わせについては特開昭57−120607が
開示されている。
Further, Japanese Patent Application Laid-Open No. 120607/1983 discloses a combination of a blast furnace type smelting reduction furnace and a shaft furnace type preliminary reduction furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はこれらの従来技術とは異なり、転炉型溶融還元
炉と流動層予備還元炉との組み合わせに係るプロセスの
新規な技術を提供しようとするものである。
The present invention differs from these prior art techniques in that it provides a new process technology that involves a combination of a converter-type smelting reduction furnace and a fluidized bed pre-reduction furnace.

すなわち、転炉型の溶融還元炉と流動層還元炉との組み
合わせでは、次の問題がある。
That is, the combination of a converter-type smelting reduction furnace and a fluidized bed reduction furnace has the following problems.

■ 転炉はバッチ操業となり、ガス組成が大きく変動す
る。この変動の際、還元反応を妨害する成分、例えば鉄
鉱石の還元の場合にはCO2、H2Oが多量に発生し、
ガス中に高濃度で存在する。またこのガス組成は転炉の
操業条件によっても変動する。
■ Converters operate in batches, and the gas composition fluctuates greatly. During this fluctuation, large amounts of components that interfere with the reduction reaction, such as CO2 and H2O in the case of iron ore reduction, are generated.
Present in high concentrations in gases. This gas composition also varies depending on the operating conditions of the converter.

■ 転炉の吹錬時間が短いので、そのガス発生期間中に
は流動層還元炉内での還元が終了せず、タイミングが合
わない。
■ Since the blowing time of the converter is short, the reduction in the fluidized bed reduction furnace does not finish during the gas generation period, and the timing is not correct.

本発明はこれらの問題点を解決した転炉排ガスの有効利
用方法を提供することを目的とするものである。
An object of the present invention is to provide a method for effectively utilizing converter exhaust gas that solves these problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、転炉排ガスを流動層に誘導し、該転炉排ガス
の変成と鉄鉱石の還元とを行う転炉排ガスの利用方法で
あって、 a) 流動層に炭材を充填しておき、転炉の吹錬中は転
炉排ガスをそのまま流動層に導入し、ガスの高温によっ
て炭材を昇温するとともに、還元妨害成分であるCO2
,H2Oを炭材で変成し、このガスを貯蔵する段階と、 b) 該貯蔵したガスを一部燃焼させて部分酸化すると
ともに高温にし、このガスを流動層に導入して鉱石の還
元を行う段階と、 の2段1階から構成したことを特徴とする。
The present invention is a method for utilizing converter exhaust gas, which guides converter exhaust gas into a fluidized bed, transforms the converter exhaust gas, and reduces iron ore, the method comprising: a) filling the fluidized bed with carbonaceous material; During converter blowing, the converter exhaust gas is directly introduced into the fluidized bed, and the high temperature of the gas raises the temperature of the carbonaceous material and removes CO2, which is a component that interferes with reduction.
, H2O is metamorphosed with carbonaceous material and this gas is stored; b) Part of the stored gas is partially oxidized and heated to a high temperature, and this gas is introduced into a fluidized bed to reduce the ore. It is characterized by consisting of two stages and one floor.

〔作用〕[Effect]

第1段階では炭材を含む粒子を流動媒体として流動層を
形成し、この流動層に転炉排ガスを導入するので、排ガ
ス中のCO2、H20は炭材と反応し、 co2+c→2CO H20+C−+CO+H2 の反応によってCO2,H2OがCOとH2とに変成さ
れる。この反応は吸熱反応なのでガス温度も低下する。
In the first stage, a fluidized bed is formed using particles containing carbonaceous material as a fluidized medium, and converter exhaust gas is introduced into this fluidized bed, so CO2 and H20 in the exhaust gas react with the carbonaceous material, resulting in co2+c→2CO H20+C-+CO+H2 CO2 and H2O are converted into CO and H2 by the reaction. Since this reaction is endothermic, the gas temperature also decreases.

第2段階では、CO2とH2Oを変成させて貯蔵されて
いるガスを部分燃焼して高温にし、流動層還元炉の粉状
鉱石の還元ガスとして使用するので、還元炉における還
元反応速度が大きく、また転炉の吹錬時間と流動還元炉
の還元時間とのタイミングが合わない問題も解決される
。さらに、この転炉の吹錬、吹錬止の時間サイクルと流
動還元炉のガス変成、鉱石還元の時間サイクルを合わせ
るために、流動還元炉を2基設け、交互に切替運転を実
施すれば好適である。
In the second stage, CO2 and H2O are metamorphosed and the stored gas is partially combusted to a high temperature and used as reducing gas for the powdered ore in the fluidized bed reduction furnace, so the reduction reaction rate in the reduction furnace is high. Furthermore, the problem of the timing not matching between the blowing time of the converter and the reduction time of the fluidized bed reduction furnace is also solved. Furthermore, in order to match the time cycle of blowing and end of blowing in the converter with the time cycle of gas conversion and ore reduction in the fluidized fluidized reduction furnace, it is preferable to install two fluidized fluidized reduction furnaces and perform alternate operation. It is.

〔実施例〕〔Example〕

鉄鉱石の還元反応の実施例について第1図、第2図の工
程図によって以下説明する。なお、本実施例は鉄鉱石を
主体に示すが他の鉱石でも可能である。
An example of the reduction reaction of iron ore will be described below with reference to the process diagrams of FIGS. 1 and 2. Note that although this example mainly uses iron ore, other ores may also be used.

流動層5に5トン転炉1の排ガス50ONm″を導入し
て鉄鉱石の還元を行い還元率52%の還元鉱石43kg
を製造した。
50ONm'' of exhaust gas from the 5-ton converter 1 is introduced into the fluidized bed 5 to reduce iron ore, resulting in 43kg of reduced ore with a reduction rate of 52%.
was manufactured.

まず、第1段階として、流動層5に主としてコークスか
らなる炭材的480kgを装入口6から装入し、吹錬用
酸素を吹込む吹錬中の転炉排ガスを遮断弁3をガス管路
4を経て導入し、炭材を流動化するとともに昇温し、転
炉排ガス中のCO2をCOに変成し、変成後のガスは熱
交換(鉄鉱石の予熱など)および冷却の後、ガスホー−
ルダ9に貯蔵した。
First, in the first step, 480 kg of carbonaceous material mainly consisting of coke is charged into the fluidized bed 5 from the charging port 6, and the cutoff valve 3 is connected to the gas pipe to block the converter exhaust gas during blowing into which oxygen for blowing is blown. 4, the carbonaceous material is fluidized and heated, converting CO2 in the converter exhaust gas to CO. After heat exchange (preheating iron ore, etc.) and cooling, the converted gas is passed through a gas hole.
It was stored in Ruda 9.

次に第2段階として、上記炭材を流動層5の排出口8か
ら排出し、予熱された鉄鉱石を装入口6から装入し、次
いで、ガスホールダ9に貯蔵されているガスを昇圧ブロ
ワlOで遮断弁3aを経て流動層5に流入させるととも
に、そのガスの一部を図示しない部分燃焼炉で燃焼させ
、ガス温度を1100℃以上に昇温した。
Next, in the second stage, the carbonaceous material is discharged from the discharge port 8 of the fluidized bed 5, preheated iron ore is charged from the charging port 6, and then the gas stored in the gas holder 9 is transferred to the Then, the gas was allowed to flow into the fluidized bed 5 through the shutoff valve 3a, and a part of the gas was combusted in a partial combustion furnace (not shown) to raise the gas temperature to 1100° C. or higher.

加熱されたガスは流動層5に入り、鉄鉱石を昇温し還元
する。還元時間は転炉lの吹錬時間の間の時間を利用す
るため約30分である。還元後、鉄鉱石は排出ロアから
排出される。
The heated gas enters the fluidized bed 5, raises the temperature of the iron ore, and reduces it. The reduction time is approximately 30 minutes to utilize the time during the blowing time of the converter I. After reduction, the iron ore is discharged from the discharge lower.

以上の実施例における物質バランスおよびエネルギーバ
ランスを説明すると次の通りである。
The material balance and energy balance in the above examples will be explained as follows.

A)物質バランス ■ 発生ガス量 5トン転炉における酸素吹込み量 約21Nゴ/分×12分 =252  Nゴー02 CO発生量はC十繕o2=coから、 252X2=504  NゴーCO 実際には、炉頂部からの大気吸入や過剰吹込み酸素によ
り CO+ 3’202 = C02の反応が起こって
おり、その結果、発生ガス量はおおおそ平均的に次のよ
うになっている。
A) Material balance■ Generated gas amount Oxygen injection amount in a 5 ton converter: Approximately 21 Ngo/min x 12 minutes = 252 Ngo 02 The amount of CO generated is from C + O2 = co, 252X2 = 504 Ngo CO Actually In this case, the reaction of CO+ 3'202 = C02 occurs due to air intake from the top of the furnace and excessive oxygen injection, and as a result, the amount of gas generated is approximately as follows on average.

Co  :  478Nゴ 85% CO2:   27Nゴ  5% N2  :   55Nm″ lO% 合計 :  56ONm″ =46Nゴ/分 ただし、底吹き羽口保護のためのプロパンを使用したと
きはH2、H20が存在する。なお発生ガス温度は約1
600℃と高いが、発生時間が短いので、鉄鉱石の還元
を同時に行うと、イ) 鉄鉱石が局部的に加熱され焼結
、溶融する。
Co: 478N 85% CO2: 27N 5% N2: 55Nm'' 1O% Total: 56ONm'' = 46N/min However, when propane is used to protect the bottom blowing tuyere, H2 and H20 are present. The temperature of the generated gas is approximately 1
Although the temperature is as high as 600°C, the generation time is short, so if the iron ore is reduced at the same time, a) the iron ore will be locally heated, sintered, and melted.

口) ガス発生時間が短時間のため鉄鉱石の還元時間が
不足する。
口) Because the gas generation time is short, the iron ore reduction time is insufficient.

■ 鉱石量 一般的に、還元反応は次式で行なわれる。■ Ore amount Generally, the reduction reaction is carried out using the following formula.

Fe203 +3CO=2Fe+3CO2鉄鉱石の成分
は、 T、Fe:  68.3重量% Fed:   0.39重量% A立203:0.79重量% 5i02:  0.73重量% である、従って、鉄バランスは、 159.7 kg−F203 /67.2Nrn’−C
0→1136kg−F203 /47gNm″−〇〇鉱
石中のF2O3は約91重量%であったから、−+12
48kg−0re/478NゴーCO若しCOが100
%利用されれば、1248kg−0reを100%還元
できるが、実際は第2段階でのcoの部分燃焼や還元反
応後のガス中のCo/CO2比の制限から、処理鉱石量
と到達還元率は理論値より小さくなり、51kgの鉱石
を還元率52%にすることができた。
The components of Fe203 +3CO=2Fe+3CO2 iron ore are: T, Fe: 68.3% by weight Fed: 0.39% by weight A203: 0.79% by weight 5i02: 0.73% by weight. Therefore, the iron balance is , 159.7 kg-F203 /67.2Nrn'-C
0→1136kg-F203 /47gNm''-〇〇The F2O3 in the ore was about 91% by weight, so -+12
48kg-0re/478N go CO or CO is 100
%, it is possible to reduce 1248 kg-0re 100%, but in reality, due to the partial combustion of co in the second stage and the limitation of the Co/CO2 ratio in the gas after the reduction reaction, the amount of ore processed and the reduction rate reached are limited. This was smaller than the theoretical value, and we were able to achieve a reduction rate of 52% for 51 kg of ore.

B) エネルギーバランス (1)転炉発生ガスをコークスで変成する工程ガス中の
CO2をコークスCによって1次の式により変成する。
B) Energy balance (1) Process of converting converter generated gas with coke CO2 in the gas is converted with coke C according to the first-order equation.

CO2+C=2CO 22、4Nゴ+12kg→44.8 Nゴコークス中の
C含有量は88重量%であるから、12kg−Cは、1
3.6kg−Cakeとなり、 (13,6kg−Coke/22−4Nrtf)X27
Nrr+”=16.4kg−Cokeつまり、理論的に
は16.4kg−Cokeが消費されることになるが、
変成反応はコークスの表面で起こるので、実際にはもっ
と多量のコークスが必要である。
CO2 + C = 2CO 22,4N Go + 12 kg → 44.8 N Since the C content in Go coke is 88% by weight, 12 kg-C is 1
3.6kg-Cake, (13,6kg-Coke/22-4Nrtf)X27
Nrr+”=16.4kg-Coke In other words, theoretically 16.4kg-Coke will be consumed,
Since the metamorphosis reaction occurs on the surface of the coke, a larger amount of coke is actually required.

(入8)発生転炉ガスの利用できる顕熱は、0.35k
cal/Nm”−”C X56ONrn’X (1066−1000)”0=1
17600  kcal (出熱)変成に必要なエネルギーは。
(Input 8) The usable sensible heat of the generated converter gas is 0.35k
cal/Nm"-"C X56ONrn'X (1066-1000)"0=1
The energy required for metamorphosis is 17,600 kcal (heat output).

CO2+C=2CO 920k c a l/Nrn”−C0(27Nrn’
−CO2/22.4Nrrl”−CO2)X920kc
al/Nrn”−C0 =1109  kcal (出、%)コークスの加熱熱量、 前回変成時の残熱温度700℃、反応温度1000℃に
加熱するには。
CO2+C=2CO 920k c a l/Nrn"-C0(27Nrn'
-CO2/22.4Nrrl”-CO2)X920kc
al/Nrn''-C0 = 1109 kcal (output, %) Heat amount of heating coke, To heat the residual heat temperature from the previous metamorphosis to 700°C and the reaction temperature to 1000°C.

(0,3k c a l / k g”o)X (10
00−300)’O X480kg−Coke =  100800  kcal (出熱)熱損失その他は、 =i5691kcal ■ 鉄鉱石を還元する工程 (入鉱石)51kg (出鉱石)52%還元されて排出されると、51− (
51X0.293X0.52)=43kg (入熱)変成ガスの部分燃焼 Co  :   528Nrn’ CO2:     2Nゴ N2  :    55Nゴ 合計 :   585Nゴ の中C077Nrn’が燃焼すると、部分燃焼後のガス
は。
(0,3k cal / kg g”o)X (10
00-300)'O − (
51 X 0.293

Co  :   451Ntn’ CO2:     79Nrn’ N2:55Nゴ 合計 :   585Nゴ となる0発生熱量は、 3000kca l/Nrn” −〇〇×77NゴーC
O =  231000  kcal (入8)鉄鉱石の還元反応熱 6.1kcal/mo 1e−Fe2 o3X402k
gX0.97/159.7 =  14894  kcal (出熱)鉄鉱石の昇温 0.213 kc a l/Nrn”CX 585 N
m″X900℃ =174038  kcal (出熱)熱損失その他は上記A)(1)の熱損失その他
とほぼ同等で、 16199  kcalである。
Co: 451Ntn' CO2: 79Nrn' N2: 55N Total: 585N The amount of heat generated is 3000kcal/Nrn" -〇〇×77NGoC
O = 231000 kcal (input 8) Heat of reduction reaction of iron ore 6.1 kcal/mo 1e-Fe2 o3X402k
gX0.97/159.7 = 14894 kcal (Heat output) Temperature rise of iron ore 0.213 kcal/Nrn"CX 585 N
m″×900°C = 174038 kcal (Heat output) Heat loss and others are almost the same as the heat loss and others in A) (1) above, which is 16199 kcal.

〔発明の効果〕〔Effect of the invention〕

本弁明は次の効果を奏する。 This defense has the following effects.

(1)転炉排ガスの顕然回収をガス変成と鉱石還元の2
段階に利用することができ、利用効率が著しく向上する
(1) Obvious recovery of converter exhaust gas by gas conversion and ore reduction.
It can be used in stages, significantly improving usage efficiency.

(2)転炉の吹錬時間に制約されることなく、流動還元
炉の還元反応時間をとることができる。
(2) It is possible to take the reduction reaction time of the fluidized bed reduction furnace without being restricted by the blowing time of the converter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例の工程図である。 l・・・転炉      2・・・吹錬用酸素3・・・
遮断弁     4・・・管路5・・・流動層    
 6・・・装入ロア、8・・・排出口
FIGS. 1 and 2 are process diagrams of an embodiment of the present invention. l... Converter 2... Oxygen for blowing 3...
Shutoff valve 4...Pipeline 5...Fluidized bed
6...Charging lower, 8...Discharge port

Claims (1)

【特許請求の範囲】[Claims] 1 流動層に炭材を装入し、転炉排ガスを該流動層に導
入して該転炉排ガス中のCO_2、H_2Oを炭材で変
成した後貯蔵する段階と、該貯蔵ガスを温度上昇させ粉
状鉱石を装入した流動層に導入して粉状鉄鉱石の還元を
行う段階とから成ることを特徴とする転炉排ガスの利用
方法。
1. A step of charging carbonaceous material into a fluidized bed, introducing converter exhaust gas into the fluidized bed, converting CO_2 and H_2O in the converter flue gas with carbonaceous material, and then storing it, and raising the temperature of the stored gas. A method of utilizing converter exhaust gas, comprising the step of reducing powdered iron ore by introducing it into a fluidized bed charged with powdered ore.
JP12880585A 1985-06-13 1985-06-13 Utilizing method for converter waste gas Granted JPS61288004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12880585A JPS61288004A (en) 1985-06-13 1985-06-13 Utilizing method for converter waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12880585A JPS61288004A (en) 1985-06-13 1985-06-13 Utilizing method for converter waste gas

Publications (2)

Publication Number Publication Date
JPS61288004A true JPS61288004A (en) 1986-12-18
JPH0214412B2 JPH0214412B2 (en) 1990-04-09

Family

ID=14993856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12880585A Granted JPS61288004A (en) 1985-06-13 1985-06-13 Utilizing method for converter waste gas

Country Status (1)

Country Link
JP (1) JPS61288004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588625B2 (en) * 2002-12-23 2009-09-15 Posco Apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same
KR101257056B1 (en) 2011-06-28 2013-04-22 현대제철 주식회사 Apparatus for recovering Lintz Donawitz Gas and Method for recovering Lintz Donawitz Gas
KR101257058B1 (en) * 2011-06-28 2013-04-22 현대제철 주식회사 Apparatus and method for sorting and supplying a gas
KR101277741B1 (en) * 2011-06-28 2013-06-24 현대제철 주식회사 By-product gas recovery device and recovery method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588625B2 (en) * 2002-12-23 2009-09-15 Posco Apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same
KR101257056B1 (en) 2011-06-28 2013-04-22 현대제철 주식회사 Apparatus for recovering Lintz Donawitz Gas and Method for recovering Lintz Donawitz Gas
KR101257058B1 (en) * 2011-06-28 2013-04-22 현대제철 주식회사 Apparatus and method for sorting and supplying a gas
KR101277741B1 (en) * 2011-06-28 2013-06-24 현대제철 주식회사 By-product gas recovery device and recovery method thereof

Also Published As

Publication number Publication date
JPH0214412B2 (en) 1990-04-09

Similar Documents

Publication Publication Date Title
WO2015101306A1 (en) System and method for fluidized direct reduction of iron ore concentrate powder
US4248624A (en) Use of prereduced ore in a blast furnace
US4111687A (en) Process for the production of intermediate hot metal
JPH01501401A (en) Equipment for producing ferrous or non-ferrous metals from self-fusing or non-self-fusing, self-reducing ore lumps or ores
CA2408720C (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
JPS61288004A (en) Utilizing method for converter waste gas
CA1236151A (en) Electric arc-fired blast furnace system
CN117545858A (en) Hydrogen recycle in direct reduction processes
US6053961A (en) Method and apparatus for smelting iron ore
US4412862A (en) Method for the production of ferrochromium
AU649402B2 (en) Method and apparatus for smelting iron oxide
KR100360111B1 (en) Method For Manufacturing Molten Iron Using Non-Coking Coal And Fine Iron Ore And Device For Manufacturing Molten Iron
CA1101677A (en) Process and apparatus for the production of intermediate hot metal
GB2026548A (en) Production of intermediate hot metal for steelmaking
JPH01162711A (en) Smelting reduction method
US2559213A (en) Method for producing metals in blast furnaces
CN114959148A (en) Electric furnace iron-making method
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace
JPS61136609A (en) Production of molten metal by melt reduction
CN115216576A (en) Iron oxide direct reduction method based on fuel energy consumption control
CN117858967A (en) Method for operating a metallurgical plant for producing iron products
Halim et al. Future of Ironmaking
JPS63176407A (en) Production of molten iron
JPH01162710A (en) Method and apparatus for smelting reduction