JPS61287496A - Treatment of liquid containing organic matter - Google Patents
Treatment of liquid containing organic matterInfo
- Publication number
- JPS61287496A JPS61287496A JP60127754A JP12775485A JPS61287496A JP S61287496 A JPS61287496 A JP S61287496A JP 60127754 A JP60127754 A JP 60127754A JP 12775485 A JP12775485 A JP 12775485A JP S61287496 A JPS61287496 A JP S61287496A
- Authority
- JP
- Japan
- Prior art keywords
- pressurized
- vessel
- reaction
- aerobic tank
- liq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は有機性物質含有液の処理方法に関し、詳細には
例えばパルプ廃液を糖化した後のグルコース含有液等の
様な他の有価物質に変換し得る有機性基質を含む液体を
処理する方法に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for treating a liquid containing organic substances, and in particular, the present invention relates to a method for treating a liquid containing organic substances, and more specifically, for treating a liquid containing other valuable substances, such as a liquid containing glucose after saccharifying pulp waste liquid. The present invention relates to a method for treating liquids containing convertible organic substrates.
[従来の技術1
第2図は、従来の典型的処理システムAを示すフロー説
明図である。該システムAでは、処理されるべき原料は
管路5を介して反応層l内に導かれる。該原料としては
、例えばパルプ廃液中に含まれるセルロースを糖化した
後のグルコース含有液が例示され、以下グルコース含有
液を原料とする場合を採り上げて説明する。反応槽lに
は、管路12を介して空気が供給之れ、好気性条件とな
っているので、反応層l内に導かれた原料は、反応層l
内の担体(図示せず)に担持された酵母等の菌体によっ
て好気発酵されエタノール等が生成する。反応層lから
のエタノール含有液(未反応のグルコース等を含む)は
、管路6を通って水槽2に導入される。該水槽2にはI
Af、琶調整弁7によって流量が調整された水が供給さ
れ、エタノール含有液と混合される。従ってエタノール
含有液は水槽2内で水によって希釈され、膜分離装置3
においてエタノール等の有価物は容易に膜分離が行なわ
れる状態となる。水槽2からは高圧ポンプ8によってエ
タノール含有液が加圧された状態で引出され、管路9を
介して膜分離装置3の濃縮液側に導入される。膜分離装
置3ではエタノール等の低分子有価物が透過液として膜
分離され、該透過液は管路10を介して貯留槽4に貯留
Sれる。[Prior Art 1] FIG. 2 is a flow explanatory diagram showing a typical conventional processing system A. In said system A, the raw material to be treated is conducted via line 5 into reaction bed l. An example of the raw material is a glucose-containing liquid obtained by saccharifying cellulose contained in pulp waste liquid, and the case where the glucose-containing liquid is used as a raw material will be explained below. Since air is supplied to the reaction tank l via the pipe 12 and the condition is aerobic, the raw material introduced into the reaction layer l is
Aerobic fermentation is carried out by bacterial cells such as yeast supported on a carrier (not shown) inside, and ethanol and the like are produced. The ethanol-containing liquid (containing unreacted glucose, etc.) from the reaction layer 1 is introduced into the water tank 2 through the pipe 6. The water tank 2 contains I
Af, water whose flow rate is adjusted by the adjustment valve 7 is supplied and mixed with the ethanol-containing liquid. Therefore, the ethanol-containing liquid is diluted with water in the water tank 2, and the membrane separator 3
In this process, valuable substances such as ethanol are easily separated by membrane. A pressurized ethanol-containing liquid is drawn out from the water tank 2 by a high-pressure pump 8 and introduced into the concentrate side of the membrane separator 3 via a pipe 9. In the membrane separation device 3, low molecular weight substances such as ethanol are membrane-separated as a permeated liquid, and the permeated liquid is stored in a storage tank 4 via a pipe line 10.
また膜分離装置3では、濃縮液側の加圧濃縮液が排出管
11を介して大気圧下に取出され残圧を開放した状態で
廃棄又はその他適当な処分に付される。Further, in the membrane separation device 3, the pressurized concentrate on the concentrate side is taken out under atmospheric pressure via the discharge pipe 11, and is disposed of or subjected to other appropriate disposal with the residual pressure released.
[発明が解決しようとする問題点1
」二記した膜分離技術では水槽2内の被処理液を高圧ポ
ンプ8によって加圧した状態で膜分離装置3に導入する
が、透過を済ませた後の残圧保有濃縮液は、該残圧を利
用しないままで放棄しているのが現状である。[Problem to be Solved by the Invention 1] In the membrane separation technology described in Part 2, the liquid to be treated in the water tank 2 is introduced into the membrane separation device 3 in a pressurized state by the high-pressure pump 8. Currently, concentrated liquids with residual pressure are discarded without utilizing the residual pressure.
膜分離技術は従来から逆浸透膜法或は限外濾過法等に便
宜上分類されているが、特に逆浸透膜法法では低分子溶
質を高分子物質や塩類等と分離するのを目的としており
、著しい高圧を必要とする。膜分離装置3への高圧ポン
プ8による供給圧は、供給水の水質、膜の性質及び装置
規模の大小等によって相違するが、−例して示すと20
〜50 kg/ cm2の範囲であり、濃縮液側の残圧
は10〜20 kg/ cm2程度にも及び利用価値の
高いエネルギーと考えられる。Membrane separation technology has conventionally been classified into reverse osmosis membrane method, ultrafiltration method, etc. for convenience, but reverse osmosis membrane method in particular aims to separate low-molecular solutes from high-molecular substances, salts, etc. , requiring significantly high pressure. The supply pressure by the high-pressure pump 8 to the membrane separation device 3 varies depending on the quality of the supplied water, the properties of the membrane, the size of the device, etc.;
It is in the range of ~50 kg/cm2, and the residual pressure on the concentrate side is about 10-20 kg/cm2, which is considered to be energy with high utility value.
一方、反応槽lに関して述べると、反応槽l内に□菌体
を保有する方式として、古くは浮遊方式や固定床方式等
が知られているが、菌体との接触頻度を更に増加する目
的で流動床方式や膨張方式等が開発されており、反応槽
l内での反応が迅速に進行するためには流動床方式や膨
張方式等が奨励される。好気的反応では、菌体濃度を高
くすればする程、菌体濃度に見合った酸素を供給しなけ
ればならないのは周知の事実である。反応槽内への酸素
供給能を−IZ昇する手段としては、反応槽内を加圧下
に保ち飽和溶存酸素濃度を高める方法が一1―げられ、
これによって酸素溶解量を増大することができる。そこ
で本発明者等はこの様な手段を有効に実現する為の手段
を提供すべく研究を行ない本発明を完成するに至った。On the other hand, regarding reaction tank 1, floating methods and fixed bed methods have long been known as methods for retaining bacterial cells in reaction tank 1, but the purpose is to further increase the frequency of contact with bacterial cells. A fluidized bed method, an expansion method, etc. have been developed, and the fluidized bed method, expansion method, etc. are recommended in order for the reaction to proceed quickly in the reaction tank. It is a well-known fact that in an aerobic reaction, the higher the bacterial cell concentration, the more oxygen must be supplied in proportion to the bacterial cell concentration. As a means of increasing the oxygen supply capacity into the reaction tank by -IZ, there is a method of keeping the inside of the reaction tank under pressure and increasing the saturated dissolved oxygen concentration.
This makes it possible to increase the amount of dissolved oxygen. Therefore, the present inventors conducted research to provide a means for effectively realizing such a means, and completed the present invention.
即ち本発明は、従来では利用されないままで廃棄されて
いた残圧を上記の加圧手段として有効に利用し、処理の
ための反応速度を可及的に増大するようにした有機性物
質含有液の処理方法を提供することをその目的とするも
のである。That is, the present invention effectively utilizes residual pressure, which was conventionally discarded without being utilized, as the above-mentioned pressurizing means to produce an organic substance-containing liquid that increases the reaction rate for treatment as much as possible. Its purpose is to provide a method for processing.
[問題点を解決する為の手段]
本発明は、常圧好気槽と膜分離装置とが該記載順序で配
置され、有機性物質含有液を4−記常圧好気槽に導いて
反応させ、該反応槽から取出された反応処理液をに記膜
分離装置に加圧状態で導くことにより低分子有価物を透
過液側に膜分離する方法において、−1−記常圧好気槽
の上流側に加圧好気槽を設けて該加圧好気槽内に菌体を
高濃度に保持せしめておき、更にに記膜分離装置の濃縮
液側の加圧濃縮液を加圧好気槽に返還することにより加
圧好気槽での反応を加圧状態で行なわせる様にした点に
要旨を有するものである。[Means for Solving the Problems] In the present invention, a normal pressure aerobic tank and a membrane separation device are arranged in the above-mentioned order, and a liquid containing an organic substance is guided to the normal pressure aerobic tank and reacted. In the method for membrane-separating low-molecular valuables to the permeate side by introducing the reaction treated liquid taken out from the reaction tank under pressure to the membrane separation device described in -1- the normal pressure aerobic tank. A pressurized aerobic tank is provided on the upstream side of the pressurized aerobic tank to maintain a high concentration of bacterial cells in the pressurized aerobic tank. The gist is that the reaction in the pressurized aerobic tank is carried out under pressure by returning the gas to the aerobic tank.
[作用]
−L述したように、反応槽内への酸素供給能を上昇する
手段として反応層内を加圧下に保ち飽和溶存酸素濃度を
高めることによって酸素溶解量を増大ぎせるという構成
を採用している。即ち、後述の(1)式に示すように酸
素移動速度δC/δtは飽和溶存酸素濃度C8に依存し
ており、反応槽内を加圧状態にして飽和溶存酸素濃度C
sを高めることによって酸素移動速度δC/δt、従っ
て酸素溶解量を増大することができる。[Function] - As mentioned above, as a means to increase the oxygen supply capacity into the reaction tank, a configuration is adopted in which the amount of dissolved oxygen is increased by keeping the inside of the reaction layer under pressure and increasing the saturated dissolved oxygen concentration. are doing. That is, as shown in equation (1) below, the oxygen transfer rate δC/δt depends on the saturated dissolved oxygen concentration C8, and when the inside of the reaction tank is pressurized, the saturated dissolved oxygen concentration C
By increasing s, the oxygen transfer rate δC/δt, and therefore the amount of dissolved oxygen, can be increased.
δC/δt=K ・(S/V)(Cs−G)−r
−(1)尚式中、Kは物質移動係数、Sは気液界面積、
■は液量、Cは溶存酸素濃度、rは菌体の酸素消費速度
を夫々示している。δC/δt=K ・(S/V)(Cs-G)-r
-(1) where K is the mass transfer coefficient, S is the gas-liquid interfacial area,
(2) represents the liquid volume, C represents the dissolved oxygen concentration, and r represents the oxygen consumption rate of the bacterial cells.
本発明者は」二記指針を実現するに当たり、従来利用さ
れていなかった濃縮液側の残圧を有効に利用するという
観点に立脚し、本発明を完成するに至った。In realizing the second guideline, the present inventors have completed the present invention based on the viewpoint of effectively utilizing the residual pressure on the concentrated liquid side, which has not been utilized in the past.
本発明によれば、記述した如き構成を採用することによ
り残圧の有効利用が達成されると共に、加圧好気槽内で
の反応速度を可及的に増大することが口丁能となった。According to the present invention, by adopting the configuration as described, effective utilization of residual pressure is achieved, and it becomes possible to increase the reaction rate in the pressurized aerobic tank as much as possible. Ta.
以下、本発明を第1図に従って更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to FIG.
[実施例]
第1図は、本発明方法の一実施態様を示すフロー説明図
である。本発明システムBの基本的構成は、第2図に示
した従来システムAと同様であり対応する部分に同一の
参照符号を付すことにより重複説明を回避する。本発明
システムBでは、反応槽1の上流側に加圧好気槽15が
設けられる。該加圧好気槽15には、膜分離装置3の濃
縮液側からの加圧液を返還するための返送路16が連結
されている。該返送路16を介して膜分離装置3の濃縮
液側の加圧濃縮液が、加圧好気槽15に返還される。尚
返送路16にはコンプレッサ17からの圧縮空気を圧送
する管路20が連結されているので、加圧好気槽15内
には濃縮液側の加圧濃縮液と共に圧縮空気が供給される
。管路20には主弁18及び補助弁19が介装されてお
り、コンプレッサ17から加圧好気槽15に供給される
圧縮空気の流量及び圧力は主弁18及び補助弁19によ
って調整される。[Example] FIG. 1 is a flow explanatory diagram showing one embodiment of the method of the present invention. The basic configuration of the system B of the present invention is the same as that of the conventional system A shown in FIG. 2, and corresponding parts are given the same reference numerals to avoid redundant explanation. In the system B of the present invention, a pressurized aerobic tank 15 is provided upstream of the reaction tank 1. A return path 16 is connected to the pressurized aerobic tank 15 for returning the pressurized liquid from the concentrated liquid side of the membrane separation device 3 . The pressurized concentrate on the concentrate side of the membrane separation device 3 is returned to the pressurized aerobic tank 15 via the return path 16 . Since the return line 16 is connected to a pipe line 20 for feeding compressed air from the compressor 17 under pressure, the compressed air is supplied into the pressurized aerobic tank 15 together with the pressurized concentrate on the concentrate side. A main valve 18 and an auxiliary valve 19 are interposed in the pipe line 20, and the flow rate and pressure of compressed air supplied from the compressor 17 to the pressurized aerobic tank 15 are adjusted by the main valve 18 and the auxiliary valve 19. .
膜分離装置3の濃縮液側から返送路16に供給される加
圧液の圧力は、例えば10〜20kg7cm2である。The pressure of the pressurized liquid supplied from the concentrate side of the membrane separator 3 to the return path 16 is, for example, 10 to 20 kg7cm2.
この様な高圧を有する加圧液をコンプレッサ17からの
圧縮空気と共に加圧好気槽15に供給することによって
、加圧好気槽15内は好気的且つ加圧状態とされる。By supplying the pressurized liquid having such high pressure to the pressurized aerobic tank 15 together with compressed air from the compressor 17, the inside of the pressurized aerobic tank 15 is brought into an aerobic and pressurized state.
加圧好気槽15の頂部には管路24が設けられており、
該管路24は前記反応槽lの底部に連結される。管路2
4には制御弁25が介在されており、該制御弁25の開
度を制御することによって加圧好気槽15内の圧力が調
整される。加圧好気槽15内の圧力は、例えば5〜20
kg/ cm2の高圧に保持される。加圧好気槽15
には圧力計30が設けられており、この圧力計30によ
って加圧好気槽15内の圧力を目視確認することができ
る。このようにして加圧好気槽15内を加圧状態にする
ことによって、加圧好気槽15内の飽和溶存酸素濃度を
高めることができ、加圧好気槽15の構成を大型化する
ことなしに菌体を高濃度にすることができるようになる
。A pipe line 24 is provided at the top of the pressurized aerobic tank 15,
The pipe line 24 is connected to the bottom of the reaction tank I. Conduit 2
A control valve 25 is interposed in 4, and the pressure inside the pressurized aerobic tank 15 is adjusted by controlling the opening degree of the control valve 25. The pressure inside the pressurized aerobic tank 15 is, for example, 5 to 20
It is maintained at a high pressure of kg/cm2. Pressurized aerobic tank 15
A pressure gauge 30 is provided, and the pressure inside the pressurized aerobic tank 15 can be visually checked using this pressure gauge 30. By pressurizing the inside of the pressurized aerobic tank 15 in this way, the saturated dissolved oxygen concentration inside the pressurized aerobic tank 15 can be increased, and the configuration of the pressurized aerobic tank 15 can be enlarged. It becomes possible to increase the concentration of bacterial cells without causing any problems.
本システムBに従って処理される原料は、−1−述した
ように例えばパルプ廃液中のセルロースを糖化(酸加水
分解等)した後のグルコース含有液である。該原料は原
料槽22に貯留されており、ポンプ31によって管路2
3から反応槽1内に供給される。反応槽lには排気管3
2が設けられており、反応槽l内はほぼ常圧に保たれる
。反応槽lには加圧好気槽15から酸素を含んだ被処理
液が管路24を介して供給され、反応槽l内は好気性雰
囲気にされる。また、反応槽lの反応を更に促進する為
に、コンプレッサ17から酸素を供給することも有効で
ある。そこで管路20を分岐して仮想線33で示すよう
な管路を設け、流量調整弁34で流量を調整しながら反
応槽l内にコンプレッサ17からの空気を供給するよう
にしてもよい。The raw material to be treated according to the present system B is a glucose-containing liquid obtained by, for example, saccharifying cellulose in pulp waste liquid (acid hydrolysis, etc.) as described in -1-. The raw material is stored in a raw material tank 22, and is pumped through the pipe line 2 by a pump 31.
3 into the reaction tank 1. There is an exhaust pipe 3 in the reaction tank 1.
2 is provided, and the inside of the reaction tank 1 is maintained at approximately normal pressure. A liquid to be treated containing oxygen is supplied from the pressurized aerobic tank 15 to the reaction tank 1 via the pipe line 24, and the inside of the reaction tank 1 is made into an aerobic atmosphere. Furthermore, in order to further promote the reaction in the reaction tank 1, it is also effective to supply oxygen from the compressor 17. Therefore, the pipe line 20 may be branched to provide a pipe line as shown by an imaginary line 33, and the air from the compressor 17 may be supplied into the reaction tank 1 while adjusting the flow rate with the flow rate regulating valve 34.
反応槽l内の菌体の働きによってグルコースがエタノー
ルに変換され、グルコース含有液はエタノール含有液と
なる。しかしながら、反応槽1内は常圧であるので反応
が常に迅速に進行するとは限らず未反応のグルコースも
相当量残存する。この残存グルコースは、膜分離装置3
の濃縮液側から返送路16を介して加圧好気槽15内に
供給される。加圧好気槽15内では菌体が高濃度に保持
されており、加圧された状態であるので、未反応のグル
コースは効率良くエタノールに変換される。加圧好気槽
15内で処理された被処理液は、再び反応槽l内に返還
される。このようにして原料を反応槽lに供給し、反応
槽l内で未反応であったグルコースを含む液を加圧好気
槽15に循環させることによって反応速度を増大させ原
料を高精度に有価物に変換することが可能となる。Glucose is converted to ethanol by the action of bacterial cells in the reaction tank 1, and the glucose-containing liquid becomes an ethanol-containing liquid. However, since the inside of the reaction tank 1 is at normal pressure, the reaction does not always proceed quickly and a considerable amount of unreacted glucose remains. This residual glucose is removed from the membrane separator 3
The concentrate is supplied into the pressurized aerobic tank 15 via the return path 16. In the pressurized aerobic tank 15, bacterial cells are maintained at a high concentration and are in a pressurized state, so that unreacted glucose is efficiently converted to ethanol. The liquid to be treated in the pressurized aerobic tank 15 is returned to the reaction tank 1 again. In this way, the raw material is supplied to the reaction tank 1, and the liquid containing unreacted glucose in the reaction tank 1 is circulated to the pressurized aerobic tank 15, thereby increasing the reaction rate and converting the raw material into valuable materials with high precision. It is possible to convert it into objects.
上述の実施例では、パルプ廃液を糖化した後のグルコー
ス含有液をエタノール含有液に変換させる場合に関して
述べたけれども、本発明の精神に従えば、パルプ廃液等
の産業廃水を処理する場合に限らず、し尿等の都市廃液
を処理する場合においても好適に実施することができる
。In the above embodiment, a case was described in which a glucose-containing liquid after saccharifying a pulp waste liquid is converted into an ethanol-containing liquid, but according to the spirit of the present invention, it is not limited to the case where industrial wastewater such as pulp waste liquid is treated. It can also be suitably carried out when treating urban wastewater such as human waste.
・また膜分離装置3の濃縮液側の加圧液を多用途に利用
するために、返送路16から分岐するバイパス管26を
設け、前記水槽2に濃縮液側の加圧濃縮液を供給するよ
うにしてもよい。該バイパス管26には流量調整弁27
が介在され、該流量調整弁27によって水槽2に返還さ
れる加圧液の流量が調整される。該バイパス管26は、
膜分離装置3の膜表面における線速度を増加して該膜表
面への固形分付着を防夏トする目的で設けられるもので
あり、水槽2から膜分離装置3に供給される水酸を調整
することによって1−記目的を達成する。- Also, in order to use the pressurized liquid on the concentrate side of the membrane separation device 3 for multiple purposes, a bypass pipe 26 is provided that branches from the return path 16, and the pressurized concentrate on the concentrate side is supplied to the water tank 2. You can do it like this. A flow rate regulating valve 27 is provided in the bypass pipe 26.
is interposed, and the flow rate of the pressurized liquid returned to the water tank 2 is adjusted by the flow rate adjustment valve 27. The bypass pipe 26 is
This is provided for the purpose of increasing the linear velocity on the membrane surface of the membrane separator 3 to prevent solid content from adhering to the membrane surface during the summer, and adjusts the hydric acid supplied from the water tank 2 to the membrane separator 3. By doing so, you will achieve the purpose listed in item 1-.
[発明の効果1
以−J−述べた如く本発明によれば、従来では利用され
ないままに廃棄されていた残圧を有利に利用することが
できると共に、処理のための反応速度を可及的に増大す
ることができるようになり、原料を高精度に有価物に変
換することが可能となった。[Effect of the Invention 1] As described above, according to the present invention, it is possible to advantageously utilize the residual pressure that was conventionally discarded without being utilized, and to increase the reaction rate for treatment as much as possible. This has made it possible to convert raw materials into valuables with high precision.
第1図は本発明の実施態様の一例を示すフロー説明図、
第2図は従来の典型的処理システムAを示すフロー説明
図である。FIG. 1 is a flow explanatory diagram showing an example of an embodiment of the present invention,
FIG. 2 is a flow explanatory diagram showing a conventional typical processing system A.
Claims (1)
機性物質含有液を上記常圧好気槽に導いて反応させ、該
反応槽から取出された反応処理液を上記膜分離装置に加
圧状態で導くことにより低分子有価物を透過液側に膜分
離する方法において、上記常圧好気槽の上流側に加圧好
気槽を設けて該加圧好気槽内に菌体を高濃度に保持せし
めておき、更に上記膜分離装置の濃縮液側の加圧濃縮液
を加圧好気槽に返還することにより加圧好気槽での反応
を加圧状態で行なうことを特徴とする有機性物質含有液
の処理方法。A normal pressure aerobic tank and a membrane separation device are arranged in the above described order, the liquid containing organic substances is led to the above normal pressure aerobic tank and reacted, and the reaction treated liquid taken out from the reaction tank is subjected to the above membrane separation. In a method of membrane-separating low-molecular-weight valuables to the permeate side by introducing them into a device under pressure, a pressurized aerobic tank is provided upstream of the normal-pressure aerobic tank, and in the pressurized aerobic tank, The bacterial cells are maintained at a high concentration, and the pressurized concentrate on the concentrate side of the membrane separation device is returned to the pressurized aerobic tank to carry out the reaction in the pressurized aerobic tank under pressure. A method for treating a liquid containing an organic substance, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60127754A JPS61287496A (en) | 1985-06-12 | 1985-06-12 | Treatment of liquid containing organic matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60127754A JPS61287496A (en) | 1985-06-12 | 1985-06-12 | Treatment of liquid containing organic matter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61287496A true JPS61287496A (en) | 1986-12-17 |
JPS645957B2 JPS645957B2 (en) | 1989-02-01 |
Family
ID=14967859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60127754A Granted JPS61287496A (en) | 1985-06-12 | 1985-06-12 | Treatment of liquid containing organic matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61287496A (en) |
-
1985
- 1985-06-12 JP JP60127754A patent/JPS61287496A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS645957B2 (en) | 1989-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lewandowska et al. | Ethanol production from lactose in a fermentation/pervaporation system | |
US20090017514A1 (en) | Membrane supported bioreactor for conversion of syngas components to liquid products | |
EP1748835A2 (en) | Fuel and by-products from fermentation still bottoms | |
JP4966523B2 (en) | Biomass processing system | |
US20080057553A1 (en) | Fermentation processes and systems | |
Park et al. | Simultaneous fermentation and separation in the ethanol and ABE fermentation | |
JP2661716B2 (en) | Method for separating biotechnologically useful substances from culture solution | |
Matsumura | Perstraction | |
JPH08252434A (en) | Manufacture of highly concentrated alcohol | |
CN106430793A (en) | Zero discharging method and device for vitamin B2 production waste water | |
WO1981003182A1 (en) | Process and apparatus for continuous production of ethanol | |
CN105884104A (en) | Method for recovering high-concentration fermentation wastewater useful components and purifying wastewater by membrane distillation-nanofiltration/reverse osmosis combined technique | |
JPS61287496A (en) | Treatment of liquid containing organic matter | |
US4845033A (en) | Process for a continuous fermentative production of low aliphatic alcohols or organic solvents | |
EP0241577B1 (en) | Method for separating and concentrating an organic component having a low-boiling point from an aqueous solution | |
Willetts et al. | The production of single-cell protein from whey | |
JPH07184628A (en) | Treatment of fermentation waste liquid | |
Cho | Performance of a two-stage methane digestor for alcohol stillage derived from sugarcane molasses | |
Joergensen | Anaerobic formation of volatile acids in a chemostat | |
JPS61287500A (en) | Treatment of liquid containing organic substance | |
Lane | Production of food yeast from whey ultrafiltrate by dialysis culture | |
CA1131571A (en) | Process for continuous preparation of alcohol through fermentation | |
Burgess | Production of yeast protein from lactose permeate in a tower fermenter | |
Modl | Jilin fuel ethanol plant | |
JPS6232871A (en) | Device for producing alcohol |